Dynamická únosnost a životnost Přednášky

Podobné dokumenty
Dynamická pevnost a životnost Přednášky

Dynamická pevnost a životnost Přednášky

Dynamická pevnost a životnost Přednášky

Přednášky část 2 Únavové křivky a faktory, které je ovlivňují

Výpočtová i experimentální analýza vlivu vrubů na omezenou životnost součástí

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2

Dynamická únosnost a životnost Přednášky

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík

Únava (Fatigue) Úvod

Části a mechanismy strojů 1 KKS/CMS1

Hru I. Milan RůžR. zbynek.hruby.

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Dynamická pevnost a životnost Přednášky

Úvod do únavového poškozování

České vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II

Dynamická pevnost a životnost Přednášky

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

Pevnost a životnost Jur III

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Pevnost a životnost Jur III

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE VLIV STŘEDNÍHO NAPĚTÍ NA TRVALOU PEVNOST A ŽIVOTNOST

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha

Pojednání ke státní doktorské zkoušce. Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE

Pojednání ke státní doktorské zkoušce. Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE

Přístupy predikce únavové životnosti svařovaných konstrukcí

Provozní pevnost a životnost dopravní techniky. - úvod do předmětu

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

Hodnocení únavové odolnosti svařovaných konstrukcí

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

STATISTICKÉ PARAMETRY OCELÍ POUŽÍVANÝCH NA STAVBU OCELOVÝCH KONSTRUKCÍ

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

Trend: nákladů na letadlovou techniku ( požadavků na: bezpečnost + komfort +vyšší výkony, )

3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

INFLUENCE OF HEAT RE-TREATMENT ON MECHANICAL AND FATIGUE PROPERTIES OF THIN SHEETS FROM AL-ALLOYS. Ivo Černý Dagmar Mikulová

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

Aktuální trendy v oblasti modelování

Kapitola vstupních parametrů

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

Zvýšení spolehlivosti závěsného oka servomotoru poklopových vrat plavební komory

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

Hliníkové a nerezové konstrukce

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11

14/03/2016. Obsah přednášek a cvičení: 2+1 Podmínky získání zápočtu vypracovaná včas odevzdaná úloha Návrh dodatečně předpjatého konstrukčního prvku

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 3

VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI

IOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o

Pevnost a životnost. Hru I. PEVNOST a ŽIVOTNOST. Milan RůžR. zbynek.hruby.

Experimentální zjišťování charakteristik kompozitových materiálů a dílů

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Jednoosá tahová zkouška betonářské oceli

Dynamická pevnost a životnost Přednášky

10. Elasto-plastická lomová mechanika

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí Analýza deformací 185

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008

NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL. Ladislav Kander Karel Matocha

Přednášky část 2 Únavové křivky a únavová bezpečnost

SVÚM a.s. Zkušební laboratoř vlastností materiálů Tovární 2053, Čelákovice

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

PODKRITICKÝ RŮST TRHLINY VE SVAROVÉM SPOJI MEZI KOMOROU A PAROVODEM KOTLE VÝKONU 230 T/H. Jan KOROUŠ, Ondrej BIELAK BiSAFE, s.r.o.

REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní

Měření specifické absorbované energie kompozitních materiálů

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

MĚŘENÍ MEZE ÚNAVY LOPATKOVÝCH MATERIÁLŮ MEASUREMENT FATIGUE LIMIT OF MATERIALS FOR MOVING BLADE

PROHLÁŠENÍ O VLASTNOSTECH číslo 20/2014/09

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON

POŽADAVKY KE ZKOUŠCE Z PP I

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

POROVNÁNÍ RŮZNÝCH PŘÍSTUPŮ K ODHADU MEZE ÚNAVY

HODNOCENÍ PEVNOSTI A ŽIVOTNOSTI ŠROUBŮ DLE NORMY ASME BPV CODE, SECTION VIII, DIVISION 2

Navrhování konstrukcí z korozivzdorných ocelí

KONSTRUKČNÍ MATERIÁLY A JEJICH VLASTNOSTI Z HLEDISKA LOMOVÉ MECHANIKY STRUCTURAL MATERIALS AND THEIR PROPERTIES FROM FRACTURE MECHANICS POINT OF VIEW

Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů

ZKRÁCENÉ ÚNAVOVÉ ZKOUŠKY VRUBOVANÝCH TYČÍ

CREEP INTERMETALICKÉ SLITINY TiAl PRI VELMI MALÝCH RYCHLOSTECH DEFORMACE. CREEP OF INTERMETALLIC ALLOY TiAl AT VERY LOW STRAIN RATES

PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

TA Sanace tunelů - technologie, materiály a metodické postupy Zesilování Optimalizace

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy

POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

EXPERIMENTAL AND COMPUTATION ANALYSIS OF THE LOADING ON THE FOLDING STAIRCASE EXPERIMENTÁLNÍ A VÝPOČTOVÁ ANALÝZA NAMÁHÁNÍ SKLÁDACÍCH STROPNÍCH SCHODŮ

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Jednoosá tahová zkouška betonářské oceli

NELINEÁRNÍ ODEZVA ŽELEZOBETONOVÉ RÁMOVÉ KONSTRUKCE NA SEIZMICKÉ ZATÍŽENÍ

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

ROZVOJ CREEPOVÉ DEFORMACE A POŠKOZENÍ KOMORY PŘEHŘÍVÁKU Z CrMoV OCELI

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC

Výpočtové a experimentální řešení provozní pevnosti a únavové životnosti karosérií trolejbusů a autobusů

Transkript:

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 1 Dynamická únosnost a životnost Přednášky Milan Růžička, Jan Papuga jan.papuga@fs.cvut.cz, papuga@pragtic.com

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 2 Přednášky - část 5 Vyhodnocení životnosti konstrukcí pomocí NSA Jan Papuga mechanika.fs.cvut.cz jan.papuga@fs.cvut.cz, papuga@pragtic.com

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 3 living in Kunovice, Czech Republic PhD in Applied Mechanics 2006 working at Jan Papuga Czech Technical University in Prague Evektor spol. s r.o. (aircraft producer) Fatigue Analysis RI s.r.o. - executive head previous jobs Kappa 77 (producer of ultralight airplanes), SKODA VYZKUM (VZU Plzen now), ITER facility in Cadarache (France) developer of PragTic fatigue solver (www.pragtic.com) initiator and leader of FADOFF consortium (www.fadoff.cz) chairman of Workshop on Computational Fatigue Analysis & PragTic Users Meeting (3-day educative workshop, 5 volumes already) manager of Damage Tolerance Methods and Applications 2011 a 11-day course in spring 2011 Etc

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 4 Filosofie navrhování na únavu přístupy Kritické místo YES Neomezený počet cyklů? NO Trvalá pevnost (neomezený ún. život) Časovaná pevnost (omezený ún. život) Bezpečný život SAFE-LIFE NO Prohlídky, Inspekce? YES Přípustné poškození (Damage Tolerance) Pomalé šíření trhliny (Slow crack growth) NO Více nosných elementů? YES Bezpečná i při poruše (FAIL SAFE)

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 5 Safe-Life: Metody predikce životnosti Přístup pomocí nominálních napětí (NSA - Nominal Stress Approach) Poškození odpovídá finálnímu lomu součásti Přístup pomocí lokálních elastických napětí (LESA - Local Elastic Stress Approach) Přístup pomocí lokálních elasto-plastických napětí a deformací Poškození odpovídá vytvoření technické makrotrhliny (LPSA - Local Plastic Stress and Strain Approach)

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 6 Rozvoj poškození

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 7 Rozdíly v mechanismu poškozování SAE 1045 steel, tension Napěťové přístupy SOCIE, D. F.: Critical plane approaches for multiaxial fatigue damage assessment. In: Advances in Multiaxial Fatigue, ASTM STP 1191. Red. D. L. Dowell a R. Ellis, Philadelphia, American Society for Testing and Materials 1993, pp. 7-36.

