Hydrostatické váhy. HANA MALINOVÁ Katedra didaktiky fyziky, MFF UK. Princip hydrostatického vážení. Veletrh nápadů učitelů fyziky 14
|
|
- Jaroslava Bártová
- před 9 lety
- Počet zobrazení:
Transkript
1 Velerh nápadů učielů fyziky 4 Hydrosaické váhy HANA MALINOVÁ Kaedra didakiky fyziky, MFF UK V příspěvku bude prezenována eoda hydrosaického vážení, kerá se používá na určování husoy různých aeriálů. Žáci si budou oci uo eodu vyzkouše v jednodušší verzi v podobě laboraorní úlohy. Princip hydrosaického vážení Meoda se používá k přesnéu určení husoy pevné láky i nepravidelného varu nebo kapaliny. K vážení se používá rovnoraenných vah, keré jsou írně upraveny ak, aby se předě ohl ponoři do kapaliny znáé husoy a ohl se edy váži ve duchu nebo v kapalině (viz obr.., []). Kapalina ěleso nadlehčuje silou rovnající se íze kapaliny sejného objeu, jaký á ponořená čás ělesa. Princip hydrosaického vážení vychází z Archiédova zákona. Následova budou dvě odvození: odvození ahu () (viz dále) není olik znáé, odvození přesnějšího ahu () je obecnější a používá se i v praxi. Odvození ahů k určení husoy pevných láek či kapalin lze nají např. v [, sr. 53] a [3] až [5]. Odvození ahu () zahrnujícího dálenos Obr.. Hydrosaické váhy Pro jednoduchos odvození uvažuje dvě sejná ělesa (např. aky o honosi ) neznáé husoy. Hydrosaické váhy (ozn. HV) se v oo případě skládají z yčky, kerá je opařena supnicí (např. nalepený ere, viz obr.. až obr. 4.). Obr.. HV na začáku ěření (vlevo) a po nasavení rovnováhy (vpravo) Na začáku ěření, kdy jsou obě ělesa ve duchu, je počáeční dálenos d pro obě raena sejná (viz obr.. vlevo). Jedno z ěles následně celé ponoříe do vody o husoě v, í se poruší rovnováha pro oen síly M hlede k pevné ose oáčení uísěné uprosřed yče plaí M = d ( F F ) = d g d vvg, G 58
2 Velerh nápadů učielů fyziky 4 kde V =, F G je íhová síla působící na závaží a F VZ je laková síla. Aby se rovnováha obnovila, budee pohybova druhý závaží (neponořený do vody) až do dálenosi d. Pro oen síly M hlede k pevné ose oáčení uísěné uprosřed yče plaí M = d F = d g. G Moeny sil se po nasolení rovnováhy rovnají (viz obr.. vpravo) M = M d g d v g = d g, a po úpravách dosáváe ah d = v. () d d Odvození ahů () a (3) zahrnujících honos Hydrosaické váhy se skládají z rovnoraenných vah upravených jako na obr. 5. a na obr. 6. (srovnej rozdíly oproi inuléu odsavci). Po nasolení rovnováhy se oeny sil rovnají: jelikož se jedná o rovnoraenné váhy, sačí, aby se rovnaly síly působící na jednolivá raena. Pro rovnováhu na duchu o husoě plaí F Fz = F F G z G g z g = g g =, (a) z z z z kde F G je íhová síla, F je laková síla, index z označuje závaží, keré vyvažuje zvolené ěleso ve duchu, a index označuje ěleso. Pro rovnováhu po ponoření ělesa do kapaliny o husoě k plaí F Fz = F F G z G g z g = g g = k, (b) z k z z z kde index z označuje závaží, keré vyvažuje zvolené ěleso ponořené do kapaliny. Po vydělení rovnice (a) rovnicí (b) dosanee následující rovnos, kerou za předpokladu, že husoy Z a Z jsou sejné, ůžee upravi na jednodušší var (c). z z = k z z z = (c) z k 59
