Řešení: uvolnění - volba reakcí, vnitřní síly řešené z levého tělesa: Ekvivalentní varianty prutu: Deformační podmínka: ΔL=0

Rozměr: px
Začít zobrazení ze stránky:

Download "Řešení: uvolnění - volba reakcí, vnitřní síly řešené z levého tělesa: Ekvivalentní varianty prutu: Deformační podmínka: ΔL=0"

Transkript

1 Cvičení 4 k procvičení označeno vlevo červeno čaro P/4 až P4/4 osaní D/4 až D4/4, ožný doácí úkol P/4 Dána je soosá příá yč konsanních průřezů =00 s ěžiši T složená z ěděného úsek délky =00 a ocelového úsek délky =50, kerá je obosranně vekná. anove napěí v yči po její ohřáí o eplo Δ =Δ =Δ=50 C =,0 5 MPa, =,0 5 MPa, α =,60-5 C -, α =,50-5 C -. Řešení: volnění - volba reakcí, vniřní síly řešené z levého ělesa: Δ Δ T osa pr Poznáka :účinky vekní na pr reakce - voří odezv na silové působení z ěla pr. Osově nesyerické važované výslednice reakcí vekní jako jso osový oen nebo výslednice sil a oenů k ose pr kolé jso lokální účinky, keré ovlivní pr poze v blízké okolí vazby oo ísní ovlivnění podle ain- Vénanova princip v jednodché prové odel zanedbáváe. osový oen osové napěí kolé síly kolý oen sěr posv ísa vůči vazbá, alernaiva způsob volnění osa syerie Deforační podínka: Δ=0 Přiřazení ekvivalenní základní sosavy: kvivalenní variany pr: Δ Δ Δ

2 6 Řešení - s vyžií. Casigliánovy věy: deforační rovnici zvolené základní sosavy původního pr s paraere voří posv ísa vůči vazbě. je dán sperpozicí eploního člen, z inegrace zěn délek eleenů od vlivů zěny eploy a dále silového člen, kerý vyplývá z Casigliánovy věy. Řešení je ekvivalenní - shodné se vzahe. 7 Řešení - s vyžií. Casigliánovy věy při rozklad na dva U pry dvě základní sosavy ve spojení zaížené vzájeno osovo silo. Deforační rovnici sosavy voří porovnání posvů a neboli posv společného průřez obo prů. Uvolnění pr na U pr základní sosav: posv síly vazby vůči vazbě =- =- Δ Δ d d d U d d 0 0 sěr posv ísa vůči vazbá = Δ Δ n=-

3 P/4 Dána soosá sosava ocelové yče a ocelové rbky délky s výrobní vůlí <<. Zaížené jso silo přes ho desk. Určee napěí v rbce a yči před i po vyezení vůle vlive síly pro varian konsrkce. d d d deska = = =d /4 =d /4-d /4 základ variana variana B variana C += Účinek síly je desko přes yč přenášen do základ, ale na rbk deska nedosedne. U rovnováha desky: D P= volnění: deforace: P= =- P= Deail D D Volíe přirozený posv desky vůči základ vazbě pro kladno síl, vyjadřjící zkrácení yče, ze kerého rčíe rozsah síly, při keré deska ješě nedosedne na rbk. aická rovnováha desky je pro síl P rčiá. Konsrkce B nebo C jso ekvivalenní a je vhodné je adapova na přehlednější odel dle variany. Délka yče =+, kde <<, se ůže ve výpoč zjednodši na přibližné ±. Vlive síly deska dosedne na obě sočási, a rozklade síly na volněné síly, obo sočásí je proo osová rovnice rovnováhy desky saicky nerčiá. osava je rozložena na U yč a U rbk přičež je zvolen kineaicky ožný přirozený posv desky vůči vazbě. Deforační rovnici voří vyjádření vůle na posvech, sočásí. volnění sočásí: volnění desky: važované deforace: =- =-

4 Deforační podínka: +=, sosava deforační a saické rovnice, řešení sil, sosava: 4 D/4 Předepní lana dlohého a zaíženého závaží Q kráký áhle délky analogický odel krákého áhla važjee konsanní vniřní síl, lana pak proěnno, v závislosi na poloze : g rovnováha spojjícího zl: Q naáhání lana: volba deforací posvy zlů po onáži : g Δ, α, ρ, Q naáhání áhla, g zanedbáno: =+ G ε= /+ α Δ, Δ=0 ρ=0 = ε= / G=ρg Řešení sosavy:

5 P/4 Zadán je hý rá oočný v roační vazbě zaížený silo a chycený dvěa pry áhly,. D:,,, a,, Δ, α, úhel β. Určee síly působící na rá a nahání prů vlive účinků onáže, síly a eploy., Δ,α volnění pr áhla na Z: volba linearizovaných deforací:, Δ,α Poznáka: znaénko deforace - vyjádření posv jako přírůsk 5 a β a a a >0 >0 >0 <0 4>0 β volnění spojjícího rá linearizace sil Uvažjee norované volnění každého pr ahovo vniřní silo i na U základní sosav pr nebo áhlo s konsanníi paraery. Kladný posv zl je fnkcí zěn délek pr, keré závisí na znaéncích čásí poěrného prodložení - viz poznáka. Ta zdůvodňje fyzikální vyjádření posvů zlů prů. inearizované saické rovnice rá važjí poloh sil v pozici nezdeforované rovinné sosavy. Deforační rovnice forlovaná jako angena úhl kineaicky ožného pooočení rá propojje deforace jednolivých prů. inearizace posvů zlů rá je realizována náhrado obloků kržnic jejich ečnai vedenýi z jejich původní nezdeforované polohy í se rá vlasně fikivně linearizovaný výpočení odele zdeforje. sosava rovnic: sosava saických a deforační rovnice: vyjádření posvů prů fyzikálníi vzahy: nerické zadání: původní nerické řešení: zjednodšení zavedení : úprava vzah pro posv zjednodšené nerické řešení se od původního álo liší: D/4 nalogická adapovaná konsrkce vůlí přeneseno do zl rá žívá výhodno deforační rovnici - jeho naklopení o úhel. Deforační a oenová rovnice k vazbě ožňjí řeši poze prové síly,. Dáno,: <<a a a β a, Δ,α, = a adapace, linearizace deforací: β a a a volnění linearizace sil: β vyjádření sosavy pro výpoče,:

6 P4/4 Zadán je hý rá zaížený silo pevněný rovnoběžnýi pry,,. Dáno:,,, a,, Δ, α. Určee síly působící na rá a napěí v prech vlive účinků onáže, zaěžjící síly a eploy. 6 zadání: volnění pr: volba linearizovaných deforací: rovnováha rá: a / a Δ,α i Δ,α deforační podínka: vyjádření posvů: volnění spojjícího rá linearizace sil rá se pooočí a posne fikivně se linearizací posvů i zdeforje D/4 Zadána je osově syerická prová konsrkce z prů,, zaížená silo. Dáno:,,,, Δ, α. ɷ. Určee síly působící v prech vlive účinků onáže, zaěžjící síly a eploy. zadání: volnění prů: adapace vůle : rovnováha spojjícího zl: /,Δ,α,Δ,α i deforační podínka: i volnění spojjícího zl linearizace sil volba linearizovaných deforací Řešení sil =, z rovnic :

7 D4/4 Dáno: pry spojené zle,,, = konsana,,, σ D. anove síly v prech a dienzje průřez prů. 7 Základní sosavy, volnění spojjícího zl, deforační podínka: n n i n =

8 8

Příklad 19 Střed smyku

Příklad 19 Střed smyku Příklad 19 řed smku Zadání Určee polohu sředu smku průřezu na obrázku. Posup: 1) Určí se průběh smkových napěí po sřednici enkosěnného průřezu podle V I ) Inegrací napěí po ploše se určí smkové síl v jednolivých

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenkostěnné tlakové nádoby

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenkostěnné tlakové nádoby VŠB- Technická univerzia Osrava Fakula srojní Kaedra pružnosi a pevnosi Úvod do MKP Auor: Michal Šofer Verze 0 Osrava 2011 Zadání: Proveďe napěťovou analýzu lakové nádoby v ísě D (v polovině válcové čási),