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 8 Formulace S-N (Wöhlerovy) křivky August Wöhler data uváděl jen v tabulkách Teprve následníci je začali vynášet v grafech A teprve Basquin (1910) formuloval vztah a Alternativní vztah w a N Kohout-Věchet f ' C 2N b a C N N B C b

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 9 S-N křivka co vlastně hledáme? Rice, R.C.; Jackson, J. L.; Bakuckas, J.; Thompson, S.: Metallic Materials Properties Development and Standardization (MMPDS) [DOT/FAA/AR-MMPDS-01 Report]. FAA, Washington D.C. 2003.

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 10 Faktory ovlivňující únavovou pevnost Loading factor Size factor Surface quality factor Notch factor Mean stress effect Oxidation factor Hydrogen embrittlement factor Irradiation factor Load frequency factor Residual stresses Effect of thermo-mechanical treatment Temperature effect Multiaxiality factor

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 11 Mez únavy Mezné napětí, které může být v součásti opakovaně vybuzeno, aniž by došlo k její poruše během libovolného počtu cyklů Někdy pouze konvenční hodnota (hliníkové, hořčíkové slitiny) Důležité, pokud navrhuji na nekonečnou životnost (trvalou pevnost) Giga-cycle fatigue (GCF) / Very high cycle fatigue (VHCF): Log a Notch effect dominant Material structure dominant ~10 6 ~10 9 Log N

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 12 Mez únavy - odhad http://fatiguecalculator.com STEELS: C v tahu 0,35 Rm v ohybu = 0,43 Rm v krutu 0,25 Rm.

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 13 Mez únavy - odhad Skupina materiálů f W, f W,t Kalená ocel 0,4 0,577 Nerezová ocel 0,4 0,577 Ocel na výkovky 0,4 0,577 σ C = f W,σ R m τ C = f W,τ σ C Jiné oceli 0,45 0,577 Ocelolitina 0,34 0,577 Kuličková litina 0,34 0,65 Tvárná litina 0,3 0,75 Šedá litina 0,34 1,0 Tvářená hliníková slitina 0,3 0,577 Litá hliníková slitina 0,3 0,75

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 14 Trhliny můžou vznikat i uvnitř materiálu Důsledek materiálové nehomogenity Gigacyklová únava

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 15 Gigacycle Fatigue Pyttel, B.; Schwerdt, D.; Berger, C.: Very high cycle fatigue Is there a fatigue limit? Int J Fatigue 33 (2011), pp. 49-58. Ck15, R=-1 EN AW 6082, R=0 High-strength steel SUJ2, R=-1 High-strength steel 100Cr6, R=-1, cycled up to 10 10

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 16 Gigacycle Fatigue Sonsino CM. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. Int J Fatigue 2007; 29:2246 58. Material N k k* Decrease per decade in % 1/T Steel, not welded 5x105 - high-strength 2x106 - structural steels 45 5 1.20 Steel, welded 1x10 6 - thermal stress relieved 45 5 1x10 7 - high tensile residual stresses 22 10 1.50 Cast steel 5x10 5 - high-strength 2x10 6 - medium-strength 45 5 1.40 Sintered steel 5x10 5 - high-strength 2x10 6 - medium-strength 45 5 1.25 Cast nodular iron 5x10 5 - high-strength 2x10 6 - medium-strength 45 5 1.40 Wrought Al alloys, not welded 1x10 6 5x10 6 22 10 1.25 Wrought Al alloys, welded 1x10 6 - low tensile resid. stresses 1x10 7 - high tensile resid. stresses 22 10 1.45 Cast aluminium 1x10 6 5x10 6 22 10 1.40 Sintered aluminium 1x10 6 22 10 1.25 Wrought Mg alloys, not welded 5x10 4 1x10 5 45 5 1.20 Cast magnesium 1x10 5 5x10 5 45 5 1.30 Wrought Mg alloys, welded 5x10 5 - low tensile resid. stresses 1x10 7 - high tensile resid. stresses 22 10 1.50 Vysvětlivky: N k ~ bod zlomu; k* ~ sklon S-N křivky za bodem zlomu; T = a (P S =90%) / a (P S =10%)

