Řešení: uvolnění - volba reakcí, vnitřní síly řešené z levého tělesa: Ekvivalentní varianty prutu: Deformační podmínka: ΔL=0
|
|
- Miloslav Tichý
- před 6 lety
- Počet zobrazení:
Transkript
1 Cvičení 4 k procvičení označeno vlevo červeno čaro P/4 až P4/4 osaní D/4 až D4/4, ožný doácí úkol P/4 Dána je soosá příá yč konsanních průřezů =00 s ěžiši T složená z ěděného úsek délky =00 a ocelového úsek délky =50, kerá je obosranně vekná. anove napěí v yči po její ohřáí o eplo Δ =Δ =Δ=50 C =,0 5 MPa, =,0 5 MPa, α =,60-5 C -, α =,50-5 C -. Řešení: volnění - volba reakcí, vniřní síly řešené z levého ělesa: Δ Δ T osa pr Poznáka :účinky vekní na pr reakce - voří odezv na silové působení z ěla pr. Osově nesyerické važované výslednice reakcí vekní jako jso osový oen nebo výslednice sil a oenů k ose pr kolé jso lokální účinky, keré ovlivní pr poze v blízké okolí vazby oo ísní ovlivnění podle ain- Vénanova princip v jednodché prové odel zanedbáváe. osový oen osové napěí kolé síly kolý oen sěr posv ísa vůči vazbá, alernaiva způsob volnění osa syerie Deforační podínka: Δ=0 Přiřazení ekvivalenní základní sosavy: kvivalenní variany pr: Δ Δ Δ
2 6 Řešení - s vyžií. Casigliánovy věy: deforační rovnici zvolené základní sosavy původního pr s paraere voří posv ísa vůči vazbě. je dán sperpozicí eploního člen, z inegrace zěn délek eleenů od vlivů zěny eploy a dále silového člen, kerý vyplývá z Casigliánovy věy. Řešení je ekvivalenní - shodné se vzahe. 7 Řešení - s vyžií. Casigliánovy věy při rozklad na dva U pry dvě základní sosavy ve spojení zaížené vzájeno osovo silo. Deforační rovnici sosavy voří porovnání posvů a neboli posv společného průřez obo prů. Uvolnění pr na U pr základní sosav: posv síly vazby vůči vazbě =- =- Δ Δ d d d U d d 0 0 sěr posv ísa vůči vazbá = Δ Δ n=-
3 P/4 Dána soosá sosava ocelové yče a ocelové rbky délky s výrobní vůlí <<. Zaížené jso silo přes ho desk. Určee napěí v rbce a yči před i po vyezení vůle vlive síly pro varian konsrkce. d d d deska = = =d /4 =d /4-d /4 základ variana variana B variana C += Účinek síly je desko přes yč přenášen do základ, ale na rbk deska nedosedne. U rovnováha desky: D P= volnění: deforace: P= =- P= Deail D D Volíe přirozený posv desky vůči základ vazbě pro kladno síl, vyjadřjící zkrácení yče, ze kerého rčíe rozsah síly, při keré deska ješě nedosedne na rbk. aická rovnováha desky je pro síl P rčiá. Konsrkce B nebo C jso ekvivalenní a je vhodné je adapova na přehlednější odel dle variany. Délka yče =+, kde <<, se ůže ve výpoč zjednodši na přibližné ±. Vlive síly deska dosedne na obě sočási, a rozklade síly na volněné síly, obo sočásí je proo osová rovnice rovnováhy desky saicky nerčiá. osava je rozložena na U yč a U rbk přičež je zvolen kineaicky ožný přirozený posv desky vůči vazbě. Deforační rovnici voří vyjádření vůle na posvech, sočásí. volnění sočásí: volnění desky: važované deforace: =- =-
4 Deforační podínka: +=, sosava deforační a saické rovnice, řešení sil, sosava: 4 D/4 Předepní lana dlohého a zaíženého závaží Q kráký áhle délky analogický odel krákého áhla važjee konsanní vniřní síl, lana pak proěnno, v závislosi na poloze : g rovnováha spojjícího zl: Q naáhání lana: volba deforací posvy zlů po onáži : g Δ, α, ρ, Q naáhání áhla, g zanedbáno: =+ G ε= /+ α Δ, Δ=0 ρ=0 = ε= / G=ρg Řešení sosavy:
5 P/4 Zadán je hý rá oočný v roační vazbě zaížený silo a chycený dvěa pry áhly,. D:,,, a,, Δ, α, úhel β. Určee síly působící na rá a nahání prů vlive účinků onáže, síly a eploy., Δ,α volnění pr áhla na Z: volba linearizovaných deforací:, Δ,α Poznáka: znaénko deforace - vyjádření posv jako přírůsk 5 a β a a a >0 >0 >0 <0 4>0 β volnění spojjícího rá linearizace sil Uvažjee norované volnění každého pr ahovo vniřní silo i na U základní sosav pr nebo áhlo s konsanníi paraery. Kladný posv zl je fnkcí zěn délek pr, keré závisí na znaéncích čásí poěrného prodložení - viz poznáka. Ta zdůvodňje fyzikální vyjádření posvů zlů prů. inearizované saické rovnice rá važjí poloh sil v pozici nezdeforované rovinné sosavy. Deforační rovnice forlovaná jako angena úhl kineaicky ožného pooočení rá propojje deforace jednolivých prů. inearizace posvů zlů rá je realizována náhrado obloků kržnic jejich ečnai vedenýi z jejich původní nezdeforované polohy í se rá vlasně fikivně linearizovaný výpočení odele zdeforje. sosava rovnic: sosava saických a deforační rovnice: vyjádření posvů prů fyzikálníi vzahy: nerické zadání: původní nerické řešení: zjednodšení zavedení : úprava vzah pro posv zjednodšené nerické řešení se od původního álo liší: D/4 nalogická adapovaná konsrkce vůlí přeneseno do zl rá žívá výhodno deforační rovnici - jeho naklopení o úhel. Deforační a oenová rovnice k vazbě ožňjí řeši poze prové síly,. Dáno,: <<a a a β a, Δ,α, = a adapace, linearizace deforací: β a a a volnění linearizace sil: β vyjádření sosavy pro výpoče,:
6 P4/4 Zadán je hý rá zaížený silo pevněný rovnoběžnýi pry,,. Dáno:,,, a,, Δ, α. Určee síly působící na rá a napěí v prech vlive účinků onáže, zaěžjící síly a eploy. 6 zadání: volnění pr: volba linearizovaných deforací: rovnováha rá: a / a Δ,α i Δ,α deforační podínka: vyjádření posvů: volnění spojjícího rá linearizace sil rá se pooočí a posne fikivně se linearizací posvů i zdeforje D/4 Zadána je osově syerická prová konsrkce z prů,, zaížená silo. Dáno:,,,, Δ, α. ɷ. Určee síly působící v prech vlive účinků onáže, zaěžjící síly a eploy. zadání: volnění prů: adapace vůle : rovnováha spojjícího zl: /,Δ,α,Δ,α i deforační podínka: i volnění spojjícího zl linearizace sil volba linearizovaných deforací Řešení sil =, z rovnic :
7 D4/4 Dáno: pry spojené zle,,, = konsana,,, σ D. anove síly v prech a dienzje průřez prů. 7 Základní sosavy, volnění spojjícího zl, deforační podínka: n n i n =
8 8
Příklad 19 Střed smyku
Příklad 19 řed smku Zadání Určee polohu sředu smku průřezu na obrázku. Posup: 1) Určí se průběh smkových napěí po sřednici enkosěnného průřezu podle V I ) Inegrací napěí po ploše se určí smkové síl v jednolivých
VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenkostěnné tlakové nádoby
VŠB- Technická univerzia Osrava Fakula srojní Kaedra pružnosi a pevnosi Úvod do MKP Auor: Michal Šofer Verze 0 Osrava 2011 Zadání: Proveďe napěťovou analýzu lakové nádoby v ísě D (v polovině válcové čási),
Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité
Pružnos a plasicia, 2.ročník bakalářského sudia Téma 5 Kroucení Základní principy a vzahy Smykové napěí a převoření Úlohy saicky určié a saicky neurčié Kaedra savební mechaniky Fakula savební, VŠB - Technická
Příklad 4 Ohýbaný nosník - napětí
Příklad 4 Oýaný nosník - napěí Teorie Prosý o, rovinný o Při prosé ou je průře naáán oový oene oáčející kole jedné lavníc os servačnosi průřeu, ovkle os. oen se načí neo jeno. Běžněji je ožné se seka s
FYZIKA I. Pohyb těles po podložce
VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová
4. Střední radiační teplota; poměr osálání,
Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění
Rotačně symetrické úlohy
Roačně symeické úlohy Pužnos a pevnos Napěí a defomace zaíženého pužného ělesa Základní úloha pužnosi - Posup řešení úlohy ) podmínky ovnováhy ) vzahy mezi posuvy a převořeními 3) vyloučení posuvů ovnice
Tento NCCI dokument poskytuje návod pro posouzení prutů namáhaných kroucením. 2. Anlýza prvků namáhaných kroucením Uzavřený průřez v kroucení 5
NCC: Kroucení Teno NCC dokumen poskyuje návod pro posouzení pruů namáhaných kroucením. Obsah 1. Obecně. Anlýza prvků namáhaných kroucením. Uzavřený průřez v kroucení 5 4. Oevřený průřez v kroucení 6 5.
= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08
Kroucení NB. Vniřní síl od kroucení Výsledk jednodušené analý pruů oevřeného průřeu se anedbáním účinku prosého kroucení ve smslu 6..7.(7) le upřesni na ákladě následující modifikované analogie ohbu a
Při distorzím vzpěru dochází k přetvoření příčného řezu (viz obr.2.1). Problém se převádí na výpočet výztuh a) okrajových, b) vnitřních.
. Diorzní vzpěr Při iorzím vzpěru ochází k převoření příčného řezu (viz obr..). Problém e převáí na výpoče výzuh a) okrajových, b) vniřních. Obr.. Příklay iorzního vyboulení. Kriické namáhání a poměrná
Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 6
Faula srojního nženýrsví VUT v Brně Úsav onsruování KONSTRUOVÁNÍ STROJŮ srojní součás řednáša 6 ředepjaé šrouové spoje The greaer our noledge ncreases, he greaer our gnorance unfolds. JOHN F. KENNEDY Osah
4. KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolují pohyb 2. pružně poddajné vazby - dovolují pohyb
4. MITÁNÍ VOLNÉ 4. Lineární kiání (haronický osciláor ve fyzice) Veli časný pohye honého odu je kiavý pohy. iání ude lineární, jesliže síla, kerá při výchylce x vrací honý od do rovnovážné polohy, je úěrná
Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury.
2. přednáška N + M + M Jádro průřeu Šikmý ohb M + N M + N M + M + N Jádro průřeu Ecenrický lak a vloučeného ahu Konrolní oák Miroslav Vokáč miroslav.vokac@cvu.c ČVUT v Prae, Fakula archiekur 19. října
X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS =
11. Výpoče poměrů při zkraeh ve vlasní spořebě elekrárny Zkra má v obvodeh shémau smysl pouze v čáseh provozovanýh s účinně uzemněným sředem zdroje, čili mimo alernáor, vyvedení výkonu a přilehlá vinuí
Přednáška 1. Elektrické zařízení vs Elektrický obvod. Obvodové veličiny. Časové průběhy obvodových veličin
Prof. Ing. Ivan Zemánek, CSc Přenáška 1 Elekrické zařízení vs Elekrický obvo Obvoové veličiny Časové průběhy obvoových veličin Charakerisické honoy perioických veličin 1 Prof. Ing. Ivan Zemánek, CSc Elekrické
ÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky.
5. Vazník posuek pruů 5. Vzpěrné élky Tab.: Vzpěrné élky pruů příhraových vazníků Úhelníkový vazník v rovině vzálenos uzlů Horní pás z roviny vzálenos vaznic vzálenos svislého zužení Dolní pás z roviny
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projek realizovaný na SPŠ Nové Měso nad Meují s finanční podporou v Operační prograu Vzdělávání pro konkurenceschopnos Královéhradeckého kraje Modul 3 - Technické předěy ng. Jan Jeelík 4. Pohybová energie
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné
7. CVIČENÍ - 1 - Témata:
České vsoké čení echnické v Praze Fakla informačních echnologií Kaedra číslicového návrh Doc.Ing. Kaeřina Hniová, CSc. Kaeřina Hniová POZNÁMKY 7. CVIČENÍ Témaa: 7. Nespojié regláor 7.1Nespojié regláor
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
Příklad 4 Ohýbaný nosník napětí
Příklad 4 Oýaný nosník napěí Zadání Nosník s převislým koncem je aížen spojiým aížení q = 4 kn/m a osamělou silou F = 40 kn. Průře nosníku je ocelový svařovaný proil. Roměr nosníku jsou: L =,6 m L =, m
10. Charakteristiky pohonů ve vlastní spotřebě elektrárny
0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování
EKONOMETRIE 6. přednáška Modely národního důchodu
EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,
10 Lineární elasticita
1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí
9 Viskoelastické modely
9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_B
Jéno autora: Mgr. Zdeněk Chalupský Datu vytvoření: 15. 12. 2012 Číslo DUM: VY_32_INOVACE_18_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Teatický okruh: Mechanika
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
STŘÍDAVÝ POUD N V E S T E D O O Z V O J E V Z D Ě L Á V Á N Í. Sřídavý prod a jeho efekvní hodnoy sejnosěrný prod (d. c.) prod eče poze v jedno sěr sřídavý prod (a. c.) elekrcký prod, jehož časový průběhe
OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE
OBECNÁ LOÁLNĚ PODEPŘENÁ ŽELEZOBETONOÁ STROPNÍ ONSTRUCE Je dán železobeonový monoliický skele (viz schéma konsrukce). Sousední desková pole jsou zaížena rozdílným užiným zaížením. Meodou součových momenů
Řešený příklad: Návrh za studena tvarovaného ocelového nosníku
Dokuen: SX06a-CZ-EU Lis 1 z 7 Řešený příklad: Návrh za sudena varovaného ocelového Teno příklad se zabývá návrhe prosě uloženého sropního C proilu. Předpokládá se že horní i dolní pásnice je spojiě příčně
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g =
NB.3 NB.3.1 Rosah planosi Pružný kriický momen π I µ cr 1 + κ w + ζ k 诲诲쩎睃睅 睅 a s 5 s ( + ) I A 1 ψ f )I (hf / ) (1) Posup uvedený v éo příloe je vhodný pro výpoče kriického momenu nosníků konsanního dvojose
Tlumené kmity. Obr
1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující
Schöck Isokorb typ KST
Schöck Isokorb yp Obsah Srana Základní uspořádání a ypy přípojů 194-195 Pohledy/rozměry 196-199 Dimenzační abulky 200 Ohybová uhos přípoje/pokyny pro návrh 201 Dilaování/únavová odolnos 202-203 Konsrukční
4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu.
4. Kroucení pruů Oevřené a uzavřené průřezy, prosé a vázané kroucení, inerakce, přísup podle Eurokódu. Obvyklé je pružné řešení (plasické nelineární řešení - např. Srelbická) Podle Eurokódu lze kombinova
Ř ú Á Ě ň ú Ý Ů ú ú Ý Ú ň óň ó Ř ú Á Ě ú ú ó Ý Ý Ý ú Ř ú Á Ě ň ň Ý ú ň Ý ú ň ň ň ň ň Ů ň ň ú ň Ý Ý ú ň ú Ů Ý ň ň ú š ň š ú ú ú š Ů ň Ř ú Á Ě ú Ú Ů ú ú ú ú Ř ó ó š ó ť š ú ú ó ú ú Ú š ú ó ó Ř ú Á Ě š ň
Pasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
α = 210 A x =... kn A y =... kn A M =... knm
Vzorový příklad k 1. kontrolnímu testu Konzola Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A M A y y q = kn/m M = - 5kNm A α B c a b d F = 10 kn 1 1 3,5,5 L = 10 x α = 10 A
Teorie tkaní. Modely vazného bodu. M. Bílek
Teorie tkaní Modely vazného bodu M. Bílek 2016 Základní strukturální jednotkou tkaniny je vazný bod, tj. oblast v okolí jednoho zakřížení osnovní a útkové nitě. Proces tkaní tedy spočívá v tvorbě vazných
P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE
P Ř Í K L A D Č. OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE Projek : FRVŠ 0 - Analýza meod výpoču železobeonových lokálně podepřených desek Řešielský kolekiv : Ing. Marin Tipka Ing. Josef
ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS
ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu
Hydrostatické váhy. HANA MALINOVÁ Katedra didaktiky fyziky, MFF UK. Princip hydrostatického vážení. Veletrh nápadů učitelů fyziky 14
Velerh nápadů učielů fyziky 4 Hydrosaické váhy HANA MALINOVÁ Kaedra didakiky fyziky, MFF UK V příspěvku bude prezenována eoda hydrosaického vážení, kerá se používá na určování husoy různých aeriálů. Žáci
Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.
