Jednoosá tahová zkouška betonářské oceli
|
|
- Jakub Němeček
- před 8 lety
- Počet zobrazení:
Transkript
1 Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c) 011 Vít Šmilauer Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Czech Republic Permission is granted to copy, distribute and/or modify this document under the terms of the GU Free Documentation License, Version 1. or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GU Free Documentation License" found at 1
2 Jednoosá tahová zkouška betonářské oceli Měkká betonářská ocel R10 505, 1 mm U... mez úměrnosti =E Konvenční napětí (konstantní průřezová plocha) E Youngův modul pružnosti 1 Pružnoplastické chování se zpevněním E... mez pružnosti fy mez kluzu Ocel se stává plastickou. fu mez pevnosti Maximální přenos napětí. Dle klasifikace oceli R jsou požadavky fyk=90 MPa a fuk=550 MPa. Foto a data: A. Kotlánová, TÜV ORD Czech, s. r. o
3 Jednoosé tahové zkoušky konstrukčních ocelí Data převzaty od V. Rödera, VUT v Brně 3
4 Jednoosá tahová zkouška hliníku U materiálů s nevýraznou mezí kluzu se určí smluvní mez kluzu pro vysokopevnostní oceli odpovídá deformaci 10 3 Konvenční napětí (konstantní průřezová plocha)
5 Trojbodový ohyb cementová pasta Těleso 1x1x80 mm, zářez 0% výšky Zatížení řízeno posunem, pevnost v tlaku 10 15x vyšší než pevnost v tahu Data od autora, P. Hlaváčka a P. Padevěta, ČVUT v Praze, Fakulta stavební 5
6 Modely nepružného chování materiálu Ideálně tuhoplastický model Ideálně pružnoplastický model Tuhoplastický model s lineárním zpevněním Pružnoplastický model s lineárním zpevněním 6
7 Modely nepružného chování materiálu Model poškození s lineárním změkčením Pružnoplastický model se změkčením Model poškození s exponenciálním změkčením 7
8 Ideálně pružnoplastický model Prandtlův diagram e Rozklad deformace ε=ε e ε p p Upravený Hookeův zákon σ= E εe =E (ε ε p ) 0=fy 0=fy p e Vývoj plastické deformace σ0 < σ< σ 0 ε p se nemění σ=σ 0 ε p roste σ= σ 0 ε p klesá σ <σ 0 σ >σ 0 nelze 0=fy 8
9 Pružnoplastický materiál ve výpočtu Deformace styčníku Mez kluzu 0 MPa 9
10 Simulace ohybu s pružnoplastickým materiálem Konzola délky 3 m, řez 0.13 m od vetknutí. Dochází k posunu neutrální osy. Bernoulli avierova hypotéza je stále dobrou aproximací pro posuny u. Elastický stav Elastoplastické stavy Průřez je blízký meznímu plastickému stavu 10
11 Pružnoplastický ohyb analýza průřezu Mezní elastický stav obdélníkového průřezu h=hel eutrální osa T Mel mezní elastický moment 0= 0 / E b d = 0 0 bh M el= 0 W = 0, = 6 h d el Pro mezní elastický moment rozhoduje menší z Weld či Welh, tzn. průřezový modul ke vzdálenějším vláknům. 11
12 Pružnoplastický ohyb analýza průřezu Elastoplastický stav část průřezu plastizuje Obvykle dvě neznámé poloha.o. a Melpl - 1-0= 0 / E 1 h hel eutrální osa, obecně dojde k jejímu posunu 0 b Melpl elastoplastický moment d = 0 0 bh bhel M elpl =W elpl 0= 0, = 1 h el ejvětší deformace x =0 x da=0 A = - M elpl = x z da A 1
13 Pružnoplastický ohyb analýza průřezu Mezní plastický stav celý průřez plastizuje Obvykle dvě neznámé poloha.o. a Mpl Mpl plastický moment h A- A eutrální osa, obecně dojde k jejímu posunu b d = 0 ejvětší deformace bh M pl =W pl 0 = 0, x =0 x da=0, 0 = 0 A = A A M pl = x z da A M el M elpl M pl 13