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 17 Nominální napěťová únavová analýza Prakticky všechny části postupu už známe

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 18 Proč nominální Vycházíme z jednoduchých analytických vztahů pro výpočet nominálních napětí v průřezu součásti Vhodné pro: Jednoduché prizmatické nosníky Návrhový předběžný výpočet

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 19 Co ale vruby? Koeficient tvaru Míra lokálního zvýšení napětí v důsledku vrubu Zastupuje podrobnější MKP výpočet K t S max nom Koeficient vrubu Míra snížení meze únavy vrubovaného dílu K f C * C Součinitel únavy Vždy větší než 1 n K K t f

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 20 Součinitel tvaru Zjištění koeficientu tvaru (stress concentration factor, SCF) Příklad: D = 11.5 mm d = 10 mm r = 0.5 mm Růžička, M., Hanke, M., Rost, M.: Dynamická pevnost a životnost. ČVUT, 1987. Str. 194-195

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 21 Kde hledat na Internetu? Zjištění koeficientu tvaru (stress concentration factor, SCF) trochu více trendy řešení: www.efatigue.com Zdrojem analytické formule převzaté z: Pilkey, W. D.(2005). Formulas for Stress, Strain, and Structural Matrices.2nd Edition John Wiley & Sons

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 22 Různá vyjádření součinitele vrubu V závislosti na tvarových vlastnostech (r radius v kořeni vrubu) Thum Neuber Kt K f 1 Kt 1 q n K f 1 K t 1 1 A r Dodatečné materiálové parametry Peterson K f 1 Kt 1 a 1 r Heywood K f Kt Kt 1 1 2 K t a r

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 23 Thum součinitel vrubové citlivosti Bylo by pěkné, aby vrubová citlivost byla čistě materiálový parametr Ale není

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 24 Různá vyjádření součinitele vrubu V závislosti na relativním gradientu napětí g 1 y g ' x FKM-Richtlinie g 0,1 mm 1 0,1 mm 1 g 1mm 1 1mm 1 g 100mm x0 1 n g 1 g.10 a G R 0,5 b m G n 1 g. 10 g R a m G b G n 1 4 g. 10 g R a m G b G Oceli Litina Hliníková slitina Nerezová Litá Jiná Kuličková Tvárná Šedá Tvářená Litá a G 0,4 0,25 0,5 0,05-0,05-0,05 0,05-0,05 b G 2400 2000 2700 3200 3200 3200 850 3200

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 25 Zjednodušený výpočet FKM směrnice, vydání č. 6: FKM-Guideline: Analytical Strength Assessment of Components in Mechanical Engineering. 6th revised edition. Frankfurt/Main, Forschungskuratorium Maschinenbau (FKM) 2012. G poměrný gradient napětí

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 26 Vliv vrubovitosti Geometrie vrubu Součinitel tvaru Nomogramy, efatigue.com Součinitel vrubu Thum (vrubová citlivost), FKM (gradient napětí), jiné metody K f C * C Snížení meze únavy S-N křivky

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 27 Log a Vliv vrubovitosti K t vyjadřuje lokální změnu napjatosti ve vrubu, tj. předpoklad snížení meze pevnosti koeficientem K t je konzervativní By K t Redukce meze pevnosti ve kvazistatické oblasti: Křehké materiály snížení K t krát Houževnaté materiály žádná redukce material By K f nominal component curve Log N Fatigue limit: <

