POKUSY S OPERAČNÍMI ZESILOVAČI Studijní text pro řešitele FO Přemysl Šedivý, gymnázium J. K. Tyla, Hradec Králové. Úvod



Podobné dokumenty
Pasivní tvarovací obvody RC

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

ZÁKLADY POLOVODIČOVÉ TECHNIKY

Analogový komparátor

zdroji 10 V. Simulací zjistěte napětí na jednotlivých rezistorech. Porovnejte s výpočtem.

Výkonová nabíječka olověných akumulátorů

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

Úloha V.E... Vypař se!

Fyzikální korespondenční seminář MFF UK

5. MĚŘENÍ FÁZOVÉHO ROZDÍLU, MĚŘENÍ PROUDU A NAPĚTÍ

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

Univerzita Tomáše Bati ve Zlíně

ZÁKLADY POLOVODIČOVÉ TECHNIKY

Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem.

IMPULSNÍ TECHNIKA II.

KINEMATIKA. 1. Základní kinematické veličiny

7. GENERÁTORY PRAVOÚHLÝCH KMITŮ A PULSŮ

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

7. CVIČENÍ Témata:

Teorie obnovy. Obnova

Práce a výkon při rekuperaci

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, Mělník Ing.František Moravec

ednáška Fakulta informačních technologií

Univerzita Tomáše Bati ve Zlíně

13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY

Měření základních vlastností OZ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

[ db ; - ] Obrázek č. 1: FPCH obecného zesilovače

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

Signálky V. Signálky V umožňují světelnou signalizaci jevu.

Seznámení s přístroji, používanými při měření. Nezatížený a zatížený odporový dělič napětí, měření a simulace PSpice

GENERÁTOR NEHARMONICKÝCH PRŮBĚHU 303-4R

STEJNOSMĚRNÝ PROUD Práce a výkon TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

Operační zesilovače. a) Monolitický Hybridní Diskrétní. b) Přímo vázaný: Bipolární Modulační: Spínačový

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

Výroba a užití elektrické energie

Pracovní třídy zesilovačů

Popis obvodu U2407B. Funkce integrovaného obvodu U2407B

5 GRAFIKON VLAKOVÉ DOPRAVY

POPIS OBVODŮ U2402B, U2405B

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

MATEMATIKA II V PŘÍKLADECH

4. MĚŘICÍ PŘEVODNÍKY ELEKTRICKÝCH VELIČIN 1, MĚŘENÍ KMITOČTU A FÁZOVÉHO ROZDÍLU

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

ZADÁNÍ: ÚVOD: Měření proveďte na osciloskopu Goldstar OS-9020P.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Zrnitost. Zrnitost. MTF, rozlišovací schopnost. Zrnitost. Kinetika vyvolávání. Kinetika vyvolávání ( D) dd dt. Graininess vs.

! " # $ % # & ' ( ) * + ), -

REV23.03RF REV-R.03/1

Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól

Derivace funkce více proměnných

Bipolární tranzistor jako

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí

NÍZKOFREKVENČNÍ ZESILOVAČ S OZ

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory

Zesilovač s tranzistorem MOSFET

I. STEJNOSMĚ RNÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

5. MĚŘENÍ KMITOČTU a FÁZOVÉHO ROZDÍLU

15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH

7.4.1 Parametrické vyjádření přímky I

Jsme rádi, že jste si vybrali prístroj INDUSTRIAL SCIENTIFIC a vrele Vám dekujeme.

Parciální funkce a parciální derivace

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/

Tlumené kmity. Obr

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek

Zesilovač. Elektronický obvod zvyšující hodnotu napětí nebo proudu při zachování tvaru jeho průběhu. Princip zesilovače. Realizace zesilovačů

Informace pro objednání

3B Přechodné děje v obvodech RC a RLC

REGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13.

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny

Matematika v automatizaci - pro řešení regulačních obvodů:

LOGIC. Stavebnice PROMOS Line 2. Technický manuál

FINANČNÍ MATEMATIKA- ÚVĚRY

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

Hlídač plamene SP 1.4 S

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí

Podívejte se na časový průběh harmonického napětí

8. Operaèní zesilovaèe

Časová analýza (Transient Analysis) = analýza časových průběhů obvodových veličin

Kroužek elektroniky

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

4. Přechodné děje. 4.1 Zapínání střídavého obvodu

Datum tvorby

2. Změřte a nakreslete časové průběhy napětí u 1 (t) a u 2 (t). 3. Nakreslete převodní charakteristiku komparátoru

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

MĚŘENÍ INDUKČNOSTI A KAPACITY

Základní škola Ústí nad Labem, Rabasova 3282/3, příspěvková organizace, Ústí nad Labem. Příloha č.1. K SMĚRNICI č. 1/ ŠKOLNÍ ŘÁD

Popis obvodů U2402B, U2405B

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ

Jakost, spolehlivost a teorie obnovy

SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů

MĚŘENÍ TRANZISTOROVÉHO ZESILOVAČE

Transkript:

POKUSY S OPEAČNÍMI ZESILOVAČI Sdijní ex pro řešiele FO Přemysl Šedivý, gymnázim J K Tyla, Hradec Králové Úvod Operační zesilovače (OZ) původně vznikly jako složié elekronické obvody pro náročné požií při zpracování analogových (spojiě se měnících) sejnosměrných a nízkofrekvenčních sřídavých signálů v analogových počíačích Moderní polovodičová echnologie možnila vyvoření OZ v podobě levných inegrovaných obvodů s malým počem vývodů, keré mají neparno spořeb, jso odolné proi přeížení a možňjí jednodše realizova nejrůznější elekronická zařízení To vedlo k jejich masovém rozšíření v průmyslové i spořební elekronice Obvody s OZ obsahjí méně sočásek než rovnocenné obvody s ranzisory a maemaický popis jejich vlasnosí je věšino mnohem jednodšší Časo vysačíme se znalosmi maemaiky a fyziky v rozsah čiva sřední školy Principy činnosi různých elekronických zařízení se ak saly srozmielnějšími pro široký okrh zájemců Trvalé znalosi o požií OZ nemůžee získa bez prakického experimenování se všemi obížemi, keré ao činnos přináší Následjící ex je proo koncipován jako série náměů prakických cvičení, kerá můžee provádě v rámci nepovinného předmě cvičení z fyziky nebo jako samosano zájmovo činnos Vaším úkolem bde sesavi jednolivé obvody a ověři, že se chovají popsaným způsobem Doplňjící oázky, na keré občas narazíe, mají prověři, do jaké míry jse si nové poznaky osvojili Tex brožry můžeme co do obížnosi rozděli do dvo čásí V prvních pěi kapiolách vysačíe se znalosí Ohmova zákona a vlasnosí jednodchého obvod s kondenzáorem Než začnee sdova náročnější 6 a 7 kapiol, měli byse se seznámi se symbolicko meodo řešení obvodů sřídavého prod za požií komplexních veličin Too éma je podrobně zpracováno např v 5 svazk Knihovničky fyzikální olympiády Obvody sřídavého prod s lineárními jednobrany a dvojbrany, MAFY Hradec Králové 995 Milí mladí přáelé fyziky! Dofám, že vás prakické seznámení s problemaiko operačních zesilovačů zajme, přinese vám spokojení a mnohé i získá pro další sdim elekroniky Přeji vám úspěšné zvládní všech úloh Aor

Porovnání nejdůležiějších kaalogových údajů operačních zesilovačů 74 a 08 Veličina Jednoka 74 08 Napájecí napěí U V ±3 až± ±3 až±8 Napěťové zesílení A 0 V/mV 50 00 Vspní odpor I Ω 0 6 0 Výspní odpor O Ω 60 Vspní napěťová nesymerie U IO mv 0 Polačení sohlasního signál M db 90 00 ychlos přeběh S V/μs 0,5 3 Mezní průchozí frekvence f τ MHz 0,7 3 málo závislé na připojené záěži výspní odpor je 0 Ω až 00 Ω Výspní prod však nemůže překroči mezní hodno 5 ma Ideální operační zesilovač by měl nekonečné zesílení, nekonečně velký vspní odpor a nlový výspní odpor Už při neparném kladném vspním napěí (několik desein mv) přechází OZ do kladné sarace (nasycení), kdy napěí na výsp dosáhne maximální hodnoy U H a dále se nemění Podobně při neparném záporném vspním napěí přejde OZ do záporné sarace s konsanním minimálním výspním napěím U L Obě sarační napěí mají prakicky sejno absolní hodno U sa = U H = UL, kerá je přibližně o V menší než napájecí napěí (U ) Saická přenosová charakerisika vysihje vlasnosi OZ dosaečně přesně jen pro sejnosměrná vspní a výspní napěí a pro sřídavé napěí velmi nízké frekvence hováním při vyšších frekvencích se bdeme zabýva v kap 7 Napájecí obvody ve schémaech obvykle nezakresljeme, vyznačjeme jen míso nlového poenciál Pomůcky pro poksy s operačními zesilovači Lierara [] Brnnhofer, V Kryška, L Teska, V: Operační zesilovače v eorii a praxi Amaérské radio řada B, č 3, ročník XXXI, 98 [] Sříž, V: Moderní operační zesilovače Amaérské radio řada B, č 3, ročník XXXIX, 990 [3] Müller H: Elekronik im Experimen Praxis der Narwissenschafen, č 3, ročník XXXV, 986, AULIS VELAG DEUBNE & O, Köln [4] Südbeck, V a kol: Elekronik im Selbsba Praxis der Narwissenschafen, č, ročník XXXVI, 987, AULIS VELAG DEUBNE & O, Köln Nejlevnější sočáska, kerá možňje provádě poksy s OZ, je analogový inegrovaný obvod yp 458 (např MA458) dvojiý bipolární OZ Pozdro sočásky je z plasické hmoy v provedení DIL s osmi vývody spořádanými podle obr - Teno inegrovaný obvod zasneme do objímky DIL opařené zdvojenými zdířkami a jednodchá pomůcka pro poksy je hoová O A I A +I A U 3 4 8 7 6 5 +U O B I B +I B NUL I +I U 3 4 8 7 6 5 +U O NUL 3 4 5 8 7 6 - Zapojení vývodů dvojiých operačních zesilovačů 458 a 08 - Zapojení vývodů operačních zesilovačů 74, 08 a 74 Dokonalejší pomůck získáme požiím jednoho z nejrozšířenějších ypů bipolárních operačních zesilovačů s označením 74 (např MAA74, MAA74, μa74, μa74) Jeho pozdro má osm vývodů očíslovaných podle obr -, ale při našich poksech požijeme jen někeré Jso o: 4 3

napěťové nesymerie vspů v omo rozsah ΔU OI Měřímejevzapojenípodle obr 8- a vyjadřjeme v decibelech: M =0log 00ΔU I ΔU O, (4) kde ΔU O je změna výspního napěí při přepní přepínače Odpovědi na oázky 3: 3: U = U H, U + = U L 33: Obvod se rozkmiá + 34: Obr O- Plaí U = U L, U = U H ; přiom předpokládáme U L <+ <U H U H U U U L 5 V, keré sériově spojíme Spojené svorky volíme za míso nlového poenciál, zbývající svorky mají poenciály +5 V a 5 V Dobře posloží i zdroj sesavený z plochých baerií Kromě oho pořebjeme samosaný sejnosměrný zdroj o napěí 5 V (v přísroji BK 5 je vesavěn) V následjících úlohách jso dále požiy yo pomůcky: poenciomery o odporech kω a 0 kω dvě sejné sady rezisorů o odporech kω, 3,3 kω, 0 kω, 33 kω, 00 kω, 330 kω, MΩ, a 3,3MΩ dvě sejné sady kondenzáorů o kapaciách 0 nf, 33 nf, 00 nf, 330 nf a μf kondenzáory o kapaciě 8 μf a 00 μf elefonní žárovka4v, 50mA ranzisor, např KF507 dvě diody, např KY30/80 foorezisor, např WK 650 37 dva laboraorní měřicí přísroje (např PU 50, PU 50) nebo dva demonsrační měřicí přisroje ónový generáor nízkofrekvenční milivolmer (při frekvencích od 30 Hz do khz posačí digiální mlimer např PU 50) osciloskop elekromagneické slcháko 4: π 4: 50 kω, 5 kω,,5kω 43: Zařazením napěťového sledovače před vsp nějakého zařízení můžeme zvěši jeho vspní odpor; zařazením napěťového sledovače za výsp nějakého zařízení můžeme zmenši jeho výspní odpor 44:,7V45: Jedná se o parabolické obloky 46: 0 nf 5:,06 μf;,06 nf 5: T = ( + ), soče + je konsanní 53: 480 Hz 40 5

Úkol V zapojení podle obr 7-3 rčee při různých frekvencích absolní hodno napěťového zesílení a fázové posní neinverjícího zesilovače Sesroje jeho frekvenční charakerisiky Prakické provedení úkol: Pospje podobně jako při rčování frekvenčních charakerisik akivních filrů v předcházející kapiole Napěí je nno měři nízkofrekvenčním milivolmerem Měření proveďe při ěcho hodnoách sočásek: a) =0kΩ, = 00 kω, z =3,3kΩ, b) =0kΩ, =MΩ, z =3,3kΩ V obo případech vole efekivní hodno vspního napěí U =50mVNaměřené a vypočené hodnoy zapiše do ablky: f/khz 0, 0, 0,5,0,0 5,0 0 U i /V U o /V a/mm b/mm A a/db B Předcházející zapojení prave ak, že na inverjící vsp přivedee nenlové referenční napěí r (obr 3-b) Je-li jeho absolní hodnoa menší než amplida harmonického napěí, dosaneme na výsppě napěí obdélníkového průběh, ale časové inervaly s kladno a záporno sarací jso různé Oázka 3 Jaký je poměr referenčního napěí a amplidy harmonického napěí, jesliže obdélníkové kmiy na výsp OZ mají sříd T : T =:3? Poks 33 Určení rychlosi přeběh Bdee-li v zapojení podle obr 3-a zvěšova frekvenci vspního napěí bipolárního OZ na několik khz nebo bifeového OZ na několik desíek khz, nemůžee ž zanedba dob pořebno k přechod z jedné sarace do drhé Na výsp dosanee lichoběžníkové kmiy (obr 3-3) Ze sklon vzespné nebo sespné čási oscilogram rčee maximální rychlos změny výspního napěí, kero nazýváme rychlos přeběh (slew rae) S = ΔU Δ () Získaný výsledek porovneje s kaalogovými hodnoami v příloze U H 0 V XY a b 45 ΔU 7-3 Měření frekvenčních charakerisik neinverjícího zesilovače U L Δ T 3-3 Určení rychlosi přeběh Oázka 7 Jaký vzah bde vyjadřova napěťový přenos inverjícího zesilovače při vyšších frekvencích? Vyjděe z obr 4- a pospje podobně jako neinverjícího zesilovače Ukaže, že při nízkých frekvencích plaí s dosaečno přesnosí vzah (4) Poks 34 Schmiův klopný obvod Ve Schmiově klopném obvod zapojeném podle obr 3-4 se vyžívá kladné zpěné vazby z výsp OZ na neinverjící vsp, kerá je realizována pomocí dvo rezisorů, vořících éměř nezaížený dělič napěí (Prod neinverjícího vsp můžeme zanedba) hování obvod vysihje přenosová charakerisika na obr 3-5 Když se vspní napěí zvěšje, přechází obvod do záporné sarace při vyšším vspním napěí U > 0 a při pokles vspního napěí přechází do kladné sarace při nižším vspním napěí U < 0 ozdíl obo napěí U U se nazývá hysereze 38 7

7 Operační zesilovač při vyšších frekvencích V předcházejících kapiolách jsme při popis různých obvodů s operačním zesilovačem pracjícím v lineárním režim vycházeli ze zjednodšjícího předpoklad, že napěťové zesílení A 0 samoného OZ je velmi velké a vspní diferenciální napěí d je proo zanedbaelné v porovnání se vspním napěím celého zařízení a s výspním napěím Teno předpoklad je však zcela oprávněný jen sejnosměrných obvodů a sřídavých obvodů o frekvencích do khz Na obr 7- jso frekvenční charakerisiky napěťového zesílení běžného bifeového OZ (např 08) Absolní hodnoa napěťového zesílení se ž od 0 Hz rychle zmenšje je přibližně nepřímo úměrná frekvenci Při mezní průchozí frekvenci f T =3MHzklesápod A 0 0 6 0 4 0 A 0 45 90 35 0 0 80 0 0 0 0 4 0 f/hz 6 0 8 7- Frekvenční charakerisiky napěťového zesílení operačního zesilovače 08 Výspní napěí je fázově posno proi vspním diferenciálním napěí V inervald 00 Hz do 00 khz má oo posní konsanní velikos 90 Podobný průběh mají i charakerisiky bipolárních OZ, např yp 74, kerý má mezní průchozí frekvenci MHz Msíme se edy na napěťové zesílení OZdívajakonafrekvenčnězávislokomplexní veličin 0 4 Požií operačního zesilovače pracjícího v lineárním režim Při zpracování spojiě se měnících signálů msí pracovní bod operačního zesilovače leže na srmé čási přenosové charakerisiky (obr -) a vspní napěí samoného OZ msí bý velmi malé Toho lze dosáhno jedině zavedením záporné zpěné vazby, j vhodným propojením výsp a inverjícího vsp Popis obvodů, ve kerých OZ pracje v lineárním režim se značně zjednodší, bdeme-li vycháze ze dvo předpokladů: Vspní diferenciální napěí d samoného OZ je zanedbaelné, oba vspy mají prakicky sejný poenciál Oba vspní prody i i+, i i jso zanedbaelné Tyo předpoklady by byly přesně splněny deálního OZ Následjícími poksy se přesvědčíme, že i při požií reálných OZ bdodvozené vzahy mezi vspními a výspními veličinami vyšeřovaných obvodů plai s dosaečno přesnosí Poks 4 Inverjící zesilovač Zapojení inverjícího zesilovače je na obr 4- Předpokládáme d =0, i i = 0 Podle prvního Kirchhoffova zákona plaí pro zel nverjícího vsp i = i, z čehož plyne =, = () Výsledné napěťové zesílení inverjícího zesilovače A = (3) je rčeno poze velikosmi obodporů a nezávisí na vlasnosech samoného OZ Vspní napěí je nno držova v akových mezích, aby nedocházelo k saraci, j aby výspní napěí bylo menší než U sa i i i i A0 = U o Ud, (39) kerá při vyšších frekvencích podsaně ovlivňje vlasnosi daného zařízení a omezje možnosi jeho vyžií Ukážeme si o na neinverjícím zesilovači d 4- Inverjící zesilovač 36 9

A 4 a po sbsici A max = n, f k = π, Q = n n (37) vidíme, že napěťový přenos je vyjádřen formálně sejným vzahem jako předcházející pásmové propsi: A = A ( max f +jq f ) (38) k fk f 70 80 Poks 4 Sočový inverjící zesilovač Sočasné zesílení a složení dvo napěí možňje OZ v zapojení podle obr 4-4 Podobným způsobem jako jednodchého inverjícího zesilovače odvodíme pořebné vzahy: A + B + = ( o A B, = A + ) B + (5) A B V zapojení podle obr 4-5 slože dvě harmonická napěí o frekvencích do khz z ónových generáorů Jedn frekvenci držje konsanní, drho měňe a pomocí osciloskop pozorje průběh výsledného napěí B B A A B A 0 kω 0 kω 33 kω 0, 0 f/f k 90 4-4 Sočový inverjící zesilovač 4-5 Složení dvo harmonických napěí 0 f/f k A 0 kω d 4 ImA -6-4 - ea 0, 0, - 0 0-5 V B B A V i i i i i -4-0 4-6 Jednodchý D/A převodník 4-7 Neinverjící zesilovač 0 f/f k 6- Frekvenční charakerisiky pásmové propsi zapojené podle obr 6- a/db Úkol Sesave pásmovo props podle obr 6- s rezisory o jmenoviých hodnoách odpor =kω,n =0kΩ(n = 0) a s kondenzáory o jmenovié hodnoě kapaciy = 00 nf V zapojení podobném jako na obr 6-3 rčee její vlasnosi a porovneje je s vlasnosmi pásmové propsi podle obr 6-3 Oázka 4 Jak msíme voli odpory A, B, v jednodchém D/A (digiálně-analogovém) převodník na obr 4-6, aby plailo =(A+B+4) V? (6) A, B, jso logické úrovně lačíek ( sepno, 0 vypno) 34

ozdíl Δf = f m f m se nazývá šířka pásma Plaí A 0,5 0 f m f k f m f k f k f m = Q, f k f m = Q, Odečením dosaneme fm fm =(f m + f m ) f k Q, f m f k = f mf k Q, f m f k = f mf k Q f m f m =Δf = f k Q (36) Pásmová props zapojená podle obr 6-9 má poměrně velko šířk pásma Δf =f k Říkáme, že má malo selekivi 0, 0 f/f k 70 80 90 0 f/f k UG MΩ U o z kω 4-0 Pozorování vlasnosí napěťového sledovače Oázka 43 Jak můžeme vlasnosi napěťového sledovače prakicky vyží? Poks 45 ozdílový zesilovač Dosd jsme se zabývali zesilováním napěí měřených vzhledem k mís nlového poenciál Napěí mezi dvěma nezemněnými mísy msíme zesilova pomocí rozdílového zesilovače (obr 4-) Předpokládáme, že plaí d =0, = i+ =,i i+ =0,ii = 0 Z prvního Kirchhoffova zákona plyne i = i, i 3 = i 4, Vyločením a úpravo dosaneme A B V = () = () ImA 0, -0,6-0,4-0, ea -0, 0-0 -0 0, 0 f/f k =( A B ) = AB (3) Napěťové zesílení rozdílového zesilovače je edy A =, (4) což můžee ověři poksem podle obr 4-0, 6-0 Frekvenční charakerisiky pásmové propsi zapojené podle obr 6-9 a/db Úkol Sesave pásmovo props podle obr 6-9 s rezisory o jmenovié hodnoě odpor = kω a s kondenzáory o jmenovié hodnoě kapaciy = 330 nf a v zapojení podobném jako na obr 6-3 rčee její vlasnosi a) Pomocí můsk změře skečné hodnoy veličin, a vypočíeje kriicko frekvenci propsi f k Ověře, že pro o frekvenci plaí A k =, k = 80 +5 V i 4 33 kω 00 kω i 3 i i AB V B AB i d O 5 V A B i i i+ 33 kω A + 0 0 0 kω 00 kω 4- ozdílový zesilovač 4- Pozorování vlasnosí rozdílového zesilovače V 3 3

Oázka 64 Vyměníme-li v akivní dolní propsi řád kondenzáory a rezisory, dosaneme akivní horní props řád (obr 6-8) Obvykle volíme kondenzáory se sejno kapacio a) Jakým vzahem vyjádříe napěťový přenos? (Návod: Ve vzah (30) nahraďe rezisanci reakancí ω a reakance ω, ω rezisancemi, ) b) Jaký průběh bdo mí frekvenční charakerisiky při různé volbě, a? i o i 6-8 Akivní horní props řád 6-9 Jednodchá akivní pásmová props Poks 63 Jednodchá akivní pásmová props Napěťový přenos akivní pásmové propsi na obr 6-9 rčíme podobně jako zesílení inverjícího zesilovače (poks 4) Pro zel nverjícího vsp OZ plaí podle prvního Kirchhoffova zákona i = i Proo i fázory obo prodů jsopačné: Zohoodvodíme o A = Ui U = Z Z I = I, A = = Uo Z jω + jω + jω i = Z U = +j ( ω ) ω jω + jω, ω i i i i 4-5 Derivace pilového napěí 4-6 Derivace obdélníkového napěí Poks 47 Inegrační zesilovač Vyměníme-li v derivačním zesilovači rezisor s kondenzáorem, dosaneme inegrační zesilovač, jehož základní zapojení je na obr 4-7 Plaí = = q ; = d d d =0, ii =0, i = i, = = i = dq d = d d, = 0 d + U p, (6) kde U p je výspní napěí na počáknegrace Přivedeme-li na vsp inegračního zesilovače harmonické sřídavé napěí = U im sin(ω), dosaneme na výsp napěí = Uim ω cos(ω) Sejně jako derivačního zesilovače msíme voli amplid vspního napěí a časovo konsan obvod ak, aby nedocházelo k saraci OZ Amplida výspního napěí je nepřímo úměrná frekvenci vspního napěí Obsahje-li vspní napěí několik harmonických složek, bdo ve výspním napěí složky s vyšší frekvencí polačeny Činnos inegračního zesilovače vyzkošeje poksem podle obr 4-8 Inverjící vsp OZ připoje nejprve do bod Vznikne inverjící zesilovač se zesílením a na výsp se objeví napěí U p = 5V Pak přepněe do bod, čímž vyvoříe inegrační zesilovač a začne probíha inegrace vspního napěí, jehož hodno můžee reglova poenciomerem Při záporném vspním napěí se bde výspní napěí pomal zvěšova, při kladném vspním napěí se bde výspní napěí zmenšova ychlos změny výspního napěí je přímo úměrná velikosi vspního napěí (obr 4-9) Inegraci obdélníkového nebo pilového napěí o frekvenci řádově 00 Hz bez sejnosměrné složky proveďe v zapojení podle obr 4-0 Čárkovaně vyznačený i 30 5

A 0 d0, f/f k c a 90 a f/f k 80 0, 0 d - ImA a b c ea a/db 6-0 d -40-6-6 Frekvenční charakerisiky dolních propsí řád pro různé hodnoy paramer α: a)α =,b)α =, c) α =,d)α =0,5-6 d 0, c 0 a f/f k Poks 48 Nábojový zesilovač Na sejném princip jako inegrační zesilovač pracje nábojový zesilovač (obr 4-3), kerý můžeme vyží jako jednodchý měřič náboje při poksech z elekrosaiky Je nno poží bifeový operační zesilovač, kondenzáor s kvaliním dielekrikem, např syroflexový, a celé zapojení provés co nejpečlivěji, aby se svodové prody omezily na minimm Před vlasním měřením zkrajeme kráce kondenzáor siskním lačíka spínače Dokneme-li se pak vspní svorky nábojového zesilovače izolovaným nabiým vodičem s nábojem Q, vybije se během kráké doby přes rezisor Sejný prodový impls projde i věví zpěné vazby OZ a na kondenzáor se objeví sejně velké náboje +Q, Q Plaí d =0, ii =0, i = i, = = i d = i d = Q 0 0 (7) Výspní napěí je přímo úměrné náboji, kerý jsme na nábojový zesilovač přivedli Oázka 46 Jako kapaci msí mí kondenzáor nábojového zesilovače, aby konsana úměrnosi mezi výspním napěím a měřeným nábojem byla 0 n/v? Úkol Sesave dolní akivní props řád s rezisory o jmenovié hodnoě odpor = kω a s kondenzáory o jmenovié hodnoě kapaciy = = 330 nf a v zapojení podobném jako na obr 6-3 rčee její vlasnosi Měření opakje se sejnými rezisory a s kondenzáory o jmenoviých hodnoách kapaci =μ Fa = 00 nf a) Pomocí můsk změře skečné hodnoy veličin,, a vypo- číeje kriicko frekvenci propsi f k Ověře, že pro o frekvenci plaí A k =, k = 90 Q MΩ i i i i d 4-3 Nábojový zesilovač V b) Určee veličiny A, a, pro různé frekvence v inerval 0, f k ;0f k a ze získaných výsledků sesroje frekvenční charakerisiky propsi Jejich průběh porovneje s obr 6-6 8 7

záor klesá, je jeho průběh popsán vzahem o o i 6-4 Akivní horní props řád 6-5 Akivní dolní props řád A B Poks 6 Akivní dolní props řád Přidáme-li k akivní dolní propsi řád další rezisor a kondenzáor podle obr 6-5, dosaneme akivní dolní props řád Volíme rezisory o sejném odpor ; kondenzáory mají kapaciy a Vzah pro výpoče napěťového přenos Advodíme pomocí Kirchhoffova zákona, kerý aplikjeme na zly označené ve schéma A a B Předpokládáme, že vspní diferenciální napěí OZ a vspní prod neinverjícího vsp jso zanedbaelné Fázorové sočy prodů v zlech jso nlové Z oho plyne Ui U =(U Uo)jω + U Uo = Uojω U Vyločením a úpravo dosaneme o A = Ui U U Uo = ω +jω (9) Řád propsi je rčen spněm polynom ve jmenovaeli U propsi řád je o kvadraický rojčlen, propsi řád o byl lineární dvojčlen Diskse a) Při kriické úhlové frekvenci ω k = (30) je napěťový přenos ryze imaginární a má absolní hodno A k = ω k = (3) Výspní napěí je při kriické úhlové frekvenci vzhledem k vspním fázově posno o 90, =(U + U sa )e U sa Včase = T klesne napěí na kondenzáor na hodno = U Zohopo dosazení a úpravě dosáváme pro period mlivibráor vzah ( T = ln + ) (8) 3 Oázka 5 Jako kapaci msí mí kondenzáor na obr 5-, aby při daných hodnoách odporů byla frekvence mlivibráor a) Hz, b) khz? Poks 5 Generáor napěí obdélníkového a rojúhelníkového průběh se dvěma operačními zesilovači Vzájemným spojením dvoperačních zesilovačů, z nichž jeden pracje jako Schmiův klopný obvod (poks 34) a drhý jako inegrační zesilovač (poks 47), dosanee generáor obdélníkových a rojúhelníkových kmiů na obr 5-3, nazývaný časo generáor fnkcí Průběhy napěí v generáor znázorňje obr 5-4 Na výsp prvního OZ se sřídá kladné a záporné sarační napěí ±U sa Jeho inegrací se na výspnegračního zesilovače vyváří napěí rojúhelníkového průběh K překlopení Schmiova obvod dochází vždy v okamžik, kdy výspní napěí inegráor dosáhne hodnoy Plaí edy ±m = ±U sa U sa = T U sa d = Ue sat 0, T = 4 (9) 0 kω U sa 8 μf U 33 kω 00 nf o 00 kω 5-3 Generáor obdélníkového a rojúhelníkového napěí 5-4 Průběhy napěí v generáor 6 9

volíme logarimicko, abychom obsáhli co nejvěší frekvenční inerval Harmonické složky signál s frekvencí menší než f m procházejí filrem prakicky bez zeslabení Po překročení mezní frekvence absolní hodnoa napěťového přenos rychle klesá Sklon charakerisiky zobrazjící přenos v decibelech je 0 db na dekád V Gassově rovině probíhá koncový bod vekor A při změnách frekvence křivk, kerá se nazývá komplexní frekvenční charakerisika U dolní propsi řád je o půlkržnice ve čvrém kvadran Gassovy roviny 6- Akivní dolní props řád A 0,7 3 0, 0 f/f m ve Wienově člen Výspní napěí sledje pomocí osciloskop, aksicko konrol můžee provés slchákem Oázka 53 Jako frekvenci bde mí generáor na obr 5-7, dodržíme-li vedené hodnoy odpor a kondenzáory bdo mí kapaci 00 nf? 3, 3kΩ 3, 3kΩ kω Ž 4 V, 50 ma SL 5-7 Generáor harmonického napěí 0, 0,5 0,8 ea f/f m 0 a/db 0, 0 f/f m -0,5 A 0,5 45 ImA 90 6- Frekvenční charakerisiky dolní propsi řád Oázka 6 Vyměníme-li v akivní dolní propsi řád kondenzáor s rezisorem, dosaneme akivní horní props řád (obr 6-4) Jakým vzahem vyjádříe její napěťový přenos? Jaký průběh bdo mí její frekvenční charakerisiky? Úkol Sesave dolní akivní props řád s rezisorem o jmenovié hodnoě odpor = kω a kondenzáorem o jmenovié hodnoě kapaciy = 330 nf a v zapojení podle obr 6-3 rčee její vlasnosi 4

6 Požií operačních zesilovačů v lineárních dvojbranech Akivní filry Lineární dvojbrany se ve sdělovací echnice požívají k úpravě frekvenčního spekra přenášeného signál Proože propošějí jen někeré jeho čási, bývají označovány jako filry Podle průběh frekvenčních charakerisik rozlišjeme: - dolní propsi, keré propošějí harmonické složky signál s frekvencí nižší než je rčiá mezní frekvence f m, - horní propsi, keré propošějí harmonické složky signál s frekvencí vyšší než je rčiá mezní frekvence f m, - pásmové propsi, keré propošějí harmonické složky signál v okolí rčié kriické frekvence f k, - pásmové zádrže, keré polačjí harmonické složky signál v okolí rčié kriické frekvence f k Pasivní filry jso sesaveny poze z rezisorů, kondenzáorů a cívek Jednolivé složky signál jso v závislosi na jejich frekvenci více nebo méně polačeny To znamená, že jejich elekrický výkon na výsp filr je menší než na vsp Naproi om akivní filry s operačním zesilovačem, keré získávají energii z napájecího zdroje, moho přenášený signál v rčiém frekvenčním inerval zesíli Velko přednosí akivních filrů je, že jejich výspní napěí prakicky nezávisí na připojené záěži Amplida výspního napěí ovšem nemůže překroči napěí sarační a aké amplida výspního prod je omezena vlasnosmi požiého OZ V éo kapiole se omezíme na podrobný popis dvo akivních dolních propsí a dvo akivních pásmových propsí Poksy jso časově náročnější a mají spíše charaker samosaných laboraorních prací Při rozbor činnosi lineárních dvojbranů msíme pracova symbolicko meodo s požiím fázorů a komplexních veličin Vlasnosi filr vysihje napěťový přenos o A = () U Je o komplexní veličina, kero msíme vynásobi fázor vspního napěí Ui, abychom dosali fázor výspního napěí Uo Absolní hodno napěťového přenos a fázové posní výspního napěí vzhledem k napěí vspním rčíme ze vzahů Ui A = A = U o U i = (e A) +(ImA), () g =g( o i )= Im (3) A e A Absolní hodno napěťového přenos aké časo vyjadřjeme jako přenos v decibelech a =0log U o U =0logA (4) i (Výkon signál je přímo úměrný drhé mocnině napěí) Poks 6 Akivní dolní props řád Akivní dolní props řád dosaneme spojením pasivního dvojbran a napěťového sledovače (obr 6-) Proože se napěí kondenzáor přenáší na výsp OZ, edy =, je napěťový přenos ohoo filr sejný jako samoného nezaíženého dvojbran U A = U + U = kde mezní frekvence filr f m je jω jω + = +jω = +j f f m, (5) f m = π (6) Z oho pro absolní hodno napěťového přenos a fázové posní mezi výspním a vspním napěím dosáváme A = A = ( ) f + f m, = arcg f f m (7) Diskse: a) Pro f = f m plaí A =, a = 3dB, = 45 b) Pro f f m plaí A =, a =0dB, =0 f c) Pro f f m plaí A = mf 0, a = 0 log f, 90 f m Těmo výsledkům odpovídají i průběhy frekvenčních charakerisik filr na f obr 6- Spnici na vodorovné ose, kam nanášíme relaivní frekvenci, f m 3

Frekvenci kmiů měňe plynle změnodpor nebo nespojiě výměno kondenzáor Generáor může pracova od sein Hz do desíek khz a) Pomocí můsk změře skečné hodnoy veličin, a vypočíeje mezní frekvenci propsi f m Ověře, že pro o frekvenci plaí Poks 53 Generáor pilového a nesymerického obdélníkového napěí A =, = 45 Doplněním předcházejícího generáor dvě diody podle obr 5-5 vyžijee obě čási odporové dráhy poenciomer Zrá napěí na diodách můžeme zanedba Při kladné polariě výspního napěí Schmiova obvod se planí odpor, při záporné polariě odpor Poměr ěcho odporů, kerý závisí na poloze jezdce poenciomer, rčje sřídbdélníkového a pilového napěí, j poměr T : T (obr 5-6) Můžee ji měni přibližně od 0: do :0 0 kω U sa D U 33 kω 00 kω 00 nf D T T 5-5 Generáor obdélníkového a pilového napěí 5-6 Průběhy napěí v generáor Oázka 5 Proč se při poks 53 perioda kmiů, j soče T = T + T nemění? Poks 54 Generáor harmonického napěí generáor harmonického napěí zapoje podle obr 5-7 Obvod kladné zpěné vazby připojený na neinverjící vsp OZ je vořen Wienovým členem sesaveným ze dvo rezisorů a dvo kondenzáorů Má nejvěší napěťový přenos a nlové fázové posní při frekvenci f = π (0) S oo frekvencí, pro kero je zpěná vazba nejsilnější, se generáor rozkmiá Amplid kmiů držje na konsanní úrovni obvod záporné zpěné vazby složený z reosa a žárovky, kerý je připojen na inverjící vsp S rosocí amplido kmiů rose odpor žárovky a zvěšje se napěťový přenos děliče, až se amplida kmiů sálí Při vhodném nasavení reosa dosaneme kmiy harmonického průběh Frekvenci kmiů můžee měni změno kondenzáorů kω 330 nf V XY a 6-3 Měření na akivní dolní propsi řád b) Určee veličiny A, a, pro různé frekvence v inerval 0, f m ;0f m a ze získaných výsledků sesroje frekvenční charakerisiky propsi Jejich průběh porovneje s obr 6- Prakické provedení úkol: Výspní napěí ónového generáor nasavíme na maximm Nízkofrekvenčním milivolmerem měříme vspní i výspní napěí propsi Pomocí osciloskop rčíme fázové posní Naobrazovce vznikne Lissajosova křivka ve var elipsy, kero pravíme nasavením vhodné verikální a horizonální cilivosi osciloskop ak, aby její hlavní osa svírala s vodorovným směrem úhel 45 V akovém případě plaí g = b a, (8) kde a, b jso délky hlavní a vedlejší poloosy elipsy (dokaže sami) Naměřené a vypočíané hodnoy zapiše do ablky: f/f m 0, 0, 0,5,0,0 5,0 0 f/hz U i /V U o /V a/mm b/mm A a/db b 45 0 5

5 Jednodché generáory napěí obdélníkového, rojúhelníkového, pilového a harmonického průběh Poks 5 Mlivibráor Zdroj obdélníkového napěí mlivibráor zapoje podle obr 5- Na výsp OZ se sřídavě objevje kladné a záporné sarační napěí, což můžeme pozorova pomocí demonsračního volmer s nlo prosřed spnice nebo pomocí digiálního měřicího přísroje Při zvolených hodnoách sočásek (kapacia 8 μf) je perioda ohoo obdélníkového napěí asi 7,6 s Zmenšíe-li kapaci kondenzáor na 00 nf, frekvence se zvýší a děje v mlivibráor můžee pozorova pomocí osciloskop Dosanee průběhy podle obr 5-, pomocí kerých můžeme činnos mlivibráor vysvěli MΩ U sa U 330 kω 8 μf 3 V 00 kω 5- Mlivibráor 5- Průběhy napěí v mlivibráor V zapojení jso dvě věve zpěné vazby Kladná zpěná vazba, kerá působí na neinverjící vsp OZ, je realizována děličem z rezisorů, 3 podobně jako Schmiova klopného obvod na obr 3-4 Napěí + na neinverjícím vsp má podobný obdélníkový průběh jako napěí na výsp, ale menší amplid U Plaí U = U sa + 3 Věev záporné zpěné vazby zapojená na inverjící vsp OZ je vořena rezisorem a kondenzáorem Kondenzáor se sřídavě vybíjí a nabíjí přes rezisor zvýspozajehonapěí, keré je sočasně napěím inverjícího vsp se mění spojiě Jakmile překročí hodno napěí +,měníse polaria vspního diferenciálního napěí a OZ přechází do opačné sarace Od ohoo okamžik se napěí na kondenzáor mění opačným směrem, dokd opě nedojde k překročení + V é polovině periody, kdy napěí na konden- S požiím kriické úhlové frekvence můžeme napěťový přenos vyjádři ve var A = ( ) ω +jα ω = ( ) f +jα f, (3) ωk ωk fk fk kde α = a f A k = k π je kriická frekvence Z oho pro absolní hodno napěťového přenos a fázové posní dosaneme α f f A = ( ) ( ), g = k 4 ( ) (33) f f f +(α ) + fk fk fk b) Pro f f m plaí A = A 0 =, a =0dB, =0 c) Pro f f m plaí A = ( fmf ) 0, a = 40 log f f m, 80 Přechod z propsné oblasi do oblasi polačení je filrů řád mnohem srmější než filrů řád Sespná čás charakerisiky má sklon 40 db na dekád a ž při frekvenci 0 f k je výspní napěí sokrá menší než napěí vspní Průběh frekvenčních charakerisik pro různé hodnoy koeficien α můžeme porovna na obr 6-6 ozlišjeme α = filry s kriickým lmením, α = 3 Besselovy filry, α = Berworhovy filry, α< Čebyševovy filry Přivedeme-li na dolní props signál neharmonického průběh, dochází k jeho varovém zkreslení U obdélníkového napěí vznikají při α< překmiy, keré jso ím věší, čím menší je α Proα dochází naopak k značném zaoblení čel jednolivých plsů Besselovy filry (α = 3) můžeme pro přenos obdélníkového signál považova za opimální (obr 6-7) 8 7

rezisor o velkém odpor MΩ připojený paralelně ke kondenzáordsraňje vliv případné nesymerie OZ a držje sřední hodno výspního napěí na nle i i i d i +5 V 0 kω P 5 V +5 V p MΩ V V kω kω 8 μf c) Přiveďe na vsp propsi napěí obdélníkového průběh různé frekvenci a pomocí osciloskop pozorje průběh výspního napěí Prakické provedení úkol: Pospje podobně jako při měření na dolní propsi řád (poks 6) Naměřené a vypočíané hodnoy zapiše do sejné ablky jako při poks 6 Poze v prvním řádk změňe označení veličiny na f f k 0,0 0,0 /s 0,0 0,0 /s 4-7 Inegrační zesilovač 4-8 Pozorování činnosi inegračního zesilovače Oázka 44 Na inegrjící zesilovač s paramery = 0kΩ, = μf přivedeme symerické obdélníkové napěí o frekvenci 50 Hz se sřído : a amplido 5 V (obr 4-) Jaká bde amplida výspního rojúhelníkového napěí? Oázka 45 Přivedeme-li na vsp inegrjícího zesilovače rojúhelníkové napěí, připomíná oscilogram výspního napěí sinsoid (obr 4-) Jaké je přesnější maemaické vyjádření jeho průběh? MΩ U pg 0 kω μf 4-9 Příklad časových průběhů při poks podle obr 4-8 4-0 Inegrace kmiavého napěí bez sejnosměrné složky 4- Inegrace obdélníkového napěí 4- Inegrace rojúhelníkového napěí 0,0 0,0 /s 0,0 0,0 /s 6-7 Zkreslení obdélníkového průběh při průchod signál frekvenci 6,5 Hz dolní propsí řád s kriicko frekvencí 500 Hz pro různé hodnoy paramer α: a) α =0,5, b) α =, c) α = 3, d) α = Oázka 6 Absolní hodnoa napěťového přenos Čebyševových filrů se s rosocí frekvencí nejprve zvěšje, dosahje v blízkosi kriické frekvence maxima a pak eprve rychle klesá Při keré frekvenci nasává maximm a jaká je jeho velikos? Oázka 63 Za mezní frekvenci f m považjeme dolních propsí akovo frekvenci, při keré absolní hodnoa napěťového přenos klesne na A 0 Jaký je poměr f m fk filry? pro Besselovy a Berworhovy filry? Jaký je pro Čebyševovy U 6 9

Poks 46 Derivační zesilovač V derivačním zesilovači (obr 4-3) je vyžio vzah mezi napěím na kondenzáor a prodem, kerý kondenzáor nabíjí nebo vybíjí Plaí d =0, ii =0, i = i, = = q, = = i = dq d = d, d = d d (5) Přivedeme-li na vsp derivačního zesilovače harmonické sřídavé napěí = U im sin(ω), dosaneme na výsp napěí = U im ω cos(ω) Amplid vspního napěí a časovo konsan obvod msíme voli ak, aby nedocházelo k saraci OZ Amplida výspního napěí je přímo úměrná frekvenci vspního napěí Obsahje-li vspní napěí několik harmonických složek, bdo ve výspním napěí zvýrazněny složky s vyšší frekvencí Činnos derivačního zesilovače můžee sdova v zapojení podle obr 4-4 Na vsp derivačního zesilovače přiveďe pilové nebo obdélníkové napěí o frekvenci řádově 00 Hz a pomocí osciloskop porovneje jeho časový průběh s průběhem výspního napěí Oscilogramy odpovídají obr 4-5, 4-6 Derivací pilového napěí dosanee napěí obdélníkové a derivací obdélníkového napěí vznikno kráké jehlové implsy Derivační zesilovač má při rychlých změnách napěí sklon k vlasním zákmiům Ty můžeme polači rezisorem o malém odpor zapojeným sériověs kondenzáorem (Na obr 4-4 vyznačeno čárkovaně) Vhodný odpor nasavíme zksmo Nemáe-li vhodný generáor pilového a obdélníkového napěí, můžee poží jednodché osciláory popsané v kap 5 (poksy 5 až 53) i i i i 0 kω 0 G μf 00 Ω 4-3 Derivační zesilovač 4-4 Pozorování činnosi derivačního zesilovače d 4 Zavedením kriické úhlové frekvence ω k =, kriické frekvence f k = π a činiele jakosi Q = dosaneme A = A +j ( f f ) = ( max k f +jq f ) (34) k fk f fk f Absolní hodno napěťového přenos a fázové posní rčíme ze vzahů [ ( A max f A = ( f +Q f ), =arcg Q f )] k (35) f k f k f k f Diskse: a) Při kriické frekvenci f k je napěťový přenos reálný a záporný ( = 80 ) a má maximální absolní hodno A max = b) Pro f f k plaí A = j f f 0, A =, 70, a =0logf 0 log f k f k f k Výspní napěí je neparné a předbíhá éměř o 3/4 periody před vspním S rosocí frekvencí napěťový přenos rose o 0 db na dekád c) Pro f f k plaí A =j f k f 0, A = f k f, 90, a =0logf k 0 log f Výspní napěí je neparné a předbíhá éměř o /4 periody před vspním S rosocí frekvencí napěťový přenos klesá o 0 db na dekád Výsledkům diskse odpovídá průběh frekvenčních charakerisik na obr 6-0 Komplexní frekvenční charakerisika je kržnice o průměr, kerá leží ve a 3 kvadran Gassovy roviny Mezní frekvence pásmové propsi f m, f m jso rčeny poklesem absolní hodnoy napěťového přenos na A max Tonasává,když ( f Q f ) k = ± f k f 3

Poks 43 Neinverjící zesilovač Zapojení neinverjícího zesilovače je na obr 4-7 Předpokládáme d =0, i i = 0 Podle prvního Kirchhoffova zákona plaí pro zel nverjícího vsp i = i, z čehož plyne o = ( i, = + ) (7) Výsledné napěťové zesílení neinverjícího zesilovače je A =+ (8) Oproi inverjícím zesilovači má neinverjící zesilovač velký vspní odpor, řádově0 7 Ω Měření na neinverjícím zesilovači proveďe sejně jako v poks 4 Poks 44 Napěťový sledovač Napěťový sledovač je nejjednodšší aplikací operačního zesilovače (obr 4-8) Jedná se vlasně o neinverjící zesilovač, kde = a =0 Napěťové zesílení A je proo rovno, j = (9) b) Určee veličiny A, a, pro různé frekvence v inerval 0, f k ;0f k a ze získaných výsledků sesroje frekvenční charakerisiky propsi Jejich průběh porovneje s obr 6-0 Prakické provedení úkol: Pospje podobně jako při měření na dolní propsi řád (poks 6) Naměřené a vypočíané hodnoy zapiše do sejné ablky jako při poks 6 Poze v prvním řádk změňe označení veličiny na f f k Oázka 65 U pásmové propsi, jejíž napěťový přenos je popsán vzahem (35), je dána kriická frekvence f k a činiel jakosi Q Jaké jso mezní frekvence f m a f m? Jaké je fázové posní mezi výspním a vspním napěím při ěcho frekvencích? A B n U0 U z kω 4-8 Napěťový sledovač 4-9 Určení vniřního odpor ónového generáor Napěťový sledovač se vyznačje velkým vspním odporem, řádově 0 8 Ω, a velmi malým výspním odporem O om se přesvědčíe následjícím poksem: Nejprve změříe vlasnosi ónového generáor v zapojení podle obr 4-9 Po připojení zaěžovacího rezisor odpor z se efekivní hodnoa svorkového napěí zmenší z U 0 na U Vniřní odpor i generáor rčíe ze vzah i = U 0 U z (0) U Pak doplňe ónový generáor o napěťový sledovač podle obr 4-0 Pomocí nízkofrekvenčního milivolmer nebo osciloskop zjisíe, že výspní napěí sledovače U o se připojením sejného zaěžovacího rezisor prakicky nezmění Zůsane beze změny dokonce i v případě, že před sledovač zařadíme rezisor ovelkémodpor =MΩ V 6- Akivní pásmová props s věší selekivio Poks 64 Akivní pásmová props s věší selekivio Napěťový přenos akivní pásmové propsi zapojené podle obr 6- rčíme řešením sosavy rovnic, keré získáme aplikací prvního Kirchhoffova zákona na zly A a B: Ui U = U + U jω +(U Uo)jω, U jω = U o n Vyločením U a úpravo dosaneme Uo = ( n +j ω ) Ui = nω n +j n n ω ω n, 33

Vspní odpor inverjícího zesilovače rčíme následjící úvaho: Poenciál inverjícího vsp je působením OZ rvale držován v blízkosi nly Proo je zdroj vspního napěí zaěžován sejně, jako kdybychom jej připojili k samoném rezisor odpor A Zesílení sejnosměrného napěí Na vsp inverjícího zesilovače přiveďe sejnosměrné napěí z jezdce poenciomer (obr 4-) a měňe plynle jeho hodno Přiom sledje údaje obo volmerů a ověřje planos vzah (3) Měření proveďe pro různé hodnoy odporů, +5 V 3,3 kω 0 kω V -5 V 4- Zesílení sejnosměrného napěí V a) Pomocí můsk změře skečné hodnoy veličin, a vypočíeje kriicko frekvenci propsi f k Ověře, že pro o frekvenci plaí A k = n, k = 80 b) Určee veličiny A, a, pro různé frekvence v inerval 0, f k ;0f k a ze získaných výsledků sesroje frekvenční charakerisiky propsi Jejich průběh porovneje s obr 6-0 c) V graf absolní hodnoy napěťového přenos A věře, že šířka pásma odpovídá vzah (37) Prakické provedení úkol: Pospje podobně jako při měření na dolní propsi řád (poks 6) Naměřené a vypočíané hodnoy zapiše do sejné ablky jako při poks 6 Poze v prvním řádk změňe označení veličiny na f f k 33 kω 00 kω i o 4-3 Zesílení sřídavého napěí V B Zesílení sřídavého napěí Na vsp inverjícího zesilovače přiveďe nejprve harmonické napěí o frekvenci okolo 00 Hz z ónového generáor (obr 4-3) a měňe jeho amplid v akových mezích, aby nedocházelo k saraci Pomocí osciloskop porovneje amplidy vspního a výspního napěí a pomocí nf milivolmer porovneje jejich efekivní hodnoy Plaí U om U im = U o U i = (4) Měření opě proveďe pro různé hodnoy odporů, Oázka 4 Jaké je fázové posní výspního napěí inverjícího zesilovače vzhledem k napěí vspním? 0 35

Oázka 3 Jaké hodnoy mají napěí U a U? Schmiův klopný obvod bývá časo vyžíván v obvodech aomaické reglace Na obr 3-6 je zapojení modeljící aomaické zapínání elekrického osvělení Svěelným čidlem je foorezisor; ranzisor na výsp OZ fngje jako výkonový akční člen Úroveň osvělení foorezisor, při kerém dojde k rozsvícení žárovky, regljeme poenciomerem P a hyserezi obvod poenciomerem P +5 V U V V 5 V U Jak se bde chova obvod na obr 3-6, mísíme-li žárovk do L + 0 3-4 Schmiův klopný obvod 3-5 Přenosová charakerisika Schmiova obvod Oázka 33 blízkosi foorezisor? Vyzkošeje Oázka 34 Jako přenosovo charakerisik bde mí Schmiův klopný obvod zapojený podle obr 3-7? Proč msí plai <? +5 V WK 65037 KF 507 0 kω P kω P +5 V 4 V, 50 ma 5 V 3-6 Model aomaického zapínání elekrického osvělení U H U 0 3-7 Jiné zapojení Schmiova klopného obvod Poks 7 Frekvenční charakerisiky neinverjícího zesilovače Vyjdeme z obr 4-7 Požiím prvního Kirchhoffova zákona pro zel nverjícího vsp dosáváme o A = Ui U Uo (Ui Ud) ( o Uo Ui + U = A0 + + + A0 = U i Ud, ) ( o = Ui A0 U ), = + + + A0 Diskse: a) Při nízkých frekvencích, kdy A0 +, plaí vzah (40) A = +, kerý jsme ověřili poksem 43 b) Při vysokých frekvencích, blízkých mezní průchozí frekvenci f T, kdy A0 < +,plaía = A0 Vlasnosi neinverjícího zesilovače se edy při vysokých frekvencích přibližjí k vlasnosem samoného operačního zesilovače Výsledkům diskse odpovídají frekvenční charakerisiky na obr 7-: 0 3 A 0 0 0 0 0 45 90 b a A 0 0 0 4 f/hz 0 6 b a 0 3 A 0 0 b a A 0 0 0 45 0 0 4 f/hz 0 6 a b 7- Frekvenční charakerisiky neinverjícího zesilovače s OZ 74 (vlevo) a 08 (vpravo): a) =0kΩ, = 00 kω, b) =0kΩ,=, 0MΩ 8 37 0 90

3 Požií operačního zesilovače pracjícího v nasyceném režim Poks 3 Sejnosměrný komparáor V zapojení podle obr 3- můžeme OZ poží jako komparáor, jobvod porovnávající dvě napěí +, Na inverjící vsp přiveďe sálé referenční napěí r, neinverjící vsp spoje s jezdcem poenciomer a jeho napěí plynle zvyšje Dokd plaí + < r, je vspní napěí záporné a na výsp je záporné sarační napěí U L Jakmile však + překročí r,objeví se na výsp kladné sarační napěí U H Při následjícím snižování napěí + proběhne opačný děj +5 V 3- Sejnosměrný komparáor kω +5 V V + r V 0 5 V Poks 3 Přeměna harmonického napěí nízké frekvence na obdélníkové napěí A Na neinverjící vsp přiveďe harmonické napěí o frekvenci okolo 00 Hz, inverjící vsp připoje na nlový poenciál (obr 3-a) Na výsp se objeví symerické obdélníkové napěí s amplido U sa, keré pozorjeme pomocí osciloskop U sa + 0 + a) +5 V + 0 r b) U sa r 3- Přeměna harmonického napěí na obdélníkové napěí + 8 Nesymerie reálného operačního zesilovače Na závěr se seznámíme ješě se dvěma paramery reálného operačního zesilovače, keré charakerizjí nedokonalos jeho prakického provedení a moho mí vliv na celkové vlasnosi elekrického obvod, ve kerém je zapojen Jso o napěťová nesymerie vspů U IO a polačení sohlasného vspního napěí M (ommon Mode ejecion) Výspní napěí dokonale vyrobeného OZ závisí poze na vspním diferenciálním napěí Přivedeme-li na oba vspy sejná napěí + =,má bý výspní napěí nlové nezávisle na jejich hodnoě To je skečného OZ splněno jen přibližně Poks 8 Měření a kompenzace napěťové nesymerie vspů Napěťová nesymerie vspů je definována jako napěí, keré msíme přivés na vspní svorky OZ, aby výspní napěí bylo nlové Měříme ji v zapojení podle obr 8- a vypočíáme ze vzah U IO = U O 00, (4) kde U O je napěí na výspperačního zesilovače U věšiny jednodchých operačních zesilovačů můžeme napěťovo nesymerii vyrovna vhodným nasavením poenciomer, jehož konce jso zapojeny mezi vývody č a 5, a jezdec je připojen k záporném pól napájecího zdroje Doporčený odpor poenciomer je 0 kω bvod 74 a 00 kω bvod 08 0 kω +0 V MΩ 0 kω 5 0 kω U 0 V V 0 00 Ω 00 Ω U0 V MΩ 0 kω U 8- Měření a kompenzace napěťové nesymerie vspů 8- Měření polačení sohlasného vspního napěí Poks 8 Měření polačení sohlasného vspního napěí Polačení sohlasného vspního napěí M je definováno jako poměr maximálního rozsah sohlasného vspního napěí ΔU I a maximální změny 6 39

I +I 3 inverjící vsp, 3 neinverjící vsp, 4 záporný pól napájecího napěí, 6 výsp, 7 kladný pól napájecího napěí +U 7 MAA74 5 0 kω KY30/80 4 00 nf 6 00 nf KY30/80 U O +I I +U O U -3 Panel pro poksy s operačními zesilovači -4 Ochrana vspů bifeového operačního zesilovače Zbývající vývody zůsano nezapojeny Operační zesilovač mísíme na samosaný panel (obr -3) spol s ochrannými diodami a filračními keramickými kondenzáory Pro snadnější sesavování obvodů jso vývody zesilovače připojeny ke zdvojeným zdířkám a aké vodič s nlovým poenciálem je opařen čyřmi zdířkami Pokd bychom později chěli provádě i náročnější měření, je účelné přida ješě poenciomerický rimr pro sejnosměrno kompenzaci napěťové nesymerie vspů V našich úlohách se však neplaní Měli bychom se seznámi i s bifeovými OZ Pro naše poksy se hodí yp 08 (např TL08) zapojený podle obr - nebo yp 08 (např TL08) zapojený podle obr - U ěcho sočásek msíme počía s nebezpečím poškození vspních ranzisorů FET saicko elekřino Tom lze zabráni požiím ochranných diod, keré se při normálním provoz OZ neplaní (obr -4) Pro napájení obvodů s OZ je vhodný školní zdroj BK 5 výrobek Tesly Brno Můžeme aké poží dvojici sejných sejnosměrných zdrojů o napěí asi 6: A = A 0,5 j f, f m = m π ; f 90 45 0, 0 f/f k 0, 0 f/f k 6: f = f k α, max = A 63: =0,79 pro Besselovy filry, f m fk α 4 ( ) fm = α + 8 4α + α 4 ; fk = pro Berworhovy filry, f m fk 64: A = A 0,5 kde f k = ω j = ω π ; Ak = f m fk > pročebyševovyfilry ( fk = α ; 90 45 ) jα f k f f 0, 0 f/f k 0 f/f ( k 65 f m = f k Q + + ) ( 4Q, f m = f k Q + + ) 4Q Pro Q f m = f k ( + Q 7: A = + + A0 ), f m = f k ( Q, ) 4 4 0,

Základní vlasnosi operačního zesilovače Běžně požívané operační zesilovače můžeme rozděli na bipolární, keré obsahjí poze bipolární ranzisory NPN a PNP, a na OZ se vspními ranzisory řízenými polem (FET), keré jso časo označovány jako bifeové Oba drhy se požívají sejným způsobem a mají sejno schémaicko značk Pro živaele není důležiá vniřní srkra OZ, ale poze jeho celkové vlasnosi, keré se projevjí na vspních a výspních svorkách + +I d I O +5 V U +U U H 0V U U L 5 V U d - Základní zapojení operačního zesilovače - Saická přenosová charakerisika Schémaicko značk a základní zapojení OZ vidíme na obr - Napájení obsarávají dva sériově spojené sejnosměrné zdroje o sejném napěí U,nejčasěji 5 V Jejich společno svork zvolíme za míso nlového poenciál Jeden ze vspů OZ nazýváme neinverjící vsp a označjeme znaménkem +, drhý vsp se nazývá inverjící a je označen znaménkem Přivedeme-li na neinverjící vsp napěí + a na inverjící vsp napěí, pak rozdíl ěcho napěí se nazývá vspní diferenciální napěí zesilovače Obsah Úvod Základní vlasnosi operačního zesilovače Pomůcky pro poksy s operačními zesilovači 3 3 Požií operačního zesilovače pracjícího v nasyceném režim 6 4 Požií operačního zesilovače pracjícího v lineárním režim 9 5 Jednodché generáory napěí obdélníkového, rojúhelníkového, pilového a harmonického průběh 8 6 Požií operačních zesilovačů v lineárních dvojbranech Akivní filry 7 Operační zesilovač při vyšších frekvencích 36 8 Nesymerie reálného operačního zesilovače 39 Odpovědi na oázky 40 Porovnání nejdůležiějších kaalogových údajů operačních zesilovačů 74 a 08 4 Lierara 4 d = + Vlasnosi zesilovače v základním zapojení znázorňje saická přenosová charakerisika, j graf závislosi výspního napěí na vspním napěí d (obr -) Její srmá čás je popsána vzahem = A 0 d, kde A 0 je napěťové zesílení, keré se v praxi pohybje od 0 4 do 0 6 Vspní svorky neodebírají prakicky žádný prod vspní odpor bipolárních OZ je 0 5 Ωaž0 6 Ω, bifeových OZ je věší než 0 Ω Výspní napěí je jen 43