1. cvičení Svazek sil & tlak Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 14. února 2018 do soustav sil Síla je vektor y tuhé těleso F & tlak působiště paprsek [0,0] α A[x A,y
3.1.3 Rychlost a zrychlení harmonického pohybu
3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
1.3.4 Rovnoměrně zrychlený pohyb po kružnici
34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb
Skládání (interference) vlnění
Skládání (interference) vlnění Protože vlnění je ve své podstatě kitání (sostavy) hotných bodů, neůže nás překvapit, že existje jev skládání vlnění od (několika) různých zdrojů - který neznaená nic jiného,
T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše
Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model
MODELOVÁNÍ SOUPROUDÉHO VÝMĚNÍKU TEPLA V SIMULINKU S VYUŽITÍM S-FUNKCÍ
MDELVÁNÍ UPRUDÉH VÝMĚNÍKU EPLA V IMULINKU VYUŽIÍM -FUNKCÍ M. Pieš Š. žana Kaedra měřií a řídií eniky Fakla elekroeniky a informaiky VŠB-U srava Absrak eno článek se zabývá vyvořením a implemenaí maemaikéo
Dynamika hmotného bodu. Petr Šidlof
Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení
Praktikum I Mechanika a molekulová fyzika
Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY
říloha: Elekrická práce, příkon, výkon říklad: 4 variana: onorné čerpadlo vyčerpá axiálně 22 lirů za inuu do axiální výšky 1,5 erů Jaká je jeho účinnos, když jeho příkon je 9 Husoa vody je 1 ř 4 var: BEZ
Parciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD. kde je u, - mezní hodnoty řízení,
Transfer inovácií 4/9 9 ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD Doc. Ing. Renaa Wagnerová, Ph.D. Ing. Lkáš Richr VŠB Technická niverzia
NA POMOC FO. Pád vodivého rámečku v magnetickém poli
NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním
Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích
Výpočy eploní bilance a chlazení na výkonových spínacích prvcích Úvod Při provozu polovodičového měniče vzniká na výkonových řídicích prvcích zráový výkon. volňuje se ve ormě epla, keré se musí odvés z
TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59
Autoři:. Plánička, M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: U prutu čtvercového průřezu o straně h vyrobeného zedvoumateriálů,kterýjezatížensilou azměnou teploty T (viz obr. 1) vyšetřete a
3.2.2 Rovnice postupného vlnění
3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny
Í ř Á Á Č Č ř Š ó ř Č ř š ř ů ř ň ň ň ř Ž Ž Ž ň ř ť ň Ť ř ř ů ř ř Ž ř š ň É ó Ť š š ř ř ř š ř ř ř ř š ř š ř ř š ř š š ř ť ř ň š ř ř ť ř ř š Ť ř ř ř š ř Ť š ř ř ř š ř š ř ř ř š ů ř š ř ř š ř ř š ř ř ť š
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
pro napojení ocelových nosníků velkého průřezu na ocelovou konstrukci (s více než dvěma moduly)
Schöck Isokorb Moduly pro napojení ocelových nosníků velkého průřezu na ocelovou konsrukci (s více než dvěma moduly) 190 Schöck Isokorb yp (= 1 ZST Modul + 1 QST Modul) pro napojení volně vyložených ocelových
Návrh a posudek osově namáhaného nosníku podle obou MS
Návrh a posudek osově namáhaného nosníku podle obou MS 1) Statický rozbor 2) Dobře pochopit zadání definovat, v jakých hodnotách počítat (charakteristické x návrh.) 2) MSÚ nutný průřez dle MSÚ a) pevnost
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují
900 - Připojení na konstrukci
Součási pro připojení na konsrukci Slouží k přenosu sil z áhla závěsu na nosnou konsrukci profily nebo sropy. Typy 95x, 96x a 971 slouží k podložení a uchycení podpěr porubí. Připojení podle ypů pomocí
Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu
Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní
Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)
Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].
7.4.1 Parametrické vyjádření přímky I
741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E
5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU
5. MĚŘENÍ KMIOČU a FÁZOVÉHO ROZDÍLU Měření kmioč: zdroje ealonového kmioč, přímé měření osciloskopem, elekronické analogové kmioměry a vibrační kmioměr, číače (měření f přímo, měření, průměrování, možnos
Přibližná linearizace modelu kyvadla
Přibližná linearizace model kyvadla 4..08 9:47 - verze 4.0 08 Obsah Oakování kalkl - Taylorův rozvoj fnkce... Nelineární savový model a jeho řibližná linearizace... 4 Nelineární model vs-výs a jeho řibližná
Téma 10: Momenty setrvačnosti a deviační momenty
Savení saika, ročník akalářskéo sudia Téma : Momeny servačnosi a deviační momeny Cenrální kvadraické momeny ákladníc průřeů Cenrální kvadraické momeny složenýc průřeů Kvadraické momeny k pooočeným osám
Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011
Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Ekonomika podniku Kaedra ekonomiky, manažersví a humaniních věd Fakula elekroechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Kriéria efekivnosi
Pružnost a plasticita II
Pružnost a pasticita II 3. ročník bakaářského studia doc. Ing. artin Krejsa, Ph.D. Katedra stavební echaniky Neineární chování ateriáů, podínky pasticity, ezní pastická únosnost Úvod, zákadní pojy Teorie
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - echnické univerziy Osrava číslo 1, rok 008, ročník VIII, řada savební článek č. 1 Radi ČAJKA 1, Lucie MYNARZOVÁ ANALÝZA ZDĚNÉ KONSRUKCE ZAÍŽENÉ POŽÁREM Absrac
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
x udává hodnotu směrnice tečny grafu
Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je
Statika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin.