A m p l itu d a n a p ě tí k a m [M itu P a ] DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 28 Víceparametrická formulace rodiny S-N křivek 800 700 m a te riá l o c e l 3 0 0 M, R m = 2 0 0 0 M P a R = -1 a lfa = 1,0..k a ta lo g a lfa = 2,0..k a ta lo g a lfa = 3,0..k a ta lo g Heywood formula modification : Růžička K N 1 K 1. N f, N f 600 500 400 300 Materiál a lfa = 5,0..k a ta lo g a lfa = 2,0..v ý p o č e t a lfa = 3,0..v ý p o č e t Parametr K1 K2 K3 K4 a lfa = 5,0..v ý p o č e t 300M 3.686 0.1-0.98 6000 2024-T3 0.798 0.35-0.33 6000 2024-T4 0.848 0.16-0.64 6000 AISI 4130 0.131 0.15-0.8 8200 N 1 n g B log N E log N E K f 1 g 10 K t K1 200 E 4g K 2 100 0 1.0 E + 0 4 1.0 E + 0 5 1.0 E + 0 6 1.0 E + 0 7 1.0 E + 0 8 Number of cycles P o č e t k m itů N [1 ] B 1 1 g K 3 2 K4 Rm Pouze pro info!

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 29 Vliv velikosti nejzatíženější oblasti

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 30 Vliv velikosti nejzatíženější oblasti Únava koncept nejslabšího článku Poškození jediného článku řetězu vede k roztržení řetězu Čím větší oblast pod velkým napětím, tím pravděpodobnější porušení Fatigue limit: Push-pull < Rotating bending < Plane bending Size effect vs. Stress gradient effect

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 31 Koeficient typu zatížení (Loading factor, k L ) Meze únavy bývaly často definovány v módu prostého ohybu (tj. včetně vzniklého gradientu napětí) Vzorek zatížený v tahu bude mít nižší mez únavy než v ohybu A tohle má řešit koeficient typu zatížení (pamatujete odhad meze únavy?) Loading Type kl k L Axial 0.9 Bending 1.0 Torsion 0.57

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 32 Vliv velikosti (Size effect, k s ) k S d 7.62 0.1133 Stanoveno pro d = 3-50 mm A V případě prostého ohybu: d 0.95 0.3 inch 0. 077

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 33 Vliv velikosti exponovaný objem Ekvivalentní průměr Objem součásti zatížený napětím přesahujícím 95% maxima k S D C d 10 C V V D exp d exp m Koeficient m Oceli: -0,03-0,06 Konstrukční ocel: -0,034 S x y

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 34 Vliv střední hodnoty napětí (Mean stress effect MSE)

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 35 Vliv středního napětí cyklu [MPa] Goodman, 1890: ".. whether the assumptions of T h d and for all practical purposes, m čas t a the theory are justifiable or not... We adopt it simply because it is the easiest to use, m represents Wöhler s data." Haighův - Goodmanův diagram Aproximace v oblasti tahových předpětí a R e a C 1 f m m a,ekv C f f (1,5...1,7) R m m=1 Goodmanova přímka m=2 Gerberova parabola - m + m R 0 e R e R m f R m

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 36 Vytvoření Haighova diagramu (dle Fatemiho) f true fracture stress S y yield stress S f fatigue limit S y cyclic yield stress S cat critical alternating tensile stress (below this stress the cracks will not propagate) = 70 MPa (hard steel) = 30 MPa (mild steel) = 20 MPa (high-strength aluminum)

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 37 Citlivost na střední napětí M Anon.: Mittelspannungseinfluß auf das Schwingfestigkeitsverhalten geschweißter Aluminiumlegierungen. [AIF-Nr. 12676 N, DVS-Nr. 9.031]. TU Braunschweig, Braunschweig 2004. Haibach, E.: Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung. Springer 2006.