Více

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité Pružnos a plasicia, 2.ročník bakalářského sudia Téma 5 Kroucení Základní principy a vzahy Smykové napěí a převoření Úlohy saicky určié a saicky neurčié Kaedra savební mechaniky Fakula savební, VŠB - Technická

Více

Příklad 4 Ohýbaný nosník - napětí

Příklad 4 Ohýbaný nosník - napětí Příklad 4 Oýaný nosník - napěí Teorie Prosý o, rovinný o Při prosé ou je průře naáán oový oene oáčející kole jedné lavníc os servačnosi průřeu, ovkle os. oen se načí neo jeno. Běžněji je ožné se seka s

Více

FYZIKA I. Pohyb těles po podložce

FYZIKA I. Pohyb těles po podložce VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová

Více

4. Střední radiační teplota; poměr osálání,

4. Střední radiační teplota; poměr osálání, Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění

Více

Rotačně symetrické úlohy

Rotačně symetrické úlohy Roačně symeické úlohy Pužnos a pevnos Napěí a defomace zaíženého pužného ělesa Základní úloha pužnosi - Posup řešení úlohy ) podmínky ovnováhy ) vzahy mezi posuvy a převořeními 3) vyloučení posuvů ovnice

Více

Tento NCCI dokument poskytuje návod pro posouzení prutů namáhaných kroucením. 2. Anlýza prvků namáhaných kroucením Uzavřený průřez v kroucení 5

Tento NCCI dokument poskytuje návod pro posouzení prutů namáhaných kroucením. 2. Anlýza prvků namáhaných kroucením Uzavřený průřez v kroucení 5 NCC: Kroucení Teno NCC dokumen poskyuje návod pro posouzení pruů namáhaných kroucením. Obsah 1. Obecně. Anlýza prvků namáhaných kroucením. Uzavřený průřez v kroucení 5 4. Oevřený průřez v kroucení 6 5.

Více

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08 Kroucení NB. Vniřní síl od kroucení Výsledk jednodušené analý pruů oevřeného průřeu se anedbáním účinku prosého kroucení ve smslu 6..7.(7) le upřesni na ákladě následující modifikované analogie ohbu a

Více

Při distorzím vzpěru dochází k přetvoření příčného řezu (viz obr.2.1). Problém se převádí na výpočet výztuh a) okrajových, b) vnitřních.

Při distorzím vzpěru dochází k přetvoření příčného řezu (viz obr.2.1). Problém se převádí na výpočet výztuh a) okrajových, b) vnitřních. . Diorzní vzpěr Při iorzím vzpěru ochází k převoření příčného řezu (viz obr..). Problém e převáí na výpoče výzuh a) okrajových, b) vniřních. Obr.. Příklay iorzního vyboulení. Kriické namáhání a poměrná

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 6

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 6 Faula srojního nženýrsví VUT v Brně Úsav onsruování KONSTRUOVÁNÍ STROJŮ srojní součás řednáša 6 ředepjaé šrouové spoje The greaer our noledge ncreases, he greaer our gnorance unfolds. JOHN F. KENNEDY Osah

Více

4. KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolují pohyb 2. pružně poddajné vazby - dovolují pohyb

4. KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolují pohyb 2. pružně poddajné vazby - dovolují pohyb 4. MITÁNÍ VOLNÉ 4. Lineární kiání (haronický osciláor ve fyzice) Veli časný pohye honého odu je kiavý pohy. iání ude lineární, jesliže síla, kerá při výchylce x vrací honý od do rovnovážné polohy, je úěrná

Více

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury.

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury. 2. přednáška N + M + M Jádro průřeu Šikmý ohb M + N M + N M + M + N Jádro průřeu Ecenrický lak a vloučeného ahu Konrolní oák Miroslav Vokáč miroslav.vokac@cvu.c ČVUT v Prae, Fakula archiekur 19. října

Více

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS =

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS = 11. Výpoče poměrů při zkraeh ve vlasní spořebě elekrárny Zkra má v obvodeh shémau smysl pouze v čáseh provozovanýh s účinně uzemněným sředem zdroje, čili mimo alernáor, vyvedení výkonu a přilehlá vinuí

Více

Přednáška 1. Elektrické zařízení vs Elektrický obvod. Obvodové veličiny. Časové průběhy obvodových veličin

Přednáška 1. Elektrické zařízení vs Elektrický obvod. Obvodové veličiny. Časové průběhy obvodových veličin Prof. Ing. Ivan Zemánek, CSc Přenáška 1 Elekrické zařízení vs Elekrický obvo Obvoové veličiny Časové průběhy obvoových veličin Charakerisické honoy perioických veličin 1 Prof. Ing. Ivan Zemánek, CSc Elekrické

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky.

Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky. 5. Vazník posuek pruů 5. Vzpěrné élky Tab.: Vzpěrné élky pruů příhraových vazníků Úhelníkový vazník v rovině vzálenos uzlů Horní pás z roviny vzálenos vaznic vzálenos svislého zužení Dolní pás z roviny

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projek realizovaný na SPŠ Nové Měso nad Meují s finanční podporou v Operační prograu Vzdělávání pro konkurenceschopnos Královéhradeckého kraje Modul 3 - Technické předěy ng. Jan Jeelík 4. Pohybová energie

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

7. CVIČENÍ - 1 - Témata:

7. CVIČENÍ - 1 - Témata: České vsoké čení echnické v Praze Fakla informačních echnologií Kaedra číslicového návrh Doc.Ing. Kaeřina Hniová, CSc. Kaeřina Hniová POZNÁMKY 7. CVIČENÍ Témaa: 7. Nespojié regláor 7.1Nespojié regláor

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

Příklad 4 Ohýbaný nosník napětí

Příklad 4 Ohýbaný nosník napětí Příklad 4 Oýaný nosník napěí Zadání Nosník s převislým koncem je aížen spojiým aížení q = 4 kn/m a osamělou silou F = 40 kn. Průře nosníku je ocelový svařovaný proil. Roměr nosníku jsou: L =,6 m L =, m

Více

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny 0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

10 Lineární elasticita

10 Lineární elasticita 1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_B Jéno autora: Mgr. Zdeněk Chalupský Datu vytvoření: 15. 12. 2012 Číslo DUM: VY_32_INOVACE_18_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Teatický okruh: Mechanika

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í STŘÍDAVÝ POUD N V E S T E D O O Z V O J E V Z D Ě L Á V Á N Í. Sřídavý prod a jeho efekvní hodnoy sejnosěrný prod (d. c.) prod eče poze v jedno sěr sřídavý prod (a. c.) elekrcký prod, jehož časový průběhe

Více

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE OBECNÁ LOÁLNĚ PODEPŘENÁ ŽELEZOBETONOÁ STROPNÍ ONSTRUCE Je dán železobeonový monoliický skele (viz schéma konsrukce). Sousední desková pole jsou zaížena rozdílným užiným zaížením. Meodou součových momenů

Více

Řešený příklad: Návrh za studena tvarovaného ocelového nosníku

Řešený příklad: Návrh za studena tvarovaného ocelového nosníku Dokuen: SX06a-CZ-EU Lis 1 z 7 Řešený příklad: Návrh za sudena varovaného ocelového Teno příklad se zabývá návrhe prosě uloženého sropního C proilu. Předpokládá se že horní i dolní pásnice je spojiě příčně

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g =

EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g = NB.3 NB.3.1 Rosah planosi Pružný kriický momen π I µ cr 1 + κ w + ζ k 诲诲쩎睃睅 睅 a s 5 s ( + ) I A 1 ψ f )I (hf / ) (1) Posup uvedený v éo příloe je vhodný pro výpoče kriického momenu nosníků konsanního dvojose

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

Schöck Isokorb typ KST

Schöck Isokorb typ KST Schöck Isokorb yp Obsah Srana Základní uspořádání a ypy přípojů 194-195 Pohledy/rozměry 196-199 Dimenzační abulky 200 Ohybová uhos přípoje/pokyny pro návrh 201 Dilaování/únavová odolnos 202-203 Konsrukční

Více

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu.