3 Velerh nápadů učielů fyziky 4 Jednoduchou úpravou dosanee = z z k z z a nakonec vyjádříe kz z =. z z () Pokud se rozhodnee zanedba lak ve duchu, dosanee výraz z = k. z z (3) Různé ypy hydrosaických vah aneb jak by ohlo vypada přizpůsobení do školních lavic Hydrosaické váhy ohou bý různé, věšinou však ají jedno společné: jsou příliš drahé, abycho si je ohli jako učielé dovoli nakoupi do školních laboraoří. Nabízí zde dvě variany hydrosaických vah, keré ůžee použí při laboraorní úloze na určování husoy pevných láek (např. sr. 8, [6]). Myslí, že uo úlohu by ohli ěři žáci, keří už veli dobře znají laboraorní úlohu zaěřenou na vážení a zjišťování objeu ponoření do oděrného válce nebo poocí zěření rozěrů ělesa (např. sr. 76, [6]). Proo nabízí ožnos, jak hydrosaické váhy vyrobi jednoduchý způsobe. Nejlepší předsavu poskynou obrázky 3. až 6. Obr. 3. Dřevěná yčka opařená supnicí Obr. 4. HV v průběhu ěření Obr. 5. HV s kovový plíške Obr. 6. HV s náhradní iskou na závaží Jako předě, jehož husou budee určova, je docela vhodné použí aku, a o hned z několika důvodů veli dobře se shání, není nikerak drahá, ůže bý z různých aeriálů a dá se dobře připevni na niť či enké lanko. 60
4 Velerh nápadů učielů fyziky 4 Je pořeba přesně urči husou kapaliny, do keré se předě ponořuje. V praxi se nejčasěji používá pyknoeru ([6]) jedná se o alou nádobu, kerá á přesně definovaný obje. Lze použí aké husoěr, kerý je spíše k sehnání anebo urči eplou kapaliny a dopočís přesnou husou poocí abelovaných hodno v abulkách. Výhody a nevýhody hydrosaického vážení, porovnání s příou eodou Pokusí se o jednoduchý násin výhod a nevýhod hydrosaického vážení (ozn. h. vážení), jisě však lze nají i další. Příou eodou zde rozuí použií definičního ahu a vypočení husoy jako podílu honosi ělesa a jeho objeu (obje pravidelných ěles vypočee na základě ěření jeho rozěrů, nepravidelná ělesa ponoříe do kapaliny v oděrné válci). Meoda založená na h. vážení je poněkud složiější než příá eoda, proože se zde využívá znalosi Archiédova zákona a oenu sil, j. je pořeba zopakování učiva z různých oblasí fyziky. Možnos použií korekce na lak ve duchu dává nadanější sudenů příležios hlouběji se seznái s posupe, kerý se v praxi skuečně používá. Jedná se o další dva způsoby určování husoy pevných láek, keré společně s příou eodou a dalšíi eodai dávají ožnos řídu rozděli do několika pracovních skupin, keré určují husou různý způsobe. Sezna akových akivi se dá nají např. [7]. U hydrosaické eody ůžee použí i jiné kapaliny, do kerých se předěy ponořují. Důležié je, aby předě s kapalinou nereagoval. Veli časo se používá voda, kerá však vyváří na předěu bublinky na o je řeba dáva pozor. Meodou hydrosaickou lze určova i husoy kapalin ([4]). V oo případě ěleso ponoříe nejprve do kapaliny o znáé husoě (např. desilované vody) a poo do kapaliny, jejíž husou chcee urči. Meoda příá nabízí veli jednoduchou ožnos určení husoy pravidelných ěles, keré ají enší husou než voda, a o zěření jejich rozěrů a zvážení. Meoda hydrosaická se dá použí, pokud najdee vhodnou kapalinu s ješě enší husoou, než á zkouané ěleso. Porovnávala jse přesnos výše uvedených eod h. vážení s referenční ěření v laboraoři KFM MFF UK a nedospěla jse k výrazný rozdílů ve výsledcích, poinu-li různý poče planých cifer. Meody h. vážení se ukázaly bý přesnější než eoda příá, kerá se nejčasěji používá při laboraorních pracích. Meoda se využívá v praxi (viz následující odsavec) k určování husoy pevných láek nepravidelných varů. Meoda příá se kvůli velké chybě ěření nepoužívá. Kde se ao eoda využívá Určování husoy se používá v různých odvěvích, například ve zdravonicví k určení složení lidského ěla ([8]), ve savebnicví k určení póroviosi či nasákavosi aeriá- 6
5 Velerh nápadů učielů fyziky 4 lů ([9]), ve vinařsví k určení obsahu alkoholu ve víně ([0]), na vysokých školách jako fyzikální prakiku ([5]) a při zkouání vlasnosí drahých kaenů ([]). Jak je ao eody sará První zínka o hydrosaických vahách, alespoň podle zdroje [] a [3], sahá do druhé poloviny 9. soleí. Je spojena se jéne al-rází, což byl arabský filozof a alchyisa, kerý dokázal sanovi husoy osnáci kovů a drahokaů s velkou přesnosí. Podle [4] o byl až Galileo Galilei, kdo zdokonalil eodu vážení drahých kovů ve duchu a ve vodě používanou už dříve u klenoníků sesrojil první hydrosaické váhy ([5]) a roku 586 o nich napsal vědeckou práci. Galileo Galilei či jiní neurčovali přío husou orků, ale jejich relaivní husou í rozuíe poěr husoy neznáé pevné láky či kapaliny k husoě referenční láky (nejčasěji se jedná o vodu při 0 C za norálního laku). Závěr Výše popsané eody hydrosaického vážení je ožné úspěšně využí při školních laboraorních cvičeních. Žáci si zopakují láku z různých oblasí fyziky a použií odlišných varian ěření několika skupinai žáků uožní rozvinou diskuzi např. o přesnosi ěření a zanedbávání různých vnějších vlivů (laková síla působící na ěleso ve duchu a podobně). Lieraura a zdroje [] hp://viruvio.iss.fi.i/foo/si/siapprar/siapprar-0405_300.jpg [] Lehoský D., Hlavička A.: Prakiku z fyziky pre pedagogické fakuly.. vyd. Braislava: SPN, 967. [3] hp://ilia.zf.endelu.cz/~pavlacka/af/download/c09.pdf [4] hp:// [5] hp://v.ic.cz/jedna/zf-/zf--0.pdf [6] hp://cs.wikipedia.org/wiki/pyknoer [7] hp:// Malinova.pdf [8] hp:// [9] hp:// _honos/zadani.h [0] hp://eurlex.europa.eu/lexuriserv/lexuriserv.do?uri=celex:3004r08:cs:html [] hp:// [] hp:// [3] hp:// [4] hp://galileo.rice.edu/sci/insruens/balance.hl [5] hp://brunelleschi.iss.fi.i/useu/esi.asp?c=040 [6] Bednařík M., Široká M.: Fyzika pro gynázia Mechanika. 3. vyd. Praha: Proeheus,
= 0 C. Led nejdříve roztaje při spotřebě skupenského tepla Lt
Měření ěrného skupenského epla ání ledu a varu vody Měření ěrného skupenského epla ání ledu a varu vody Úkol č : Zěře ěrné skupenské eplo ání ledu Poůcky Sěšovací kalorier s íchačkou, laboraorní váhy,
VíceSeznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
VícePedagogická poznámka: Cílem hodiny je zopakování vztahu pro hustotu, ale zejména nácvik základní práce se vzorci a jejich interpretace.
1.1.5 Hustota Předpoklady: 010104 Poůcky: voda, olej, váhy, dvojice kuliček, dvě stejné kádinky, dva oděrné válce. Pedagogická poznáka: Cíle hodiny je zopakování vztahu pro hustotu, ale zejéna nácvik základní
Více2.2.2 Měrná tepelná kapacita
.. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro
VíceMalé písemné práce II. 8. třída Tři malé opakovací písemné práce
Malé písené práce II. 8. řída Tři alé opakovací písené práce Oblas: Člověk a příroda Předě: Fyzika Teaický okruh: Práce, energie, eplo Ročník: 8. Klíčová slova: přehled fyzikálních veličin a jednoek, vyjádření
VíceFINANČNÍ MATEMATIKA- ÚVĚRY
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
VícePráce a výkon při rekuperaci
Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava
VíceÚloha V.E... Vypař se!
Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee
VíceÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
VícePasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
VíceVŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenkostěnné tlakové nádoby
VŠB- Technická univerzia Osrava Fakula srojní Kaedra pružnosi a pevnosi Úvod do MKP Auor: Michal Šofer Verze 0 Osrava 2011 Zadání: Proveďe napěťovou analýzu lakové nádoby v ísě D (v polovině válcové čási),
VícePříloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY
říloha: Elekrická práce, příkon, výkon říklad: 4 variana: onorné čerpadlo vyčerpá axiálně 22 lirů za inuu do axiální výšky 1,5 erů Jaká je jeho účinnos, když jeho příkon je 9 Husoa vody je 1 ř 4 var: BEZ
VíceTlumené kmity. Obr
1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující
Více2.2.4 Kalorimetrická rovnice
..4 Kalorieriká rovnie Předpoklady: 0 Poůky: dvě kádinky, vaříí voda, eploěr Vernier, Síháe eplou a udenou vodu při íhání i vody vyěňují eplo, uí dojí k rovnováze zíkáe vodu o jedné eploě. Pokud žádné
VíceMATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická
VíceFyzikální korespondenční seminář MFF UK
Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace
VíceNakloněná rovina II
3 Nakloněná rovina II Předoklady: Pedagogická oznáka: Obsah hodiny se za norálních okolnosí saozřejě nedá sihnou, záleží na Vás, co si vyberee Pedagogická oznáka: Na začáku hodiny zadá sudenů říklad Nečeká
VíceÚloha II.E... je mi to šumák
Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi
Více( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.
21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC
VíceZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné
VíceLaboratorní práce č. 1: Pozorování tepelné výměny
Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Laboraorní práce č. 1: Pozorování epelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Tes k laboraorní
Více1.3.4 Rovnoměrně zrychlený pohyb po kružnici
34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb
VíceVyužijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.
Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy
VíceŘ ú Á Ě ň ú Ý Ů ú ú Ý Ú ň óň ó Ř ú Á Ě ú ú ó Ý Ý Ý ú Ř ú Á Ě ň ň Ý ú ň Ý ú ň ň ň ň ň Ů ň ň ú ň Ý Ý ú ň ú Ů Ý ň ň ú š ň š ú ú ú š Ů ň Ř ú Á Ě ú Ú Ů ú ú ú ú Ř ó ó š ó ť š ú ú ó ú ú Ú š ú ó ó Ř ú Á Ě š ň
Více10. Charakteristiky pohonů ve vlastní spotřebě elektrárny
0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování
Více1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství)
. Mechanika - úvod. Základní pojy V echanice se zabýváe základníi vlastnosti a pohybe hotných těles. Chcee-li přeístit těleso (echanický pohyb), potřebujee k tou znát tyto tři veličiny: hota, prostor,
VíceVliv funkce příslušnosti na průběh fuzzy regulace
XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,
VíceJméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B
Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:
VíceFYZIKA I. Pohyb těles po podložce
VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová
VíceNA POMOC FO. Pád vodivého rámečku v magnetickém poli
NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním
Vícex udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
Více4. Střední radiační teplota; poměr osálání,
Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění
VíceDemografické projekce počtu žáků mateřských a základních škol pro malé územní celky
Demografické projekce poču žáků maeřských a základních škol pro malé územní celky Tomáš Fiala, Jika Langhamrová Kaedra demografie Fakula informaiky a saisiky Vysoká škola ekonomická v Praze Pořebná daa
VíceKmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
VíceÚloha VI.3... pracovní pohovor
Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro
VíceDerivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
VíceDERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y
Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D
VíceMaxwellovy a vlnová rovnice v obecném prostředí
Maxwellovy a vlnová rovnie v obeném prosředí Ing. B. Mihal Malík, Ing. B. Jiří rimas TCHNICKÁ UNIVRZITA V LIBRCI Fakula meharoniky, informaiky a mezioborovýh sudií Teno maeriál vznikl v rámi proeku SF
VíceMIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.
Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina
VícePraktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktiku 1 Úloha č...xvi... Název: Studiu Brownova pohybu Pracoval: Jan Kotek stud.sk.: 17 dne: 7.3.2012 Odevzdal dne:... ožný počet
VíceFYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO
FYZIKÁLNÍ PRAKIKUM Úsav fyziky FEI VU BRNO Spolupracoval Příprava Šuranský Radek Opravy méno Ročník 1 Škovran an Předn. skup. B Měřeno dne 5.4. Učiel Sud. skupina 1 Kód 17 Odevzdáno dne 16.5. Hodnocení
Více10 Lineární elasticita
1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí
VíceZákladní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454
Základní škola národního uělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v ráci OP VK - EU peníze školá Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Hustota v praxi
VícePREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ
PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ Auoři: Ing. Radek Jandora, Honeywell spol s r.o. HTS CZ o.z., e-mail: radek.jandora@honeywell.com Anoace: V ovládacím mechanismu
VíceMetodika zpracování finanční analýzy a Finanční udržitelnost projektů
OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA
VíceParciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
Více5. Modifikovaný exponenciální trend
5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α
Víceecosyn -plast Šroub pro termoplasty
ecosyn -plas Šroub pro ermoplasy Bossard ecosyn -plas Šroub pro ermoplasy Velká únosnos Velká procesní únosnos Vysoká bezpečnos při spojování I v rámci každodenního živoa: Všude je zapořebí závi vhodný
VícePoznámky k cvičením z termomechaniky Cvičení 9.
Voda a vodní pára Při výpočtech příkladů, které jsou zaěřeny na výpočty vody a vodní páry je důležité si paatovat veličiny, které jsou kritické a z hlediska výpočtu i nezbytné. Jedná se o hodnoty teploty
VíceProjekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projek realizovaný na SPŠ Nové Měso nad Meují s finanční podporou v Operační prograu Vzdělávání pro konkurenceschopnos Královéhradeckého kraje Modul 3 - Technické předěy ng. Jan Jeelík 4. Pohybová energie
VíceKlíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru
Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava
Kaedra obecné eleroechniy Faula eleroechniy a inforaiy, VŠB - U Osrava ELEKRIKÉ SROJE - rozdělení, druhy provedení, vlasnosi, dienzování. Rozdělení elericých srojů (přehled). Označování elericých srojů
VíceStanovení hustoty pevných a kapalných látek
55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní
VíceŘešení: uvolnění - volba reakcí, vnitřní síly řešené z levého tělesa: Ekvivalentní varianty prutu: Deformační podmínka: ΔL=0
Cvičení 4 k procvičení označeno vlevo červeno čaro P/4 až P4/4 osaní D/4 až D4/4, ožný doácí úkol P/4 Dána je soosá příá yč konsanních průřezů =00 s ěžiši T složená z ěděného úsek délky =00 a ocelového
VíceÚloha č. 3 MĚŘENÍ VISKOZITY
Úloha č. 3 MĚŘENÍ VISKOZITY ÚKOL MĚŘENÍ:. Zjisěe dynamickou viskoziu vzorku (směs glycerin - voda) v Höpplerově viskozimeru při eploách 0 C, 30 C, 40 C, 50 C a 60 C.. Z daných měření sesroje graf funkční
VíceDigitální učební materiál
Digitální učební ateriál Číslo projektu CZ.1.07/1.5.00/4.0802 Název projektu Zkvalitnění výuky prostřednictví ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictví
VícePrůtok. (vznik, klasifikace, měření)
Průok (vznik, klasifikace, měření) Průok objemový - V m 3 s (neslačielné kapaliny) hmonosní - m (slačielné ekuiny, poluany, ) m kg s Při proudění směsí (např. hydrodoprava) důležiý průok jednolivých složek
VíceVZDUCH V MÍSTNOSTI POMŮCKY NASTAVENÍ MĚŘICÍHO ZAŘÍZENÍ. Vzdělávací předmět: Fyzika. Tematický celek dle RVP: Látky a tělesa
VZDUCH V MÍSTNOSTI Vzdělávací předět: Fyzika Teatický celek dle RVP: Látky a tělesa Teatická oblast: Měření fyzikálních veličin Cílová skupina: Žák 6. ročníku základní školy Cíle pokusu je určení rozěrů
VíceJméno a příjmení holka nebo kluk * Třída Datum Škola
P-1 Jméno a příjmení holka nebo kluk * Třída Daum Škola Zopakuje si (bude se vám o hodi ) 3 důležié pojmy a především o, co popisují Pro jednoduchos se omezíme pouze na 1D (j. jednorozměrný) případ. Pro
VíceNakloněná rovina I
1.2.14 Nakloněná rovina I Předoklady: 1213 Pomůcky: kulička, sada na měření řecí síly. Až dosud jsme se u všech říkladů uvažovali ouze vodorovné lochy. Př. 1: Vysvěli, roč jsme u všech dosavadních říkladů
Více3. VÝVRTY: ODBĚR, POPIS A ZKOUŠENÍ V TLAKU
3. VÝVRTY: ODBĚR, POPIS A ZKOUŠENÍ V TLAKU Vývrty jsou válcová zkušební tělesa, získaná z konstrukce poocí dobře chlazeného jádrového vrtáku. Vývrty získané jádrový vrtáke jsou pečlivě vyšetřeny, upraveny
VíceNumerická integrace. b a. sin 100 t dt
Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě
VíceLS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle
Obyčejné diferenciální rovnice Jiří Fišer LS 2014 1 Úvodní moivační příklad Po prosudování éo kapioly zjisíe, k čemu mohou bý diferenciální rovnice užiečné. Jak se pomocí nich dá modelova prakický problém,
VíceAplikace analýzy citlivosti při finačním rozhodování
7 mezinárodní konference Finanční řízení podniků a finančních insiucí Osrava VŠB-U Osrava Ekonomická fakula kaedra Financí 8 9 září 00 plikace analýzy cilivosi při finačním rozhodování Dana Dluhošová Dagmar
VíceÉ Ě Á Á Ú ť ň Ť ú ú ň ň ú ú ň ú Š ó Š ó ú ú ú Č ň ó ň Š Č ó Ř Š ú Ž Š ú Á É Č ú ť ó ó ó ó ó ó ó ú ú ú ú ú ň Ů ú ó ú ň ň ú úó ó ú ť ú ú ú ň Ý ť ó ó ó ó ď ň ó ó ú ó ó ó ň ó ú ó ó ó Š ú ó Š Á É Č ť ú Č ň
VícePorovnání způsobů hodnocení investičních projektů na bázi kritéria NPV
3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová
Více2. Ze sady 28 kostek domina vytáhnu dvě. Kolika způdoby to mohu provést tak, aby ony dvě kostičky šly k sobě přiložit podle pravidel domina?
1. Do anečního kroužku chodí 15 chlapů a 20 dívek. Kolik různých párů z nich můžeme vyvoři? 2. Ze sady 28 kosek domina vyáhnu dvě. Kolika způdoby o mohu provés ak, aby ony dvě kosičky šly k sobě přiloži
VíceREGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ
REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém
VíceLineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
VíceChemie - cvičení 2 - příklady
Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká
Více5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav
5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických
Více2. ZÁKLADY TEORIE SPOLEHLIVOSTI
2. ZÁKLADY TEORIE SPOLEHLIVOSTI Po úspěšném a akivním absolvování éo KAPITOLY Budee umě: orienova se v základním maemaickém aparáu pro eorii spolehlivosi, j. v poču pravděpodobnosi a maemaické saisice,
VíceAnalýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA
4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria
VíceStatika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury.
2. přednáška N + M + M Jádro průřeu Šikmý ohb M + N M + N M + M + N Jádro průřeu Ecenrický lak a vloučeného ahu Konrolní oák Miroslav Vokáč miroslav.vokac@cvu.c ČVUT v Prae, Fakula archiekur 19. října
VíceEI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g =
NB.3 NB.3.1 Rosah planosi Pružný kriický momen π I µ cr 1 + κ w + ζ k 诲诲쩎睃睅 睅 a s 5 s ( + ) I A 1 ψ f )I (hf / ) (1) Posup uvedený v éo příloe je vhodný pro výpoče kriického momenu nosníků konsanního dvojose
VíceNávod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1
Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1
Více7.4.1 Parametrické vyjádření přímky I
741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS
VíceLaboratorní práce č. 4: Určení hustoty látek
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 4: Určení hustoty látek ymnázium Přírodní vědy moderně a interaktivně FYZIKA 3. ročník
VíceŘasový test toxicity
Laboraorní návod č. Úsav hemie ohrany prosředí, VŠCHT v Praze Řasový es oxiiy. Účel Řasové esy oxiiy slouží k esování možnýh oxikýh účinků láek a vzorků na vodní produeny. Zelené řasy paří do skupiny neévnaýh
Vícetransformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.
finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární
VíceMěrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K
1. KAPITOLA TEPELNÉ VLASTNOSTI Tepelné vlasnosi maeriálů jsou charakerizovány pomocí epelných konsan jako měrné eplo, eploní a epelná vodivos, lineární a objemová rozažnos. U polymerních maeriálů má eploa
VíceDRI. VARIZON Jednotka pro zaplavovací větrání s nastavitelným tvarem šíření
VARIZON Jednoka ro zalavovací věrání s nasavielný vare šíření Sručná faka Nasavielný var šíření a ovlivněný rosor Vhodná ro všechny yy ísnosí Uožňuje čišění Míso ěření objeu vzduchu Veli jednoduše se insaluje
Více1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV
8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v
VíceTechnický list. Trubky z polypropylenu EKOPLASTIK PPR PN10 EKOPLASTIK PPR PN16 EKOPLASTIK EVO EKOPLASTIK PPR PN20 EKOPLASTIK FIBER BASALT CLIMA
Technický lis Trubky z polypropylenu PPR PN10 Ø 20-125 mm PPR PN16 Ø 16-125 mm PPR PN20 Ø 16-125 mm EVO Ø 16-125 mm STABI PLUS Ø 16-110 mm FIBER BASALT PLUS Ø 20-125 mm FIBER BASALT CLIMA Ø 20-125 mm max.
VíceMatematika v automatizaci - pro řešení regulačních obvodů:
. Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.
Více15600 Hz = khz 483 khz = 0, MHz = 1,5
Zvukové jevy 1 Auor: Miroslav Randa 1. V kovárně se železo pro snazší zpracování zahřívá ve výhni na vysokou eplou. Po úderu pak zahřáý kus železa snadno mění svůj var. Je ako zahřáé ěleso pružným, nebo
VícePraktikum I Mechanika a molekulová fyzika
Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:
VícePRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium harmonických kmitů mechanického oscilátoru
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Lukáš Vejelka stud. skup. FMUZV (73) dne 2.2.23
Více1.5.3 Výkon, účinnost
1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá
VíceVolba vhodného modelu trendu
8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku
Více3B Přechodné děje v obvodech RC a RLC
3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího
VícePloché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena
Ploché výrobky válcované za epla z ocelí s vyšší mezí kluzu pro váření za sudena ČSN EN 10149-1 Obecné echnické dodací podmínky Dodací podmínky pro ermomechanicky válcované Podle ČSN EN 10149-12-2013 ČSN
VíceMĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY
LABORATORNÍ PRÁCE Č. 3 MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY TEORETICKÉ ZÁKLADY CO JE POVRCHOVÉ NAPĚTÍ Jednotlivé olekuly vody na sebe působí přitažlivýi silai, lepí se k sobě. Důsledke je například to, že se
VícePENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.
PENZIJNÍ PLÁN Allianz ransforovaný fond, Allianz penzijní společnos, a. s. Preabule Penzijní plán Allianz ransforovaného fondu, Allianz penzijní společnos, a. s. (dále jen Allianz ransforovaný fond, obsahuje
VíceSTATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují
Více3.1.3 Rychlost a zrychlení harmonického pohybu
3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf
VíceREGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13.
Měřicí a řídicí chnika přdnášky LS 26/7 REGULACE (pokračoání) přnosoé csy akční člny rguláory rgulační pochod Blokoé schéma rgulačního obodu z u rguloaná sousaa y akční čln měřicí čln úsřdní čln rguláoru
VíceStatika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
Více