Volba vhodného modelu trendu
|
|
- Filip Fišer
- před 6 lety
- Počet zobrazení:
Transkript
1 8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku odhadneme rend polynomem nižšího řádu o Křivka, kerá vznikne spojením jednolivých křivek musí bý v bodech spojení hladká exisence obousranných derivací příslušného řádu v bodech napojení Volba vhodného modelu rendu Analýza grafu zobrazené časové řady subjekivní přísup. Věcně ekonomická kriéria např. posouzení, zda rendová funkce bude rosoucí nebo klesající, konkávní nebo konvexní, zda bude asympoicky omezena ad. Rozbor empirických údajů minimalizace hodno určiého kriéria, např. SSE, MSE, MAD (viz přednáška 1). Jiné kriérium index korelace nebo se éž nazývá koeficien deerminace: jeho hodnoa R, 1. Za vhodnou rendovou funkci se považuje a, kerá má R vysoký, j R,85. Dává se přednos modelům jednodušším. Analýza diferencí Tabulka 1: Přehled informaivních esů pro volbu rendové křivky Trend Informaivní es Lineární První diference y +1 y jsou přibližně konsanní Kvadraický Druhé diference y y y jsou přibližně konsanní Exponenciální y Podíly sousedních hodno + 1 y (resp.první diference logarimů varu ln y +1 ln y ) jsou přibližně konsanní Logisický Křivka prvních diferencí y +1 y se podobá křivce normální husoy, podíly Gomperzova křivka jsou přibližně konsanní y + 2 y + 1 y + 1 y ln y + 2 ln y + 1 ln y + 1 ln y jsou přibližně konsanní Podíly ( ) ( )
2 Příklad (Hronová, S., Hindels, R., Seger,J.: Saisika pro ekonomy, Professional Publishing, Praha 22) V následující abulce jsou údaje o poču prodaných CD nosičů hudebním vydavaelsvím v is.ks ( y ) v leech Najděe vhodnou rendovou funkci. Tabulka 2 Rok Poče prodaných nosičů v is.ks Řešení Obr.1: Grafický záznam da Z grafického záznamu da můžeme vidě, že rend může bý lineární, kvadraický nebo exponenciální. Pro každou rendovou funkci odhadneme paramery.
3 Obr.2: Odhady paramerů lineárního rendu + koeficien deerminace y = 12,467x - 2,667 R 2 =, Obr.3:Odhady paramerů kvadraického rendu + koeficien deerminace y = 1,5649x 2-3,1827x + 8,238 R 2 =,
4 Obr.4:Odhady paramerů exponenciálního rendu + koeficien deerminace y = 3,652e,413x R 2 =, Z výše uvedených záznamů (obr. 2., 3. a 4), kde jsou uvedeny regresní funkce a koeficien deerminace, vyplývá, že nejvhodnější je kvadraický rend, kerý má koeficien deerminace nejvyšší (R 2 =,9917). Pokud bychom zvolili jiné kriérium pro výběr modelu, např. SSE, MSE, MAD, obdržíme následující hodnoy Tabulka 3 Model SSE MSE MAD -2,667+12, , ,214 8,2963 1, , ,238 84, ,4385 2,848 3,652.1, ,568 8,8172 6,33 Z abulky 3 je zřejmé, že k vyrovnání da je vhodný kvadraický rend, kerý má hodnoy SSE, MSE a MAD nejmenší. Pokud bychom pro hledání modelu využili informaivní esy, dosali bychom následující údaje Tabulka 4 1.diference Lineární rend 2.diference Kvadraický rend y 1 + Exponenc. rend y 7 3, , , , , , , ,36
5 Na vhodný rend budou ukazova přibližně konsanní hodnoy v jednolivých sloupcích abulky 4. Z údajů abulky 4 vyplývá, že přibližně konsanní hodnoy jsou u informaivního esu pro exponenciální rend. Předchozí analýzy určování vhodnosi modelu, ukazovaly na kvadraický rend. Při ěcho analýzách (výpoče SSE, MSE, MAD, R 2 ) jsme při odhadování paramerů u exponenciálního rendu Tr = 3,652.1,4938 získali odhady na základě meody nejmenších čverců (MNČ). Tyo odhady nemají příliš dobré saisické vlasnosi. Pokud bychom paramery odhadli váženou MNČ, obdržíme rendovou funkci Tr = 6,349 *1, 373 a SSE = 58,35 ; MSE = 6,44 a MAD = 1,838. Koeficien deerminace je R 2 =, V případě užií vážené MNČ výše uvedená kriéria ukazují na exponenciální rend. Oázkou zůsává, zda přeso nezvoli pro vyrovnání rend kvadraický, kerý je jednodušší.