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu. 4. Kroucení pruů Oevřené a uzavřené průřezy, prosé a vázané kroucení, inerakce, přísup podle Eurokódu. Obvyklé je pružné řešení (plasické nelineární řešení - např. Srelbická) Podle Eurokódu lze kombinova

Více

Ř ú Á Ě ň ú Ý Ů ú ú Ý Ú ň óň ó Ř ú Á Ě ú ú ó Ý Ý Ý ú Ř ú Á Ě ň ň Ý ú ň Ý ú ň ň ň ň ň Ů ň ň ú ň Ý Ý ú ň ú Ů Ý ň ň ú š ň š ú ú ú š Ů ň Ř ú Á Ě ú Ú Ů ú ú ú ú Ř ó ó š ó ť š ú ú ó ú ú Ú š ú ó ó Ř ú Á Ě š ň

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

α = 210 A x =... kn A y =... kn A M =... knm

α = 210 A x =... kn A y =... kn A M =... knm Vzorový příklad k 1. kontrolnímu testu Konzola Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A M A y y q = kn/m M = - 5kNm A α B c a b d F = 10 kn 1 1 3,5,5 L = 10 x α = 10 A

Více

Teorie tkaní. Modely vazného bodu. M. Bílek

Teorie tkaní. Modely vazného bodu. M. Bílek Teorie tkaní Modely vazného bodu M. Bílek 2016 Základní strukturální jednotkou tkaniny je vazný bod, tj. oblast v okolí jednoho zakřížení osnovní a útkové nitě. Proces tkaní tedy spočívá v tvorbě vazných

Více

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE P Ř Í K L A D Č. OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE Projek : FRVŠ 0 - Analýza meod výpoču železobeonových lokálně podepřených desek Řešielský kolekiv : Ing. Marin Tipka Ing. Josef

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

Hydrostatické váhy. HANA MALINOVÁ Katedra didaktiky fyziky, MFF UK. Princip hydrostatického vážení. Veletrh nápadů učitelů fyziky 14

Hydrostatické váhy. HANA MALINOVÁ Katedra didaktiky fyziky, MFF UK. Princip hydrostatického vážení. Veletrh nápadů učitelů fyziky 14 Velerh nápadů učielů fyziky 4 Hydrosaické váhy HANA MALINOVÁ Kaedra didakiky fyziky, MFF UK V příspěvku bude prezenována eoda hydrosaického vážení, kerá se používá na určování husoy různých aeriálů. Žáci

Více

Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.

Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč. 1. cvičení Svazek sil & tlak Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 14. února 2018 do soustav sil Síla je vektor y tuhé těleso F & tlak působiště paprsek [0,0] α A[x A,y

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

1.3.4 Rovnoměrně zrychlený pohyb po kružnici 34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb

Více

Skládání (interference) vlnění

Skládání (interference) vlnění Skládání (interference) vlnění Protože vlnění je ve své podstatě kitání (sostavy) hotných bodů, neůže nás překvapit, že existje jev skládání vlnění od (několika) různých zdrojů - který neznaená nic jiného,

Více

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model

Více

MODELOVÁNÍ SOUPROUDÉHO VÝMĚNÍKU TEPLA V SIMULINKU S VYUŽITÍM S-FUNKCÍ

MODELOVÁNÍ SOUPROUDÉHO VÝMĚNÍKU TEPLA V SIMULINKU S VYUŽITÍM S-FUNKCÍ MDELVÁNÍ UPRUDÉH VÝMĚNÍKU EPLA V IMULINKU VYUŽIÍM -FUNKCÍ M. Pieš Š. žana Kaedra měřií a řídií eniky Fakla elekroeniky a informaiky VŠB-U srava Absrak eno článek se zabývá vyvořením a implemenaí maemaikéo

Více

Dynamika hmotného bodu. Petr Šidlof

Dynamika hmotného bodu. Petr Šidlof Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY

Příloha: Elektrická práce, příkon, výkon. Příklad: 4 varianta: Př. 4 var: BEZ CHYBY říloha: Elekrická práce, příkon, výkon říklad: 4 variana: onorné čerpadlo vyčerpá axiálně 22 lirů za inuu do axiální výšky 1,5 erů Jaká je jeho účinnos, když jeho příkon je 9 Husoa vody je 1 ř 4 var: BEZ

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD. kde je u, - mezní hodnoty řízení,

ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD. kde je u, - mezní hodnoty řízení, Transfer inovácií 4/9 9 ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD Doc. Ing. Renaa Wagnerová, Ph.D. Ing. Lkáš Richr VŠB Technická niverzia

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích

Výpočty teplotní bilance a chlazení na výkonových spínacích prvcích Výpočy eploní bilance a chlazení na výkonových spínacích prvcích Úvod Při provozu polovodičového měniče vzniká na výkonových řídicích prvcích zráový výkon. volňuje se ve ormě epla, keré se musí odvés z

Více

TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59

TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59 Autoři:. Plánička, M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: U prutu čtvercového průřezu o straně h vyrobeného zedvoumateriálů,kterýjezatížensilou azměnou teploty T (viz obr. 1) vyšetřete a

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

Í ř Á Á Č Č ř Š ó ř Č ř š ř ů ř ň ň ň ř Ž Ž Ž ň ř ť ň Ť ř ř ů ř ř Ž ř š ň É ó Ť š š ř ř ř š ř ř ř ř š ř š ř ř š ř š š ř ť ř ň š ř ř ť ř ř š Ť ř ř ř š ř Ť š ř ř ř š ř š ř ř ř š ů ř š ř ř š ř ř š ř ř ť š

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

pro napojení ocelových nosníků velkého průřezu na ocelovou konstrukci (s více než dvěma moduly)

pro napojení ocelových nosníků velkého průřezu na ocelovou konstrukci (s více než dvěma moduly) Schöck Isokorb Moduly pro napojení ocelových nosníků velkého průřezu na ocelovou konsrukci (s více než dvěma moduly) 190 Schöck Isokorb yp (= 1 ZST Modul + 1 QST Modul) pro napojení volně vyložených ocelových

Více

Návrh a posudek osově namáhaného nosníku podle obou MS

Návrh a posudek osově namáhaného nosníku podle obou MS Návrh a posudek osově namáhaného nosníku podle obou MS 1) Statický rozbor 2) Dobře pochopit zadání definovat, v jakých hodnotách počítat (charakteristické x návrh.) 2) MSÚ nutný průřez dle MSÚ a) pevnost

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

900 - Připojení na konstrukci

900 - Připojení na konstrukci Součási pro připojení na konsrukci Slouží k přenosu sil z áhla závěsu na nosnou konsrukci profily nebo sropy. Typy 95x, 96x a 971 slouží k podložení a uchycení podpěr porubí. Připojení podle ypů pomocí

Více

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

7.4.1 Parametrické vyjádření přímky I

7.4.1 Parametrické vyjádření přímky I 741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E

Více

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU 5. MĚŘENÍ KMIOČU a FÁZOVÉHO ROZDÍLU Měření kmioč: zdroje ealonového kmioč, přímé měření osciloskopem, elekronické analogové kmioměry a vibrační kmioměr, číače (měření f přímo, měření, průměrování, možnos

Více

Přibližná linearizace modelu kyvadla

Přibližná linearizace modelu kyvadla Přibližná linearizace model kyvadla 4..08 9:47 - verze 4.0 08 Obsah Oakování kalkl - Taylorův rozvoj fnkce... Nelineární savový model a jeho řibližná linearizace... 4 Nelineární model vs-výs a jeho řibližná

Více

Téma 10: Momenty setrvačnosti a deviační momenty

Téma 10: Momenty setrvačnosti a deviační momenty Savení saika, ročník akalářskéo sudia Téma : Momeny servačnosi a deviační momeny Cenrální kvadraické momeny ákladníc průřeů Cenrální kvadraické momeny složenýc průřeů Kvadraické momeny k pooočeným osám

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Invesujeme do vaší budoucnosi Ekonomika podniku Kaedra ekonomiky, manažersví a humaniních věd Fakula elekroechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Kriéria efekivnosi

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a pasticita II 3. ročník bakaářského studia doc. Ing. artin Krejsa, Ph.D. Katedra stavební echaniky Neineární chování ateriáů, podínky pasticity, ezní pastická únosnost Úvod, zákadní pojy Teorie

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č. Sborník vědeckých prací Vysoké školy báňské - echnické univerziy Osrava číslo 1, rok 008, ročník VIII, řada savební článek č. 1 Radi ČAJKA 1, Lucie MYNARZOVÁ ANALÝZA ZDĚNÉ KONSRUKCE ZAÍŽENÉ POŽÁREM Absrac

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin.

