Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Rozměr: px
Začít zobrazení ze stránky:

Download "Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu"

Transkript

1 Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia X) Hodoty veličiy Y ozačují obsah fosforu v obilých klíčcích (po 38 dech), jež vyrostly a těchto vzorcích půdy číslo vzorku X Y Těchto 9 dvojic hodot považujeme za realizace áhodého výběru (X,Y ),, (X 9,Y 9 ) z dvourozměrého rozložeí se středími hodotami µ, µ 2, rozptyly 2, 2 2 a koeficietem korelace ρ Najděte bodové odhady těchto číselých charakteristik, tj realizace výběrových průměrů, výběrových rozptylů a výběrového koeficietu korelace : Otevřeme datový soubor fosforsta o dvou proměých X a Y 9 případech V proměé X jsou zjištěé hodoty obsahu fosforu v půdě a v Y v obilých klíčcích Výpočet výběrových průměrů a výběrových rozptylů: Statistiky Základí statistiky/tabulky Popisé statistiky OK Proměé X, Y a záložce Detailí výsledky vybereme Průměr, Rozptyl Výpočet Dostaeme tabulku: Popisé statistiky (fosforsta) Proměá Průměr Rozptyl X 3 9,75 Y ,25 Vidíme, že výběrové průměry veliči X, Y se realizují hodotami 3 a 80, výběrové rozptyly pak abývají hodot 9,75 a 284,25 Výpočet výběrového koeficietu korelace: Aktivujeme Popisé statistiky Storo Korelačí matice OK 2 sezamy sezam proměých X, 2 sezam proměých Y OK Výpočet Korelace (fosforsta) Ozač korelace jsou výzamé a hlad p <,05000 N=9 (Celé případy vyecháy u ChD) Proměá Y X 0, Výběrový koeficiet korelace veliči X, Y abyl hodoty 0,805, tedy mezi veličiami x, Y existuje silá přímá lieárí závislost

2 Vzorce pro meze 00(-α)% empirického itervalu spolehlivosti pro středí hodotu µ ormálího rozložeí při zámém rozptylu 2 : Oboustraý: d = m u α / 2, h = m + u α / 2 Levostraý: d = m u α, pravostraý: h = m + u α Příklad 2: Při kotrolích zkouškách životosti žárovek byl staove odhad m = 3000 h středí hodoty jejich životosti Z dřívějších zkoušek je zámo, že životost žárovky se řídí ormálím rozložeím se směrodatou odchylkou = h Vypočtěte a) 99% empirický iterval spolehlivosti pro středí hodotu životosti b) 90% levostraý empirický iterval spolehlivosti pro středí hodotu životosti c) 95% pravostraý empirický iterval spolehlivosti pro středí hodotu životosti Upozorěí: Výsledek zaokrouhlete a jedo desetié místo a vyjádřete v hodiách a miutách Řešeí: ad a) d = m u 0, 995 = ,57583 = 2987,, h = m + u 0, 995 = ,57583 = 302, h a 6 mi < µ < 302 h a 54 mi s pravděpodobostí 0,99 Otevřeme ový datový soubor o dvou proměých d, h a jedom případu Do Dlouhého jméa proměé d apíšeme vzorec =3000-/sqrt()*VNormal(0,995;0;) Do Dlouhého jméa proměé h apíšeme vzorec =3000+/sqrt()*VNormal(0,995;0;) ad b) d = m u 0, 9 = 3000,2855 = 2993, h a 36 mi < µ s pravděpodobostí 0,9 Otevřeme ový datový soubor o jedé proměé d a jedom případu Do Dlouhého jméa proměé d apíšeme vzorec =3000-/sqrt()*VNormal(0,9;0;) ad c) h = m + u 0, 975 = ,95996 = 3009, h a 48 mi > µ s pravděpodobostí 0,95 Otevřeme ový datový soubor o jedé proměé h a jedom případu Do Dlouhého jméa proměé h apíšeme vzorec =3000+/sqrt()*VNormal(0,975;0;) Užitečý odkaz: a adrese je program, s jehož pomocí lze převádět růzé fyzikálí jedotky, v ašem případě hodiy a miuty