T t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka
Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické
5. Modifikovaný exponenciální trend
5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α
Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p
Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací
ODHADY VARIABILITY POSLOUPNOSTÍ
ÚVOD MÍRY VARIABILITY, ODHADY VLASTNOSTI FF SEGMENTACE ZÁZNAMU MINIMALIZACE MSE SNÍŽENÍ ROZPTYLU ODHADY VARIABILITY POSLOUPNOSTÍ NEURONOVÝCH IMPULSŮ Kamil Rajdl Úsav maemaiky a saisiky Přírodovědecká fakula
Statistické metody a zpracování dat. VIII Analýza časových řad. Petr Dobrovolný
Saisické meod a zpracování da VIII Analýza časových řad Per Dobrovolný Základní pojm Časová řada je chronologick uspořádaná posloupnos hodno určiého saisického ukazaele. = f (),, 2, L n, kde =, 2,, n =
4EK211 Základy ekonometrie
4EK Základy ekonomerie Heeroskedasicia Cvičení 7 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = 0 náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.
Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy
( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1
Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely
ANALÝZA ČASOVÝCH ŘAD IVAN KŘIVÝ OSTRAVA URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH
ANALÝZA ČASOVÝCH ŘAD URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:
EKONOMETRIE 6. přednáška Modely národního důchodu
EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,
Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky
Demografické projekce poču žáků maeřských a základních škol pro malé územní celky Tomáš Fiala, Jika Langhamrová Kaedra demografie Fakula informaiky a saisiky Vysoká škola ekonomická v Praze Pořebná daa
9 Viskoelastické modely
9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická
Modelování volatility akciového indexu FTSE 100
ISSN 805-06X 805-0638 (online) ETTN 07--0000-09-4 Modelování volailiy akciového indexu FTSE 00 Adam Borovička Vysoká škola ekonomická v Praze Fakula informaiky a saisiky Kaedra ekonomerie; nám. W. Churchilla
Parciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8
Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická
Návrh rozložení výroby jednotlivých výrobků do směn sloužící ke snížení zmetkovitosti
MENDELOVA UNIVERZITA V BRNĚ Provozně ekonomická fakula Úsav saisiky a operačního výzkumu Návrh rozložení výroby jednolivých výrobků do směn sloužící ke snížení zmekoviosi Diplomová práce Vedoucí práce:
Numerická integrace. b a. sin 100 t dt
Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě
Výkonnost a spolehlivost číslicových systémů
Výkonnos a spolehlivos číslicových sysémů Úloha Generování a zpracování náhodných čísel Zadání 9 Trojúhelníkové rozdělení Jan Kupka A65 kupka@sudens.zcu.cz . Zadání vyvoře generáor rozdělení jako funkci
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvaniaivní meod I Přednáška 3 Zuzana Dlouhá Předmě a srukura kurzu. Úvod: srukura empirických výzkumů. vorba ekonomických modelů: eorie 3. Daa: zdroje a p da, význam popisných charakerisik
7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU
Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu
f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce
Funkce daná paramerick polárně a implicině 4 Funkce daná paramerick polárně a implicině Výklad Definice 4 Nechť jsou dán funkce ϕ() ψ () definované na M R a nechť ϕ () je prosá na M Složená funkce ψϕ definovaná
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Fakula informaiky a saisiky ANALÝZA EKONOMICKÝCH ČASOVÝCH ŘAD S PŘÍKLADY Josef Arl Markéa Arlová Eva Rublíková 00 Recenzeni: Prof. Ing. Franišek Fabian, CSc. Doc. Ing. Jiří
DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y
Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D
ÚSTAV STATISTIKY A OPERAČNÍHO VÝZKUMU
MENDELOVA LESNICKÁ A ZEMĚDĚLSKÁ UNIVERZITA V BRNĚ PROVOZNĚ EKONOMICKÁ FAKULTA ÚSTAV STATISTIKY A OPERAČNÍHO VÝZKUMU Analýza nehodovosi v ČR v leech 001-006 Bakalářská práce Vedoucí bakalářské práce Mgr.