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin. Tabulky únosnosi varovaných / rapézových plechů z hliníku a jeho sliin. Obsah: Úvod Základní pojmy Příklad použií abulek Vysvělivky 4 5 6 Tvarovaný plech KOB 00 7 Trapézové plechy z Al a jeho sliin KOB

Více

4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU

4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU 4. MĚŘICÍ PŘEVODÍKY ELEKICKÝCH VELIČI, MĚŘEÍ KMIOČ A FÁZOVÉHO OZDÍL Převodníky pro měření soč a rozdíl (s operačním zesilovačem, s ransformáory) Inegrační zesilovač: základní princip a odvození přenos

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Kaedra obecné eleroechniy Faula eleroechniy a inforaiy, VŠB - U Osrava ELEKRIKÉ SROJE - rozdělení, druhy provedení, vlasnosi, dienzování. Rozdělení elericých srojů (přehled). Označování elericých srojů

Více

ŘŘešený příklad: Příhradový nosník malého sklonu s pasy z členěných prutů

ŘŘešený příklad: Příhradový nosník malého sklonu s pasy z členěných prutů Dokumen: SX07a-E-EU Srana ázev: z 3 Eurokód: E 993--, E 993--8 & E 990 ŘŘešený příklad: Příhradový nosník malého sklonu s pasy z V řešeném příkladu je navržena konsrukce sedlové konsrukce sřechy s malým

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

2.5 Rovnováha rovinné soustavy sil

2.5 Rovnováha rovinné soustavy sil Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

Laboratorní práce č. 1: Pozorování tepelné výměny

Laboratorní práce č. 1: Pozorování tepelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Laboraorní práce č. 1: Pozorování epelné výměny Přírodní vědy moderně a inerakivně FYZIKA 1. ročník šesileého sudia Tes k laboraorní

Více

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů. Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,

Více

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab LindabCoverline Tabulky únosnosí Pokyny k monáži rapézových plechů Lindab abulky únosnosi rapézových plechů Úvod Přípusné plošné zaížení je určeno v souladu s normou ČSN P ENV 1993-1-3 Navrhování ocelových

Více

A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10

A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10 Vzorový příklad k 1. kontrolnímu testu Prostý nosník Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A y y q = kn/m M = 5kNm F = 10 kn A c a b d 1 1 3,5,5 L = 10 α B B y x α = 30

Více

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO FYZIKÁLNÍ PRAKIKUM Úsav fyziky FEI VU BRNO Spolupracoval Příprava Šuranský Radek Opravy méno Ročník 1 Škovran an Předn. skup. B Měřeno dne 5.4. Učiel Sud. skupina 1 Kód 17 Odevzdáno dne 16.5. Hodnocení

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH 7. 9. března 01 01 BEZSTYKOVÁ KOLEJ NA MOSTECH Doc. Ing. Otto Plášek, Ph.D Vysoké učení technické v Brně, Fakulta stavební 1. ÚVOD V současné době probíhá rozsáhlá odborná diskuze ke spolupůsobení ostní

Více

VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD

VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Miloš Hüne SMR neilové účink vičení 05 Zání VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Příkl č. Uvžje konki z O., vpočíeje vooovný pon v oě (znčený eploní ozžnoi vžje α 0 6 K -.

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

Cvičení 4 (Tenkostěnné a silnostěnné nádoby)

Cvičení 4 (Tenkostěnné a silnostěnné nádoby) VŠB Technická univezia Osava akula sojní Kaeda užnosi a evnosi (9) Pužnos a evnos v enegeice (Návod do cvičení) vičení 4 (Tenkosěnné a silnosěnné nádob Auo: Jaoslav ojíček Veze: Osava 9 PPE vičení 4 Tenkosěnné

Více

Typ výpočtu. soudržná. soudržná

Typ výpočtu. soudržná. soudržná Posouzení plošného základu Vstupní data Projekt Datu : 2.11.2005 Základní paraetry zein Číslo Název Vzorek ϕ ef [ ] c ef [] γ [/ 3 ] γ su [/ 3 ] δ [ ] 1 Třída S4 3 17.50 7.50 2 Třída R4, přetváření křehké

Více