Tabulky únosnosi varovaných / rapézových plechů z hliníku a jeho sliin. Obsah: Úvod Základní pojmy Příklad použií abulek Vysvělivky 4 5 6 Tvarovaný plech KOB 00 7 Trapézové plechy z Al a jeho sliin KOB
4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU
4. MĚŘICÍ PŘEVODÍKY ELEKICKÝCH VELIČI, MĚŘEÍ KMIOČ A FÁZOVÉHO OZDÍL Převodníky pro měření soč a rozdíl (s operačním zesilovačem, s ransformáory) Inegrační zesilovač: základní princip a odvození přenos
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava
Kaedra obecné eleroechniy Faula eleroechniy a inforaiy, VŠB - U Osrava ELEKRIKÉ SROJE - rozdělení, druhy provedení, vlasnosi, dienzování. Rozdělení elericých srojů (přehled). Označování elericých srojů
ŘŘešený příklad: Příhradový nosník malého sklonu s pasy z členěných prutů
Dokumen: SX07a-E-EU Srana ázev: z 3 Eurokód: E 993--, E 993--8 & E 990 ŘŘešený příklad: Příhradový nosník malého sklonu s pasy z V řešeném příkladu je navržena konsrukce sedlové konsrukce sřechy s malým
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )
3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =
Derivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)
čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v
2.5 Rovnováha rovinné soustavy sil
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
Laboratorní práce č. 1: Pozorování tepelné výměny
Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Laboraorní práce č. 1: Pozorování epelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Tes k laboraorní
1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.
Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,
LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab
LindabCoverline Tabulky únosnosí Pokyny k monáži rapézových plechů Lindab abulky únosnosi rapézových plechů Úvod Přípusné plošné zaížení je určeno v souladu s normou ČSN P ENV 1993-1-3 Navrhování ocelových
A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10
Vzorový příklad k 1. kontrolnímu testu Prostý nosník Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A y y q = kn/m M = 5kNm F = 10 kn A c a b d 1 1 3,5,5 L = 10 α B B y x α = 30
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO
FYZIKÁLNÍ PRAKIKUM Úsav fyziky FEI VU BRNO Spolupracoval Příprava Šuranský Radek Opravy méno Ročník 1 Škovran an Předn. skup. B Měřeno dne 5.4. Učiel Sud. skupina 1 Kód 17 Odevzdáno dne 16.5. Hodnocení
BEZSTYKOVÁ KOLEJ NA MOSTECH
7. 9. března 01 01 BEZSTYKOVÁ KOLEJ NA MOSTECH Doc. Ing. Otto Plášek, Ph.D Vysoké učení technické v Brně, Fakulta stavební 1. ÚVOD V současné době probíhá rozsáhlá odborná diskuze ke spolupůsobení ostní
VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD
Miloš Hüne SMR neilové účink vičení 05 Zání VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Příkl č. Uvžje konki z O., vpočíeje vooovný pon v oě (znčený eploní ozžnoi vžje α 0 6 K -.
Podmínky k získání zápočtu
Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné
Cvičení 4 (Tenkostěnné a silnostěnné nádoby)
VŠB Technická univezia Osava akula sojní Kaeda užnosi a evnosi (9) Pužnos a evnos v enegeice (Návod do cvičení) vičení 4 (Tenkosěnné a silnosěnné nádob Auo: Jaoslav ojíček Veze: Osava 9 PPE vičení 4 Tenkosěnné
Typ výpočtu. soudržná. soudržná
Posouzení plošného základu Vstupní data Projekt Datu : 2.11.2005 Základní paraetry zein Číslo Název Vzorek ϕ ef [ ] c ef [] γ [/ 3 ] γ su [/ 3 ] δ [ ] 1 Třída S4 3 17.50 7.50 2 Třída R4, přetváření křehké