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 38 Vliv středního napětí v tlaku Bakczewitz, F.; Friedrich, P.; Naubereit, H.: Zum Einfluss der Druckmittelspannung auf die Betriebsfestigkeit. Universität Rostock 1998.

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 39 MSE dopad na S-N křivku Mimo mez únavy (Haighův diagram), může být potřeba modifikovat celou S-N křivku: Shift? Fatigue limit in fully reversed loading Fatigue limit amplitude, if m =320MPa

Stress amplitude [MPa] Stress amplitude [MPa] DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 40 Posuv životnosti na mezi únavy Fillet r=0.4 mm U-notch r=1.6 mm V-notch r=1.6 mm Hole r=2 mm Aluminium alloy 2124T851 Kt = 2.3 R=0 R=-1 150 150 FAD50 - U-notch 140 FAD51 - U-notch FAD61 - Fillet 140 FAD60 - Fillet 130 120 FAD71 - V-notch FAD81 - Hole 130 120 FAD70 - V-notch FAD80 - Hole 110 110 100 100 90 90 80 80 70 70 60 60 50 50 1e+4 1e+5 1e+6 1e+71e+4 1e+5 1e+6 1e+7 Number of cycles [-] Number of cycles [-]

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 41 Ekvivalentní napětí kmitu = převod napěťových kmitů s různou střední složkou, na smluvní symetricky střídavé nebo míjivé kmity se stejným únavovým účinkem. h, eq h, eq 2, a Oding / Walker: 2 a w w 1w w 1 h R, eq max 2 MIL HDBK: m, pro a m 0 max pro pro p=0,5 přejde v Odinga m a 0 Landgraf a Morrow: a, eq a, eq, Walker : a a a, eq a 1 f m SWT parametr: m pro E, m a 0 pro m 0 g 1 g a, eq a m a

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 42 Jiné módy zatížení Pro torzní zatěžování se lze setkat s tvrzením, že střední hodnota torzního cyklu ve vysokocyklové únavě nehraje roli to je NEPRAVDA 1.8 1.6 1.4 AMP-To, MS-Ax AMP-To, MS-To Lineární (AMP-Ax, MS-To) Lineární (AMP-To, MS-Ax) Effect of mean stresses AMP-Ax, MS-To AMP-Ax, MS-Ax Lineární (AMP-To, MS-To) Lineární (AMP-Ax, MS-Ax) a/f -1; ta/t -1 [-] 1.2 1 0.8 0.6 0.4 0.2 0-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 m / y ; t m / t y [-]

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 43 Shrnutí: vliv středního napětí cyklu tahové střední napětí snižuje únavovou pevnost či životnost vliv nutno korigovat tlakové střední napětí může únavovou pevnost či životnost zvýšit vliv možno zanedbat střední smykové napětí také snižuje únavovou pevnost či životnost vliv nutno korigovat

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 44 Mimochodem Když už tu tak pěkně odhadujeme nějaká referenční napětí: Co se stane, když u dané křivky omylem přeženu nebo nedocením napětí o 10%? Zkuste: S-N křivka se sklonem (exponentem) 10. chyba v odhadu napětí 20% 10% 5% k 10 přetíženo: násobek správné životnosti 0.162 0.386 0.614 podtíženo: násobek správné životnosti 9.313 2.868 1.670 faktor zkrácení životnosti 6.192 2.594 1.629 faktor prodloužení životnosti 9.313 2.868 1.670 chyba v odhadu napětí 20% 10% 5% k 15 přetíženo: násobek správné životnosti 0.065 0.239 0.481 podtíženo: násobek správné životnosti 28.422 4.857 2.158 faktor zkrácení životnosti 15.407 4.177 2.079 faktor prodloužení životnosti 28.422 4.857 2.158

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 45 Vlastnosti povrchové vrstvy

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 46 Vliv jakosti obrobení povrchu f Surf real c etalon c k Surf