Vybrané metody statistické regulace procesu pro autokorelovaná data
XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,
Studie proveditelnosti (Osnova)
Sudie provedielnosi (Osnova) 1 Idenifikační údaje žadaele o podporu 1.1 Obchodní jméno Sídlo IČ/DIČ 1.2 Konakní osoba 1.3 Definice a popis projeku (max. 100 slov) 1.4 Sručná charakerisika předkladaele
Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
Matematika v automatizaci - pro řešení regulačních obvodů:
. Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.
Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
2.2.9 Jiné pohyby, jiné rychlosti II
2.2.9 Jiné pohyby, jiné rychlosi II Předpoklady: 020208 Pomůcky: papíry s grafy Př. 1: V abulce je naměřeno prvních řice sekund pohybu konkurenčního šneka. Vypoči: a) jeho průměrnou rychlos, b) okamžié
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich
FINANČNÍ MATEMATIKA- ÚVĚRY
Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-
Derivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
Interpolace pomocí splajnu
Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom
Nové metody a přístupy k analýze a prognóze ekonomických časových řad
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Provozně ekonomická fakula Diserační práce Nové meody a přísupy k analýze a prognóze ekonomických časových řad Auor: Ing. Aleš Krišof Školiel: Doc.RNDr. Bohumil Kába,
Skupinová obnova. Postup při skupinové obnově
Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi
Úloha 1: Lineární kalibrace
Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé
Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů
Proceedings of Inernaional Scienific Conference of FME Session 4: Auomaion Conrol and Applied Informaics Paper 26 Klasifikace, idenifikace a saisická analýza nesacionárních náhodných procesů MORÁVKA, Jan
1.6. Srovnání empirických a teoretických parametrů (4.-5.předn.)
.6. rováí empirických a eoreických paramerů (4.-5.před.) Cíle: - pravděpodobosí zkoumáí výběrového saisického souboru: kvaifikace eoreických paramerů, srováí eoreických a empirických paramerů (Probable
VÝVOJ PODÍLU VÝDAJŮ ČESKÝCH DOMÁCNOSTÍ ZA MASO A MASNÉ VÝROBKY A ENGELOVY ZÁVISLOSTI VE SPOTŘEBĚ
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LII 3 Číslo 6, 2004 VÝVOJ PODÍLU VÝDAJŮ ČESKÝCH DOMÁCNOSTÍ ZA MASO
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují
SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07
Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení
Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23
INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY
INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY Jana Soukopová Anoace Příspěvek obsahuje dílčí výsledky provedené analýzy výdajů na ochranu živoního prosředí z
RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU
RŮSTOVÉ MODELY ČESKÉHO STRAKATÉHO SKOTU Helena Nešeřilová 1, Jan Pulkrábek 2 1 Česká zemědělská universia v Praze 2 Výzkumný úsav živočišné výroby, Praha-Uhříněves Anoace: Na souboru býků českého srakaého
Srovnávací analýza vývoje mezd v České republice
Mendelova univerzia v Brně Provozně ekonomická fakula Srovnávací analýza vývoje mezd v České republice Bakalářská práce Vedoucí práce: Mgr. Kamila Vopaová Vypracovala: Lucie Mojžíšová Brno 10 Děkuji ímo
Fyzikální korespondenční seminář MFF UK
Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace
ÚSTAV STATISTIKY A OPERAČNÍHO VÝZKUMU
MENDELOVA LESNICKÁ A ZEMĚDĚLSKÁ UNIVERZITA V BRNĚ PROVOZNĚ EKONOMICKÁ FAKULTA ÚSTAV STATISTIKY A OPERAČNÍHO VÝZKUMU Analýza zaměsnanosi cizinců v ČR Bakalářská práce Vedoucí bakalářské práce Mgr. Marin
V EKONOMETRICKÉM MODELU
J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům
Analýza počtu zahraničních návštěvníků. České republiky. Bakalářská práce
Mendelova zemědělská a lesnická univerzia v Brně Provozně ekonomická fakula Úsav saisiky a operačního výzkumu Analýza poču zahraničních návšěvníků České republiky Bakalářská práce Vedoucí práce: Ing. Krisina
ŠKODA AUTO VYSOKÁ ŠKOLA, O.P.S. B A K A L Á Ř S K Á P R Á C E
ŠKODA AUTO VYSOKÁ ŠKOLA, O.P.S. B A K A L Á Ř S K Á P R Á C E 2013 Per Zápoocký ŠKODA AUTO VYSOKÁ ŠKOLA, O.P.S. Sudijní program: B6208 Ekonomika a managemen Sudijní obor: 6208R088 Podniková ekonomika a
Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011
Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Ekonomika podniku Kaedra ekonomiky, manažersví a humaniních věd Fakula elekroechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Kriéria efekivnosi
PREDIKCE ČASOVÉ ŘADY POMOCÍ AUTOREGRESNÍHO MODELU
PREDIKCE ČASOVÉ ŘADY POMOCÍ AUTOREGRESNÍHO MODELU Ing. Roman DANEL, Ph.D. roman.danel@voln.cz Lisopad 2004 1. Časové řad Daa, kerá vvářejí časovou řadu, vznikají jako pozorování, uspořádané chronologick
Univerzita Tomáše Bati ve Zlíně
Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,
APLIKACE INDEXU DAŇOVÉ PROGRESIVITY V PODMÍNKÁCH ČESKÉ REPUBLIKY
APLIKACE INDEXU DAŇOVÉ PROGRESIVIT V PODMÍNKÁCH ČESKÉ REPUBLIK Ramanová Ivea ABSTRAKT Příspěvek je věnován problemaice měření míry progresiviy zdanění pomocí indexu daňové progresiviy, kerý vychází z makroekonomických
STATISTICKÁ ANALÝZA PORODNOSTI Bakalářská práce
MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA PROVOZNĚ EKONOMICKÁ FAKULTA ÚSTAV STATISTIKY A OPERAČNÍHO VÝZKUMU STATISTICKÁ ANALÝZA PORODNOSTI Bakalářská práce Vedoucí bakalářské práce Mgr. Veronika Blašková
PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU
PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Ze serveru www.czso.cz jsme sledovali sklizeň obilovin v ČR. Sklizeň z několika posledních le jsme vložili do abulky 7.1. a) Jaké plodiny paří mezi obiloviny?