3 Základí pozatky o testováí hypotéz Předpokládáme, že testujeme ulovou hypotézu H 0 : h( ϑ ) = c, kde c R buď proti oboustraé alterativě H : h( ϑ ) c ebo proti levostraé alterativě H : h( ϑ ) < c ebo proti pravostraé alterativě H : h( ϑ ) > c Testováí pomocí kritického oboru Najdeme testovou statistiku T 0 = T 0 (X,, X ) Možia všech hodot, jichž může testová statistika abýt, se rozpadá a obor ezamítutí ulové hypotézy (začí se V) a obor zamítutí ulové hypotézy (začí se W a azývá se též kritický obor) W a V jsou odděley kritickými hodotami (pro daou hladiu výzamosti α je lze ajít ve statistických tabulkách) Jestliže číselá realizace t 0 testové statistiky T 0 pade do kritického oboru W, pak ulovou hypotézu zamítáme a hladiě výzamosti α a zameá to skutečé vyvráceí testovaé hypotézy Jestliže t 0 pade do oboru ezamítutí V, pak jde o pouhé mlčeí, které platost ulové hypotézy jeom připouští Staoveí kritického oboru pro daou hladiu výzamosti α: Ozačme t mi (resp t max ) ejmeší (resp ejvětší) hodotu testového kritéria Kritický obor v případě oboustraé alterativy má tvar W = ( t mi, K α / 2 (T) K α / 2 (T), t max ), kde K α/2 (T) a K -α/2 (T) jsou kvatily rozložeí, jímž se řídí testové kritérium T 0, je-li ulová hypotéza pravdivá Kritický obor v případě levostraé alterativy má tvar: W = ( t mi,k α (T) Kritický obor v případě pravostraé alterativy má tvar: W = K α (T), ) t max Testováí pomocí itervalu spolehlivosti Sestrojíme 00(-α)% empirický iterval spolehlivosti pro parametrickou fukci h( ϑ ) Pokryje-li teto iterval hodotu c, pak H 0 ezamítáme a hladiě výzamosti α, v opačém případě H 0 zamítáme a hladiě výzamosti α Pro test H 0 proti oboustraé alterativě sestrojíme oboustraý iterval spolehlivosti Pro test H 0 proti levostraé alterativě sestrojíme pravostraý iterval spolehlivosti Pro test H 0 proti pravostraé alterativě sestrojíme levostraý iterval spolehlivosti Testováí pomocí p-hodoty p-hodota udává ejižší možou hladiu výzamosti pro zamítutí ulové hypotézy: je-li p α, pak H 0 zamítáme a hladiě výzamosti α, je-li p > α, pak H 0 ezamítáme a hladiě výzamosti α Způsob výpočtu p-hodoty: Pro oboustraou alterativu p = 2 mi{p(t 0 t 0 ), P(T 0 t 0 )} Pro levostraou alterativu p = P(T 0 t 0 ) Pro pravostraou alterativu p = P(T 0 t 0 )

4 Příklad 3: Víme, že výška hochů ve věku 9,5 až 0 let má ormálí rozložeí s ezámou středí hodotou µ a zámým rozptylem 2 = 39,2 cm 2 Dětský lékař áhodě vybral 5 hochů uvedeého věku, změřil je a vypočítal realizaci výběrového průměru m = 39,3 cm Podle jeho ázoru by výška hochů v tomto věku eměla přesáhout 42 cm s pravděpodobostí 0,95 Lze tvrzeí lékaře akceptovat? Řešeí: Testujeme H 0 : µ = 42 proti H : µ < 42 (to je tvrzeí lékaře) a hladiě výzamosti 0,05 a) Test provedeme pomocí kritického oboru Pro úlohy o středí hodotě ormálího rozložeí při zámém rozptylu používáme pivotovou M µ M c statistiku U = ~ N(0, ) Testová statistika tedy bude T0 = a bude mít rozložeí N(0, ), pokud je ulová hypotéza pravdivá Vypočítáme realizaci testové statistiky: 39,3 42 t 0 = =, ,2 5 Staovíme kritický obor: W = ( u = (,u = (, u = (,, 6449 α, 0,05 0, 95 Protože -,7773 W, H 0 zamítáme a hladiě výzamosti 0,05 Tvrzeí lékaře lze tedy akceptovat s rizikem omylu 5 % Otevřeme ový datový soubor o dvou proměých t0 a kvatil a jedom případu Do Dlouhého jméa proměé t0 apíšeme =(39,3-42)/sqrt(39,2/5) Do Dlouhého jméa proměé kvatit apíšeme =VNormal (0,05;0;) Dostaeme tabulku: t0 2 kvatil -, , Protože se testová statistika realizuje v kritickém oboru, ulovou hypotézu zamítáme a hladiě výzamosti 0,05 b) Test provedeme pomocí itervalu spolehlivosti Meze 00(-α)% empirického pravostraého itervalu spolehlivosti pro středí hodotu µ při zámém rozptylu 2 jsou: (-, h) = (-, m + u-α ) 39,2 39,2 V ašem případě dostáváme: h = 39,3 + u 0,95 = 39,3 +,645 = 4, Protože 42 (- ; 4,79), H 0 zamítáme a hladiě výzamosti 0,05 Otevřeme ový datový soubor o jedé proměé h a jedom případu Do Dlouhého jméa proměé h apíšeme =39,3+sqrt(39,2/5)*VNormal(0,95;0;) h 4, Protože číslo 42 epatří do itervalu (- ; 4,79), H 0 zamítáme a hladiě výzamosti 0,05

5 c) Test provedeme pomocí p-hodoty p = P(T 0 t 0 ) = Φ(-,7773) = 0,0378 Jelikož 0,0378 0,05, ulovou hypotézu zamítáme a hladiě výzamosti 0,05 Otevřeme ový datový soubor o jedé proměé p a jedom případu Do Dlouhého jméa proměé p apíšeme =INormal(-,7773;0;) p 0, Protože p-hodota je meší ež 0,05, H 0 zamítáme a hladiě výzamosti 0,05

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Číselné charakteristiky náhodných veličin

Číselné charakteristiky náhodných veličin Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Kapitola 6. : Neparametrické testy o mediánech

Kapitola 6. : Neparametrické testy o mediánech Kapitola 6 : Neparametrické testy o mediáech Cíl kapitoly Po prostudováí této kapitoly budete umět - provádět testy hypotéz o mediáu jedoho spojitého rozložeí - hodotit shodu dvou ezávislých áhodých výběrů

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)

0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p) . Příklad Při průzkumu trhu projevilo 63 z dotázaých zákazíků zájem o iovovaý výrobek, který má být uvede a trh se zákazíky. Odvoďte a odhaděte proceto a počet zájemců v populaci s 95% spolehlivostí. Následě

Více

Kvantily. Problems on statistics.nb 1

Kvantily. Problems on statistics.nb 1 Problems o statistics.b Kvatily 5.. Nechť x a, kde 0 < a

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

7. Odhady populačních průměrů a ostatních parametrů populace

7. Odhady populačních průměrů a ostatních parametrů populace 7. Odhady populačích průměrů a ostatích parametrů populace Jak sme zišťovali v kapitole. e možé pro každou populaci sestroit možství parametrů, které i charakterizue. Pro účely základího pozáí e evýzaměší

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení

Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení Odhad parametrů ormálího rozděleí a testy hypotéz o těchto parametrech * Věty o výběru z ormálího rozděleí Nechť, X, X je áhodý výběr z rozděleí N ( µ, ) X, Ozačme výběrový průměr a = X = i = X i i = (

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

Kapitola 3.: Úlohy o jednom náhodném výběru z normálního rozložení

Kapitola 3.: Úlohy o jednom náhodném výběru z normálního rozložení Kapitola 3.: Úlohy o jedom áhodém výběru z ormálího rozložeí Cíl kapitoly Po protudováí této kapitoly budete - zát vlatoti pivotových tatitik odvozeých z áhodého výběru z ormálího rozložeí a budete je

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc

Více

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35

Více

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

Testujeme hypotézu: proti alternativě. Jednoduché třídění: Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché

Více

FITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI PRO APLIKACE

FITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI PRO APLIKACE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF MATHEMATICS FITOVÁNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI

Více

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.). STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d. ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Aplikovaná statistika v průmyslu

Aplikovaná statistika v průmyslu Aplikovaá statistika v průmyslu Úvod... Popisá statistika... 3. Základí pomy... 3. Jedorozměrý statistický soubor s kvatitativím zakem... 4.3 Dvourozměrý statistický soubor s kvatitavími zaky... 5.4 Statistické

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz Teováí hypoéz Nechť je áhodá proměá, kerá má diribučí fukci Fx, ϑ. Předpokládejme, že záme var diribučí fukce víme jaké má rozděleí a ezáme

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

6. P o p i s n á s t a t i s t i k a

6. P o p i s n á s t a t i s t i k a 6. P o p i s á s t a t i s t i k a 6.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

Užití binomické věty

Užití binomické věty 9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

Příklady z přednášek

Příklady z přednášek Příklady z předášek. Normálí rozložeí a rozložeí z ěj odvozeá.7. Příklad: Výledky u přijímacích zkoušek a jitou VŠ jou ormálě rozložey parametry µ 550 bodů, σ 00 bodů. S jakou pravděpodobotí bude mít áhodě

Více

Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů.

Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů. 1. Příklad Hodíme 60krát šestistěou hrací kostkou. Jedotlivé stěy padly v ásledujícím poměru: 7:9:10:6:15:13. Proveďte test a 5% hladiě výzamosti, zda je kostka v pořádku. H 0 : π 1 = 1/6, π = 1/6, π 3

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

Pravděpodobnost vs. statistika. Data. Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými

Pravděpodobnost vs. statistika. Data. Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými Pravděpodobost vs. Teorie pravděpodobosti pracuje s jedou ebo více teoretickými áhodými veličiami, jejichž je zámo odvozovali jsme y těchto atd. Šárka Hudecová Katedra pravděpodobosti a matematické Matematicko-fyzikálí

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

BAKALÁŘSKÁ STA I. + II.

BAKALÁŘSKÁ STA I. + II. Statistika I. - Teorie ) Statistika - Číselé údaje o hromadých jevech. Praktická čiost - sběr, zpracováí a vyhodocováí statistických údajů - Teoretická disciplía - metody k odhalováí zákoitostí při působeí

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národí iformačí středisko pro podpor jakosti Kozltačí středisko statistických metod při NIS-PJ Výpočet koeficietů reglačích diagramů pro obecé riziko Ig. Václav Chmelík, CSc Ústav strojíreské techologie,

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

Popisná statistika. Zdeněk Janák 9. prosince 2007

Popisná statistika. Zdeněk Janák 9. prosince 2007 Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46

Více