Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
|
|
- Ladislav Vaněk
- před 8 lety
- Počet zobrazení:
Transkript
1 Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý Každý z přístrojů vydrží zkoušku s pravděpodobostí 0,8 Náhodá veličia udává počet zkoušeých přístrojů Vypočtěte středí hodotu a rozptyl áhodé veličiy Řešeí: abývá hodot 1, 2, 3, 4 a její pravděpodobostí fukce je: π(1) = 0,2, π(2) = 0,8*0,2 = 0,, π(3) = 0,8 2 *0,2 = 0,128, π(4) = 0,8 3 *0,2 + 0,84 = 0,512, π(x) = 0 jiak E() = 1*0,2 + 2*0, + 3*0, *0,512 = 2,952 D() = 1 2 *0, *0, *0, *0,512 2,952 2 = 1,4697 Postup ve STATISTICE: Otevřeme ový datový soubor o dvou proměých a cetost a čtyřech případech Do proměé apíšeme 1, 2, 3, 4, do proměé cetost apíšeme 0, 0, 128, 512 Statistiky Základí statistiky/tabulky Popisé statistiky OK zavedeme proměou vah cetost OK - Proměé OK Detailí výsledky - zaškrteme Průměr, Rozptyl Výpočet Popisé statistiky (Tabulka1) Proměá N platých Průměr Rozptyl ,9500 1,4717 Rozptyl však musíme upravit, musíme ho vyásobit číslem 999/1000 Do výstupí tabulky tedy přidáme za proměou Rozptyl ovou proměou a do jejího Dlouhého jméa apíšeme =v3*999/1000 Popisé statistiky (Tabulka1) Proměá N platých Průměr Rozptyl NProm ,9500 1,4717 1, Příklad 2 (k samostatému řešeí): Náhodá veličia udává počet ok při hodu kostkou Pomocí systému STATISTICA vypočtěte její středí hodotu a rozptyl Výsledek: E() = 3,5, D() = 2,97 Příklad 3: Ve 12 áhodě vybraých prodejách ve městě byly zjištěy ásledující cey určitého výrobku (v Kč): 102, 99, 106, 103, 96, 98, 100, 105, 103, 98, 104, 107 Těchto 12 hodot považujeme za realizace áhodého výběru 1,, 12 z rozložeí, které má středí hodotu µ a rozptyl 2 Určete estraé bodové odhady ezámé středí hodoty µ a ezámého rozptylu 2 : Otevřeme ový datový soubor o jedé proměé (azveme ji ) a 12 případech Do proměé apíšeme zjištěé cey Výpočet realizace výběrového průměru a výběrového rozptylu:
2 Statistiky Základí statistiky/tabulky Popisé statistiky OK Proměé OK Detailí výsledky vybereme Průměr a Rozptyl Výpočet Dostaeme tabulku: Popisé statistiky (Tabulka) Proměá Průměr Rozptyl 101, ,38636 Příklad 4: Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia ) Hodoty veličiy ozačují obsah fosforu v obilých klíčcích (po 38 dech), jež vyrostly a těchto vzorcích půdy číslo vzorku Těchto 9 dvojic hodot považujeme za realizace áhodého výběru ( 1, 1 ),, ( 9, 9 ) z dvourozměrého rozložeí s kovariací 12 a koeficietem korelace ρ Najděte bodové odhady výběrové kovariace 12 a výběrového koeficietu korelace ρ : Otevřeme ový datový soubor o dvou proměých a 9 případech Do proměých a zapíšeme zjištěé hodoty obsafu fosforu v půdě a v obilých klíčcích Výpočet výběrové kovariace: Statistiky Vícerozměrá regrese Proměé Závisle proměá, ezávisle proměá OK OK Residua/předpoklady/předpovědi Popisé statistiky Další statistiky Kovariace Dostaeme tabulku: Kovariace (Tabulka18 Proměá 91, , , ,2500 Vidíme, že výběrová kovariace velič, se realizuje hodotou 130 (Výběrový rozptyl proměé resp abyl hodoty 91,75 resp 284,25) Výpočet výběrového koeficietu korelace: V meu Další statistiky vybereme Korelace Korelace (Tabulka18) Proměá 1, , , , Výběrový koeficiet korelace veliči, abyl hodoty 0,805, tedy mezi veličiami x, existuje silá přímá lieárí závislost Upozorěí: Výběrový koeficiet korelace lze pomocí systému STATISTICA vypočítat i jiým způsobem: Statistika Základí statistiky/tabulky Korelačí matice OK 1 sezam proměých, OK Výpočet Ve výsledé tabulce máme též realizace výběrových průměrů a směrodatých odchylek Korelace (Tabulka18) Ozač korelace jsou výzamé a hlad p <,05000 N=9 (Celé případy vyecháy u ChD) Proměá Průměry Smodch 13, , , , ,00000, , ,000000