Vládní daňové predikce: ex ante odhady a ex post hodnocení přesnosti v České republice #
Vládní daňové predikce: ex ane odhady a ex pos hodnocení přesnosi v České republice # Ondřej Bayer * Úvod 1 Teno článek si klade za cíl uvés možnosi a posupy ex pos daňových predikcí a změři přesnos vládních
Analýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA
4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria
2. ZÁKLADY TEORIE SPOLEHLIVOSTI
2. ZÁKLADY TEORIE SPOLEHLIVOSTI Po úspěšném a akivním absolvování éo KAPITOLY Budee umě: orienova se v základním maemaickém aparáu pro eorii spolehlivosi, j. v poču pravděpodobnosi a maemaické saisice,
x udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV
3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová
4EK211 Základy ekonometrie
4EK Základy ekonomerie Modely simulánních rovnic Problém idenifikace srukurních simulánních rovnic Cvičení Zuzana Dlouhá Modely simulánních rovnic (MSR) eisence vzájemných vazeb mezi proměnnými v modelu,
Zimní semestr akademického roku 2015/ ledna 2016
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii
Pasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
1 L Hospitalovo pravidlo
L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje
listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.
6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U
Mendelova zemědělská a lesnická univerzita v Brně Provozně ekonomická fakulta Ústav statistiky a operačního výzkumu
Mendelova zemědělská a lesnická univerzia v Brně Provozně ekonomická fakula Úsav saisiky a operačního výzkumu Populační vývoj okresu Blansko v rámci populačního vývoje v Jihomoravském kraji a v ČR Bakalářská
SROVNÁNÍ VOLATILITY AKCIOVÝCH INDEXŮ PX A FTSE 100
SROVNÁNÍ VOLATILITY AKCIOVÝCH INDEXŮ PX A FTSE 100 Adam Borovička * Úvod Volailia slovo, keré slyšíme dnes a denně. Valí se na nás z elevizních obrazovek, hlasových přijímačů, išěných médií, vkrádá se
Modelování rizika úmrtnosti
5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 200 Modelování rizika úmrnosi Ingrid Perová Absrak V příspěvku je řešena
Zásady hodnocení ekonomické efektivnosti energetických projektů
Absrak Zásady hodnocení ekonomické efekivnosi energeických projeků Jaroslav Knápek, Oldřich Sarý, Jiří Vašíček ČVUT FEL, kaedra ekonomiky Každý energeický projek má své ekonomické souvislosi. Invesor,
1. Definiční obor funkce dvou proměnných
Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou
Metodika transformace ukazatelů Bilancí národního hospodářství do Systému národního účetnictví
Vysoká škola ekonomická v Praze Fakula informaiky a saisiky Kaedra ekonomické saisiky Meodika ransformace ukazaelů Bilancí národního hospodářsví do Sysému národního účenicví Ing. Jaroslav Sixa, Ph.D. Doc.
Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany
3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,
Vývoj dynamického modelu pro odhad radonové
Univerzia Karlova v Praze Maemaicko-fyzikální fakula DIPLOMOVÁ PRÁCE Barbora Lebdušková Vývoj dynamického modelu pro odhad radonové záěže budov Kaedra pravděpodobnosi a maemaické saisiky Vedoucí diplomové
Mendelova zemědělská a lesnická univerzita v Brně. Populační vývoj mikroregionu Židlochovicko. Diplomová práce. Provozně ekonomická fakulta
Mendelova zemědělská a lesnická univerzia v Brně Provozně ekonomická fakula Úsav saisiky a operačního výzkumu Populační vývoj mikroregionu Židlochovicko Diplomová práce Auor: Vedoucí diplomové práce: Bc.
Olympiáda techniky Plzeň
Olympiáda echniky Plzeň 17. 4.. 17 www.olympiadaechniky.cz SROVÁÍ ČESKÝCH A ĚMECKÝCH UČEBIC MATEMATIKY PRO GYMÁZIA COMPARISO OF THE CZECH AD GERMA TEXTBOOKS O MATHEMATICS FOR THE SECODARY GRAMMAR SCHOOLS
Cvičení k návrhu SSZ. Ing. Michal Dorda, Ph.D.