14 Příklad určete Mel a Mpl pro 0=±50 MPa Těžiště 00 mm 50 y 50 MPa - Mel A A -3.O. Mpl A z 350 mm A=0,0375 m Iy=,5315e m Iy M el= 0 zh M el=636,1 km MPa - = -0 A- -3= -0 A -3.O mm 175 mm MPa x= mm = 0 A A1 50 MPa 1 = 0 A 1 Výpočet momentu k hornímu líci: - 0 = 0 A = A- =0,01875 m x =0,175 m - =,5 M -3=,1875 M =0,315 M 1 =,375 M M pl =,5 0,05,1875 0,1375 0,315 0,375,375 0,75 =91,1 km 1
15 Plastická rezerva průřezu M pl 0 W pl W pl = = M el 0 W el W el Válcované profily IP, IPE tf d h d b W min el bh = bh W pl = 6 W pl =,33 W el h tw b b bh 6 b d 3 b t w h 3 6d d 6 bh twh b t f d t f 1,698 1,5 1,15 d
16 Pružnoplastický ohyb analýza nosníku h= 0 bh M el= 0 6 M el L bh F el = M el = 0 L L 6 x F el Mezní elastický stav h=hel Mel Mpl b d = 0 Mez kluzu dosažena na nosníku 16
17 Pružnoplastický ohyb analýza nosníku Elastoplastický stav bh bh M elpl = 0 L L 1 L Mel Mpl Mez kluzu dosažena na nosníku x0 M elpl bh M el= 0 6 F elpl h= 0 F elpl = x el h hel d = 0 bh bhel M elpl = 0 1 F elpl M el M el= x 0, x 0= F elpl 17
18 Pružnoplastický ohyb analýza nosníku Mezní plastický stav bh M pl = 0 L L Ah L F pl bh 6 bh M pl = 0 M el= 0 Mel Mpl Mez kluzu dosažena na nosníku Tvar plastického kloubu x0 M pl A F pl = x h= 0 d = 0 b bh 0 6 F pl M el L M el= x 0, x 0= = = F pl 3 bh L 0 Plastický kloub funguje podobně jako vložený kloub. Výsledkem je staticky přeurčitá konstrukce (kinematický mechanismus). 18
19 Výpočet mezního zatížení na konstrukci Při daném (známém) kinematickému mechanismu kolapsu umíme určit maximální zatížení. Použijeme momentové podmínky rovnováhy. F pl L F pl F pl L =M pl M pl F pl = L F pl Mpl Mpl 19
20 Mezní plastický stav při kombinaci ohybu s tahem h= 0 A- - = 0 b h h h h h h r= = M - h Těžišťová osa h h r = h = 0 b h A d = 0 b - = = 0 b h h h h= 0 b h h h = 0 b h h h h h M = r r = 0 b h h - - M = 0 b h h h h h M = 0 b 0 b 0 b [ ][ [ ] h M = 0 b 0 b M =1, M pl 0 b M pl ] =M pl 0b M =1 M pl pl 0
21 Mezní plastické stavy při ohybu s tahem/tlakem Mpl Tah a kladný ohyb Tlak a kladný ohyb Tlak a záporný ohyb pl Tah a záporný ohyb M =1 M pl pl M =1 M pl pl Mpl pl M M =1 M pl pl Zde uvedené plastické stavy platí pro obdélníkový průřez 1
22 Interakční diagram pro obdélníkový průřez Mezní elastický stav M Mezní plastický stav Mpl Mel M =1 M el pl pl Tlak a kladný ohyb Tah a kladný ohyb Tlak a záporný ohyb Tah a záporný ohyb M =1 M pl pl pl Mel Mpl
23 1 Pa.O. 0,165.O. 0,035 1 Pa 0,15 0,0.O. 0,065 T 0,81 Pa 0,015 0,15 m 0,135 0,18 m 0,0 Příklad určete Wel, Welpl se zplastizovanou pásnicí, Wpl 1 Pa 1 Pa 1 Pa 1 ( 0,0 0,18 3 0,15 0,03 )0,0 0,18 0,05 0,15 0,0 0,055=,6185e-5 m 1 W del =I y / z d =1,9396 e- m 3 I y= 0,015 1 W elpl =0,0 0,15 0,09 0,015 0,0 0,15 0,0 0,05=3,8 e- m 3 3 0,165 0,015 W pl =0,0 0,00 0,15 0,0 0,05=3,95 e- m 3 W pl =1,80 W el 3
24 Otázky 1. akreslete pracovní diagramy materiálu se zpevněním a se změkčením.. Vyjádřete křivost prutu při elastoplastickém stavu. Jaká je křivost prutu při mezním plastickém stavu? 3. Jak lze snadno nalézt polohu neutrální osy při mezním plastickém momentu, pokud jsou meze kluzu v tahu i tlaku stejné?. ačrtněte tvar plastického kloubu pro I profil při tříbodovém a čtyřbodovém ohybu. 5. Jak zjistit mezní zatížení u konstrukce, kde neznáme počet a polohu plastických kloubů? 6. Může libovolná normálová síla přispívat ke zvětšení Mpl? 7. Jaký je rozdíl v mezní únosnosti čistě taženého prutu, pokud použijete teorii pevnosti a pružnoplastický materiál? Vytvořeno 03/011 v OpenOffice 3., Ubuntu 10.0, Vít Šmilauer, ČVUT. Poděkování patří zejména M. Jiráskovi za inspiraci jeho přednáškami.
Jednoosá tahová zkouška betonářské oceli
Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright
Platnost Bernoulli Navierovy hypotézy
Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer
Kinematická metoda výpočtu reakcí staticky určitých soustav
Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení
Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu
Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in
Platnost Bernoulli Navierovy hypotézy
Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady
Princip virtuálních prací (PVP)
Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu
Integrální definice vnitřních sil na prutu
Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical
Přednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
Princip virtuálních posunutí (obecný princip rovnováhy)
SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical
Princip virtuálních posunutí (obecný princip rovnováhy)
SMA Přednáška 5 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tahtlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) Vít Šmilauer Czech Technical University
Přednáška 09. Smyk za ohybu
Přednáška 09 Smk a ohbu Vnitřní síl na nosníku ve vtahu k napětí Smkové napětí pro obdélníkový průře Smkové napětí pro obecný průře Smkové ochabnutí Svar, šroub, spřahovací trn Příklad Copright (c) 2011
Redukční věta princip
SA Přednáška 4 Redukční věta Staticky neurčité příhradové konstrukce Spojité nosníky Uzavřené rámy Oecné vlastnosti staticky neurčitých konstrukcí Copyright (c) Vít Šmilauer Czech Technical University
Přednáška 10. Kroucení prutů
Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení
Rovnoměrně ohýbaný prut
Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer
Pružnost a pevnost. 6. přednáška 7. a 14. listopadu 2017
Pružnost a pevnost 6. přednáška 7. a 14. listopadu 17 Popis nepružnéo cování materiálu 1) epružné cování experimentální výsledky ) epružné cování jednoducé modely 3) Pružnoplastický oyb analýza průřezu
Přednáška 01 PRPE + PPA Organizace výuky
Přednáška 01 PRPE + PPA Organizace výuky Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny Út 8.30 9.45 St 14.00 15.45, B286, PRPE (Stav. Inženýrství) + PPA (Arch. a stavitelství) přednáška
Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)
SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University
Vícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
Složené soustavy v rovině, stupně volnosti
Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové
SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
Stupně volnosti a vazby hmotných objektů
Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často
Přednáška 10. Kroucení prutů
Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení Příklady Copyright
Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.
ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ
SMA2 Přednáška 09 Desky
SMA Přednáška 09 Desk Měrné moment na deskách Diferenciální rovnice tenké izotropní desk Metod řešení diferenciální rovnice desk Přibližné řešení obdélníkových desek Příklad Copright (c) 01 Vít Šmilauer
Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)
SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University
Přednáška 10. Kroucení prutů
Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení
Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady
Přednáška 05 Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Copyright (c) 011 Vít Šmilauer Czech Technical University in Prague,
Přetváření a porušování materiálů
Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní
SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
Přednáška 01 Úvod + Jednoosá napjatost
Přednáška 01 Úvod + Jednoosá napjatost Pružnost a pevnost A (PRA) Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St 9.15-11.30 Webové stránky předmětu https://mech.fsv.cvut.cz/student/
ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
Rekapitulace princip virtuálních sil pro tah/tlak
SMA Přednáška Doplňková virtuální práce momentů Metody integrace dvou spojitých funkcí Doplňková virtuální práce posouvajících sil Vliv rovnoměrné a nerovnoměrné teploty Formulace principu virtuálních
Název materiálu: Hydrostatická tlaková síla a hydrostatický tlak
Reg.č. CZ.1.07/1.4.00/21.1720 Příjemce: Základní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspěvková organizace Název projektu: Kvalitní podmínky- kvalitní výuka Název materiálu:
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Vícerozměrné úlohy pružnosti
Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např.
: 4 2 R 1 1 R 2 0,8 R 3 : 8 0 R 1 1 R 2 0,8 R 3 : 2 1 R 1 2 R 2 0 R 3 [2 1 0,8 ] 0 1 0,8 1 2 0 A Vbrané metod řešení soustav rovnic Podmínk rovnováh či ekvivalence vedou často na soustavu rovnic, např.
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Pružnost, pevnost, plasticita
Pružnost, pevnost, plasticita Pracovní verze výukového skripta. února 018 c Milan Jirásek, Vít Šmilauer, Jan Zeman České vysoké učení technické v Praze Fakulta stavební Katedra mechaniky Thákurova 7 166
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
Navrhování konstrukcí z korozivzdorných ocelí
Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí
Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.
. cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Předpjatý beton 1. část - úvod Obsah: Podstata předpjatého
Ocelobetonové konstrukce
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován
Přibližné řešení úloh mechaniky
SMA Přednáška 1 Přibližné metody řešení úloh mechaniky Funkcionál energie Metoda konečných prvků Konečněprvkové programy EduBeam Časté problémy při řešení pomocí MKP Příklady Copyright (c) 1 Vít Šmilauer
Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů
Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Pro. Ing. František ald, CSc., místnost B 632
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady
Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ
A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku
1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:
Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul
Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
Reologické modely technických materiálů při prostém tahu a tlaku
. lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu
Statika 2. Excentrický tlak za. Miroslav Vokáč 6. prosince ČVUT v Praze, Fakulta architektury. Statika 2. M.
6. přednáška Miroslav Vokáč miroslav.vokac@cvut.c ČVUT v Prae, akulta architektury 6. prosince 2018 Průběh σ x od tlakové síly v průřeu ávisí na její excentricitě k těžišti: e = 0 e < j e = j e > j x x
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
Stavební mechanika 1 - K132SM1 Structural mechanics
Stavební mechanika 1 - K132SM1 Structural mechanics Přednášející Vít Šmilauer, Ing., Ph.D. katedra Mechaniky vit.smilauer@fsv.cvut.cz místnost D2034, konzultační hodiny Út 10:00 11:30 Literatura Kufner,
Ztráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013
PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).
Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.
Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením
Téma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
133YPNB Požární návrh betonových a zděných konstrukcí. 4. přednáška. prof. Ing. Jaroslav Procházka, CSc.
133YPNB Požární návrh betonových a zděných konstrukcí 4. přednáška prof. Ing. Jaroslav Procházka, CSc. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Zjednodušené
OVLÁDÁNÍ A FUNKCE PROGRAMU...
Obsah 1. OVLÁDÁNÍ A FUNKCE PROGRAMU... 2 1.1. OBECNÉ... 2 1.2. OVLÁDÁNÍ... 2 1.3. PRŮŘEZ A VYZTUŽENÍ... 3 1.4. MATERIÁLY... 7 1.4.1. Beton... 7 1.4.2. Výztuž... 11 1.5. POSOUZENÍ A VÝSTUP... 13 2. ZPŮSOB
Pružnoplastická analýza
Pružnost a pevnost 132PRPE Přednášk Pružnoplastická analýa Nepružné cování materiálů. Pružnoplastický a plastický stav průřeu oýbanýc prutů. Mení plastická analýa nosníku. Petr Kabele České vsoké učení
PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY PŘEDMĚT BL001 rok 2017/2018
PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY PŘEDMĚT BL001 rok 2017/2018 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).
15. ŽB TRÁMOVÉ STROPY
15. ŽB TRÁMOVÉ STROPY Samostatné Společně s deskou trámového stropu Zásady vyztužování h = l/10 až l/20 b = h/2 až h/3 V každém rohu průřezu musí být jedna vyztužená ploška Nosnou výztuž tvoří 3-5 vložek
STAVEBNÍ KONSTRUKCE. Témata k profilové ústní maturitní zkoušce. Školní rok 2014 2015. Třída 4SVA, 4SVB. obor 36-47-M/01 Stavebnictví
Střední průmyslová škola stavební Střední odborná škola stavební a technická Ústí nad Labem, příspěvková organizace tel.: 477 753 822 e-mail: sts@stsul.cz www.stsul.cz STAVEBNÍ KONSTRUKCE Témata k profilové
Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,
Část 3: Analýza konstrukce. DIF SEK Část 3: Analýza konstrukce 0/ 43
DIF SEK Část 3: Analýza konstrukce DIF SEK Část 3: Analýza konstrukce 0/ 43 Požární odolnost řetěz událostí Θ zatížení 1: Vznik požáru ocelové čas sloupy 2: Tepelné zatížení 3: Mechanické zatížení R 4:
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
Prvky betonových konstrukcí BL01 11 přednáška
Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav
Výstavba nového objektu ZPS na LKKV. Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS)
Výstavba nového objektu ZPS na LKKV Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS) D.1.2 - STAVEBNĚ KONSTRUČKNÍ ŘEŠENÍ Statický posudek a technická zpráva
Telefon: Zakázka: Kindmann/Krüger Položka: Pos.2 Dílec: Stropní nosník
RIB Software SE BALKEN V18.0 Build-Nr. 31072018 Typ: Ocel Soubor: Plastická únosnost.balx Informace o projektu Zakázka Popis Položka Prvek Kindmann/Krüger Plastická únosnost Pos.2 Stropní nosník Systémové
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura
písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)
Jednotný programový dokument pro cíl regionu (NUTS2) hl. m. Praha (JPD) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován Evropským
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B2 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Tahové zpevnění spolupůsobení taženého betonu mezi trhlinami
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)
Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Obsah: 1. Úvod 4 2. Statické tabulky 6 2.1. Vlnitý profil 6 2.1.1. Frequence 18/76 6 2.2. Trapézové profily 8 2.2.1. Hacierba 20/137,5
9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti.
9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti. Spřažené ocelobetonové konstrukce (ČSN EN 994-) Spřažené nosníky beton (zejména lehký)
BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska
BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
Přijímací zkoušky na magisterské studium, obor M
Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní
POŽADAVKY KE ZKOUŠCE Z PP I
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
Statika 1. Prostý tah & tlak. Prostý smyk. ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Metody posuzování spolehlivosti
6. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 19. května 2014 stavebních konstrukcí Vývoj metod pro posuzování stavebních konstrukcí: 1. Historické a empirické
1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012
Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní
Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN
Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN
Namáhání na tah, tlak
Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále
14/03/2016. Obsah přednášek a cvičení: 2+1 Podmínky získání zápočtu vypracovaná včas odevzdaná úloha Návrh dodatečně předpjatého konstrukčního prvku
133 BK5C BETONOVÉ KONSTRUKCE 5C 133 BK5C BETONOVÉ KONSTRUKCE 5C Lukáš VRÁBLÍK B 725 konzultace: úterý 8 15 10 email: web: 10 00 lukas.vrablik@fsv.cvut.cz http://concrete.fsv.cvut.cz/~vrablik/ publikace:
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
ČVUT UPM 6/2013. Eliška Bartůňková
ČUT UPM 6/2013 Eliška Bartůňková Úvod 1. Motivace PMPD 1.1 Jednoosá napjatost Obsah 1.2 Zobecnění jednoosé napjatosti pro ohýbaný prut 2. Důkaz základní věty mezní analýzy pro diskrétní modely 3. Formulace
Řešený příklad: Nosník s kopením namáhaný koncovými momenty
Dokument: SX011a-CZ-EU Strana 1 z 7 Eurokód Vypracoval rnaud Lemaire Datum březen 005 Kontroloval lain Bureau Datum březen 005 Řešený příklad: Nosník s kopením namáhaný koncovými Tento příklad seznamuje
Lokalizace QGIS, GRASS
13. ledna 2009 Copyright 2008 (c) Hořejší, Havĺıčková, Valenta Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation Licence, Version 1.2 or
Zpráva pevnostní analýzy
1 z 26 18.6.2015 10:01 Analyzovaný soubor: MKP_vidlička3.iam Verze aplikace Autodesk Inventor: 2015 SP1 (Build 190203100, 203) Datum vyhotovení: 18.6.2015, 10:01 Autor simulace: Souhrn: Václav Široký MKP