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 47 Vliv jakosti obrobení povrchu Noll and Lipson: Allowable Working Stresses. Society for Experimental Stress Analysis, Vol. III, no. 2, 1949 f a Surf R m a Ground 1.58-0.085 Machined 4.51-0.265 Hot rolled 57.7-0.718 Forged 272-0.995 Regresní střední křivky nikoli bezpečné Vyhodnocení převzato z efatigue.com

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 48 Vliv jakosti obrobení povrchu FKM-Richtlinie f Surf 1 a log R z log 2 R R m m, N,min Připraveno pro analýzu normálových napětí, pro smyková napětí nutno přenásobit koeficient a parametrem f W,t R z Střední drsnost v mikronech R m Mez pevnosti v MPa

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 49 Vliv technologie úprav povrchu - k T f tech tech c etalon c FKM-Guideline: Analytical Strength Assessment of Components in Mechanical Engineering. 5th revised edition. Frankfurt/Main, Forschungskuratorium Maschinenbau (FKM) 2003. Levý sloupec nevrubované součásti Pravý sloupec vrubované součásti

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 50 Shrnutí: Vliv jakosti povrchu Vliv drsnosti povrchu je nejvyšší pro vysoké počty cyklů Termomechanické úpravy povrchu ovlivní povrchovou vrstvu mírné změny statických vlastností výrazné změny meze únavy tj. efekt se snižující se cílovou životností klesá R m c c,kor N

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 51 Zbytková pnutí Následek předchozích změn zahrnujících plastické přetvoření Tlakové zbytkové pnutí pozitivní (využíváno u některých technologických operací autofretáž) Tahové zbytkové pnutí snižuje životnost (pozor např. na broušení)

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 52 De Havilland Comet (1954) První dopravní letadlo schopné létat ve velkých výškách Dva letouny ztraceny během tří měsíců (1286 a 903 vzletů; žádní přeživší) Důvody: Kombinovaný ohyb způsobil, že napětí na vnitřním povrchu byly větší než na vnějším (napětí na úrovni 70% meze pevnosti) Full-scale zkouška byla realizována na draku, který prošel statickou zkouškou

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 53 Faktor bezpečnosti Vztah mezi hustotami pravděpodobností únavové křivky a četností zatížení a výsledným faktorem bezpečnosti u P log L S B 2 log N log L S 50 2 log n S log 2 log N L L B 50 S 2 log n Hustoty pravděpodobnosti S 1 log k 2 log N L S 2 log n FKM: S log n P S log N Bezpečný život L B Posun na bezpečnost k L Střední život L 50 život

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 54 Kumulace poškození Number of cycles at a given load level Fatigue damage D i ni N i D i ni N i m Number of cycles till break at a given load level a n i N i Linear damage accumulation Palmgren, Miner 1945 ap D n N 1 1 n N 2 2 n N p p p i1 n N i i ai a1 c FL n i N i N N

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 55 Poškození pod mezí únavy Co dělat v případech četných kmitů, které jsou nicméně pod mezí únavy? Log a 1/w w a N C 1 Original w 2 = Haibach w 2 =2w-1 Elementary w 2 =w ~10 6 ~10 9 Log N

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 56 Kde hledat materiálová data? http://fatiguecalculator.com Now: http://efatigue.com Other material database: http://www.pragtic.com/vmat.php Other links: http://www.pragtic.com/links.php

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 57 Data sources material data http://www.matdat.com Other material database: http://www.pragtic.com/vmat.php -> http://www.fadoff.eu http://barsteelfatigue.autosteel.org Other links: http://www.pragtic.com/links.php

DYNAMICKÁ ÚNOSNOST A ŽIVOTNOST 58 Information sources - www.pragtic.com www.fadoff.eu Login to the system Last changes Change of language 1. PragTic Freeware 3. Fatigue Lounge 2. Database of experiments 4. FADOFF 5. Meeting