3 Vzorce pro meze 100(1-α)% empirického itervalu spolehlivosti pro středí hodotu µ ormálího rozložeí při zámém rozptylu 2 : Oboustraý: d = m u 1 α / 2, h = m + u 1 α / 2 Levostraý: d = m u1 α Pravostraý: h = m + u1 α Příklad 5: Při kotrolích zkouškách životosti žárovek byl staove odhad m = 3000 h středí hodoty jejich životosti Z dřívějších zkoušek je zámo, že životost žárovky se řídí ormálím rozložeím se směrodatou odchylkou = h Vypočtěte a) 99% empirický iterval spolehlivosti pro středí hodotu životosti b) 90% levostraý empirický iterval spolehlivosti pro středí hodotu životosti c) 95% pravostraý empirický iterval spolehlivosti pro středí hodotu životosti Upozorěí: Výsledek zaokrouhlete a jedo desetié místo a vyjádřete v hodiách a miutách Řešeí: ad a) d = m u 0, 995 = ,57583 = 2987,1, h = m + u 0, 995 = ,57583 = 3012, h a 6 mi < µ < 3012 h a 54 mi s pravděpodobostí 0,99 Otevřeme ový datový soubor o dvou proměých d, h a jedom případu Do Dlouhého jméa proměé d apíšeme vzorec =3000-/sqrt()*VNormal(0,995;0;1) Do Dlouhého jméa proměé h apíšeme vzorec =3000+/sqrt()*VNormal(0,995;0;1) ad b) d = m u 0, 9 = ,285 = 2993, h a 36 mi < µ s pravděpodobostí 0,9 Otevřeme ový datový soubor o jedé proměé d a jedom případu Do Dlouhého jméa proměé d apíšeme vzorec =3000-/sqrt()*VNormal(0,9;0;1) ad c) h = m + u 0, 975 = ,95996 = 3009, h a 48 mi > µ s pravděpodobostí 0,95 Otevřeme ový datový soubor o jedé proměé h a jedom případu Do Dlouhého jméa proměé h apíšeme vzorec =3000+/sqrt()*VNormal(0,975;0;1)
4 Užitečý odkaz: a adrese je program, s jehož pomocí lze převádět růzé fyzikálí jedotky, v ašem případě hodiy a miuty Základí pozatky o testováí hypotéz Předpokládáme, že testujeme ulovou hypotézu H 0 : h( ϑ ) = c, kde c R buď proti oboustraé alterativě H 1 : h( ϑ ) c ebo proti levostraé alterativě H 1 : h( ϑ ) < c ebo proti pravostraé alterativě H 1 : h( ϑ ) > c Testováí pomocí kritického oboru Najdeme testovou statistiku T 0 = T 0 ( 1,, ) Možia všech hodot, jichž může testová statistika abýt, se rozpadá a obor ezamítutí ulové hypotézy (začí se V) a obor zamítutí ulové hypotézy (začí se W a azývá se též kritický obor) W av jsou odděley kritickými hodotami (pro daou hladiu výzamosti α je lze ajít ve statistických tabulkách) Jestliže číselá realizace t 0 testové statistiky T 0 pade do kritického oboru W, pak ulovou hypotézu zamítáme a hladiě výzamosti α a zameá to skutečé vyvráceí testovaé hypotézy Jestliže t 0 pade do oboru ezamítutí V, pak jde o pouhé mlčeí, které platost ulové hypotézy jeom připouští Staoveí kritického oboru pro daou hladiu výzamosti α: Ozačme t mi (resp t max ) ejmeší (resp ejvětší) hodotu testového kritéria Kritický obor v případě oboustraé alterativy má tvar W = ( t mi, K α / 2 (T) K1 α / 2 (T), t max ), kde K α/2 (T) a K 1-α/2 (T) jsou kvatily rozložeí, jímž se řídí testové kritérium T 0, je-li ulová hypotéza pravdivá Kritický obor v případě levostraé alterativy má tvar: W = ( t mi, K α (T) Kritický obor v případě pravostraé alterativy má tvar: W = K α (T), ) 1 t max Testováí pomocí itervalu spolehlivosti Sestrojíme 100(1-α)% empirický iterval spolehlivosti pro parametrickou fukci h( ϑ ) Pokryje-li teto iterval hodotu c, pak H 0 ezamítáme a hladiě výzamosti α, v opačém případě H 0 zamítáme a hladiě výzamosti α Pro test H 0 proti oboustraé alterativě sestrojíme oboustraý iterval spolehlivosti Pro test H 0 proti levostraé alterativě sestrojíme pravostraý iterval spolehlivosti Pro test H 0 proti pravostraé alterativě sestrojíme levostraý iterval spolehlivosti Testováí pomocí p-hodoty p-hodota udává ejižší možou hladiu výzamosti pro zamítutí ulové hypotézy: je-li p α, pak H 0 zamítáme a hladiě výzamosti α, je-li p > α, pak H 0 ezamítáme a hladiě výzamosti α Způsob výpočtu p-hodoty: Pro oboustraou alterativu p = 2 mi{p(t 0 t 0 ), P(T 0 t 0 )} Pro levostraou alterativu p = P(T 0 t 0 ) Pro pravostraou alterativu p = P(T 0 t 0 ) Příklad 6: Víme, že výška hochů ve věku 9,5 až 10 let má ormálí rozložeí s ezámou středí hodotou µ a zámým rozptylem 2 = cm 2 Dětský lékař áhodě vybral hochů uvedeého věku, změřil je a vypočítal realizaci výběrového průměru m = 139,13 cm Podle jeho ázoru by výška hochů v tomto věku eměla přesáhout 142 cm s pravděpodobostí 0,95 Lze tvrzeí lékaře akceptovat?
5 Řešeí: Testujeme H 0 : µ = 142 proti H 1 : µ < 142 (to je tvrzeí lékaře) a hladiě výzamosti 0,05 a) Test provedeme pomocí kritického oboru Pro úlohy o středí hodotě ormálího rozložeí při zámém rozptylu používáme pivotovou M µ M c statistiku U = ~ N(0, 1) Testová statistika tedy bude T0 = a bude mít rozložeí N(0, 1), pokud je ulová hypotéza pravdivá Vypočítáme realizaci testové statistiky: 139, t 0 = = 1, 7773 Staovíme kritický obor: W = ( u = (,u = (, u = (, 1, 6449 α, 0,05 0, 95 Protože -1,7773 W, H 0 zamítáme a hladiě výzamosti 0,05 Tvrzeí lékaře lze tedy akceptovat s rizikem omylu 5 % b) Test provedeme pomocí itervalu spolehlivosti Meze 100(1-α)% empirického pravostraého itervalu spolehlivosti pro středí hodotu µ při zámém rozptylu 2 jsou: (-, h) = (-, m + u1-α ) V ašem případě dostáváme: h = 139,13 + u 0,95 = 139,13 + 1,645 = 141,79 Protože 142 (- ; 141,79), H 0 zamítáme a hladiě výzamosti 0,05 c) Test provedeme pomocí p-hodoty p = P(T 0 t 0 ) = Φ(-1,7773) = 0,0378 Jelikož 0,0378 0,05, ulovou hypotézu zamítáme a hladiě výzamosti 0,05 Při řešeí tohoto příkladu použijeme systém STATISTICA pouze jako iteligetí kalkulátor
Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu
Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia
Vícei 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky
Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí
VíceTESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VíceV. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
VíceČíselné charakteristiky náhodných veličin
Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
Více8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
VíceZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
VíceIntervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
VíceKapitola 6. : Neparametrické testy o mediánech
Kapitola 6 : Neparametrické testy o mediáech Cíl kapitoly Po prostudováí této kapitoly budete umět - provádět testy hypotéz o mediáu jedoho spojitého rozložeí - hodotit shodu dvou ezávislých áhodých výběrů
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
Více14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou
4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,
VíceIntervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním
Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Více8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
VíceTestování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
VíceMezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
Více0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)
. Příklad Při průzkumu trhu projevilo 63 z dotázaých zákazíků zájem o iovovaý výrobek, který má být uvede a trh se zákazíky. Odvoďte a odhaděte proceto a počet zájemců v populaci s 95% spolehlivostí. Následě
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VíceNEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
VíceOdhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení
Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází
VícePřednáška VIII. Testování hypotéz o kvantitativních proměnných
Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?
Více7. Odhady populačních průměrů a ostatních parametrů populace
7. Odhady populačích průměrů a ostatích parametrů populace Jak sme zišťovali v kapitole. e možé pro každou populaci sestroit možství parametrů, které i charakterizue. Pro účely základího pozáí e evýzaměší
VíceZávislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
VíceOdhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení
Odhad parametrů ormálího rozděleí a testy hypotéz o těchto parametrech * Věty o výběru z ormálího rozděleí Nechť, X, X je áhodý výběr z rozděleí N ( µ, ) X, Ozačme výběrový průměr a = X = i = X i i = (
VíceNáhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.
Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Více17. Statistické hypotézy parametrické testy
7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé
VíceP2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou
VíceKapitola 3.: Úlohy o jednom náhodném výběru z normálního rozložení
Kapitola 3.: Úlohy o jedom áhodém výběru z ormálího rozložeí Cíl kapitoly Po protudováí této kapitoly budete - zát vlatoti pivotových tatitik odvozeých z áhodého výběru z ormálího rozložeí a budete je
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VícePRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady
SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc
VíceStatistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc
Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Víceveličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
VíceTestujeme hypotézu: proti alternativě. Jednoduché třídění:
Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité
VíceFUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL
Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost
Více} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy
Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,
VícePřednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti
Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou
Více3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
Vícevají statistické metody v biomedicíně
Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk
VícePopisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem
Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme
VíceÚloha III.S... limitní
Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími
Vícevají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví
Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě
VíceVYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
VíceČeské vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika
České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35
VíceZ mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů.
1. Příklad Hodíme 60krát šestistěou hrací kostkou. Jedotlivé stěy padly v ásledujícím poměru: 7:9:10:6:15:13. Proveďte test a 5% hladiě výzamosti, zda je kostka v pořádku. H 0 : π 1 = 1/6, π = 1/6, π 3
VícePravděpodobnostní model doby setrvání ministra školství ve funkci
Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
VíceFITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI PRO APLIKACE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF MATHEMATICS FITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI
VíceElementární zpracování statistického souboru
Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými
VícePro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
VíceSprávnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
VícePravděpodobnost vs. statistika. Data. Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými
Pravděpodobost vs. Teorie pravděpodobosti pracuje s jedou ebo více teoretickými áhodými veličiami, jejichž je zámo odvozovali jsme y těchto atd. Šárka Hudecová Katedra pravděpodobosti a matematické Matematicko-fyzikálí
Víceb c a P(A B) = c = 4% = 0,04 d
Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
VíceCo je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika
Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má
Více1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.
ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.
Více2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
VíceEKONOMETRIE 9. přednáška Zobecněný lineární regresní model
EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ
VíceUžití binomické věty
9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +
VíceZáklady statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková
Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují
VíceÚloha II.S... odhadnutelná
Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí
Více2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.
0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
VíceAplikovaná statistika v průmyslu
Aplikovaá statistika v průmyslu Úvod... Popisá statistika... 3. Základí pomy... 3. Jedorozměrý statistický soubor s kvatitativím zakem... 4.3 Dvourozměrý statistický soubor s kvatitavími zaky... 5.4 Statistické
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
Více10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
Více1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
VíceMetody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
VíceL A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
VícePODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)
Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím
Vícen-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
VíceZhodnocení přesnosti měření
Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek
Více13 Popisná statistika
13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický
VíceMendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
VíceVýukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot
Více8. cvičení 4ST201-řešení
cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,
Více2 STEJNORODOST BETONU KONSTRUKCE
STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
VícePODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)
Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím
Více6. P o p i s n á s t a t i s t i k a
6. P o p i s á s t a t i s t i k a 6.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme
VícePříklady z přednášek
Příklady z předášek. Normálí rozložeí a rozložeí z ěj odvozeá.7. Příklad: Výledky u přijímacích zkoušek a jitou VŠ jou ormálě rozložey parametry µ 550 bodů, σ 00 bodů. S jakou pravděpodobotí bude mít áhodě
VícePRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2
SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých
Více