Cvičení k návrhu SSZ Ing. Michal Dorda, Ph.D. Výpoče mezičasů Ing. Michal Dorda, Ph.D. 2 Výpoče mezičasů Př. 1: Sanove mezičas pro následující siuaci. Vyklizovací dráha vozidla je přímá o délce 20 m, najížděcí
POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.
POLYNOMICKÁ REGRESE Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. y = b 0 + b 1 x + b 2 x 2 + + b n x n kde b i jsou neznámé parametry,
Chyby nepřímých měření
nepřímé měření: Chyby nepřímých měření chceme určit veličinu z hodnot jiných veličin na základě funkční vztahu máme změřené veličiny pomocí přímých měření (viz. dříve) včetně chyb: x±σ x, y±σ y,... známe
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA. Prognostické modely v oblasti modelování finančních časových řad
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA Prognosické modely v oblasi modelování finančních časových řad diserační práce Auor: Školiel: RNDr. Vladimíra PETRÁŠKOVÁ Doc. RNDr.Bohumil
KATEDRA FINANCÍ. Estimate of the selected model types of financial assets
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA EKONOMICKÁ FAKULTA KATEDRA FINANCÍ Odhad vybraných ypů modelů finančních akiv Esimae of he seleced model ypes of financial asses Suden: Vedoucí diplomové
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Analýza citlivosti NPV projektu na bázi ukazatele EVA
3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 2006 Analýza cilivosi NPV projeku na bázi ukazaele EVA Dagmar Richarová
Scenario analysis application in investment post audit
6 h Inernaional Scienific Conference Managing and Modelling of Financial Risks Osrava VŠB-U Osrava, Faculy of Economics,Finance Deparmen 0 h h Sepember 202 Scenario analysis applicaion in invesmen pos
Měření výkonnosti údržby prostřednictvím ukazatelů efektivnosti
Měření výkonnosi údržby prosřednicvím ukazaelů efekivnosi Zdeněk Aleš, Václav Legá, Vladimír Jurča 1. Sledování efekiviy ve výrobní organizaci S rozvojem vědy a echniky je spojena řada požadavků kladených
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR. Bc. David Mucha
UNIVERZITA PARDUBICE Fakula elekroechniky a informaiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR Bc. David Mucha Diplomová práce 2017 Prohlášení Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré
FREQUENCY SPECTRUM ESTIMATION BY AUTOREGRESSIVE MODELING
FEQUENCY SPECU ESIAION BY AUOEGESSIVE ODELING J.ůma * Summary: he paper deals wih mehods for frequency specrum esimaion by auoregressive modeling. Esimae of he auoregressive model parameers is he firs
Zhodnocení historie predikcí MF ČR
E Zhodnocení hisorie predikcí MF ČR První experimenální publikaci, kerá shrnovala minulý i očekávaný budoucí vývoj základních ekonomických indikáorů, vydalo MF ČR v lisopadu 1995. Tímo byl položen základ
73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KOMENTÁŘ 1. OBECNĚ 2. ZOHLEDNĚNÍ SKLADBY DOPRAVNÍHO PROUDU KŘIŽOVATKY
PŘÍLOHA 73-01 73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KŘIŽOVATKY Auor: Ing. Luděk Baroš KOMENTÁŘ Konečný návrh meodiky je zpracován ormou kapioly Technických podmínek a bude upřesněn
transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.
finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických
10 Lineární elasticita
1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí
LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická
Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní
HODNOCENÍ EXPOZICE V OKOLÍ PŘÍSTROJŮ IPL. Pavel Buchar
HODNOCENÍ EXPOZICE V OKOLÍ PŘÍSTROJŮ IPL Pavel Buchar elmag@szu szu.cz OSNOVA Veličiny a limiy Výpočy Závěr ZÁŘ VELIČINY HUSTOTA ZÁŘIVÉHO TOKU EXPOZICE ZÁŘENÍ ( dávka, fluence fluence ) L [W/m 2 sr] E
POPIS OBVODŮ U2402B, U2405B
Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody