Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník



Podobné dokumenty
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Digitální učební materiál

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Úlohy k procvičení kapitoly Obsahy rovinných obrazců

5. P L A N I M E T R I E

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

Projekt OP VK č. CZ.1.07/1.5.00/ Šablony Mendelova střední škola, Nový Jičín

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

Rozpis výstupů zima 2008 Geometrie

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

Digitální učební materiál

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram

Opakování ZŠ - Matematika - část geometrie - konstrukce

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

Digitální učební materiál

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

DIDAKTIKA MATEMATIKY

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

6. Čtyřúhelníky, mnohoúhelníky, hranoly

9. Planimetrie 1 bod

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

Základní geometrické tvary

M - Řešení pravoúhlého trojúhelníka

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

Obsahy. Trojúhelník = + + 2

Test Zkušební přijímací zkoušky

GEODETICKÉ VÝPOČTY I.

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Modelové úlohy přijímacího testu z matematiky

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, a 0,1, 0,01, 0,001.. Čísla navzájem opačná

DIGITÁLNÍ UČEBNÍ MATERIÁL

Několik úloh z geometrie jednoduchých těles

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.

Přípravný kurz - Matematika

Témata absolventského klání z matematiky :

Modelové úlohy přijímacího testu z matematiky

10. Analytická geometrie kuželoseček 1 bod

Syntetická geometrie II

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Trojúhelník Mgr. Adriana Vacíková

PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

M - Planimetrie - řešení úloh

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013

16. žákcharakterizujeatřídízákladnírovinnéútvary

SHODNÁ ZOBRAZENÍ V ROVINĚ

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

Užití stejnolehlosti v konstrukčních úlohách

SHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Základy geometrie - planimetrie

1. Planimetrie - geometrické útvary v rovině

M - Příprava na 2. čtvrtletní písemnou práci

Gymnázium Jiřího Ortena, Kutná Hora

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

DRUHY ROVNOBŽNÍK A JEJICH VLASTNOSTI 1 HODINA

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa

GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti

Vzdělávací obsah vyučovacího předmětu

ANOTACE VZDĚLÁVACÍCH MATERIÁLŮ IV/ 2 SADA č. 2, PL č. 36

M - Planimetrie pro studijní obory

Magická krása pravidelného pětiúhelníka

Planimetrie úvod, základní pojmy (teorie)

Obrázek 101: Podobné útvary

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC

Příklady pro 8. ročník

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost

Planimetrie. Příklad 1. Zapište vztahy mezi body a přímkami, které jsou vyznačeny na obrázku. Příklad 2. Určete body K, L, M pomocí přímek p, r, s.

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Příklady na 13. týden

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY

Transkript:

Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014 Tento projekt je spolufinancován ESF a státním rozpočtem ČR. Byl uskutečněn z prostředků projektu OP VK. Materiály jsou určeny pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá Autorskému zákonu. Materiál je publikován pod licencí Creative Commons Uveďte autora - Neužívejte komerčně - Nezasahujte do díla 3.0 Česko.

Rovnoběžník - obě dvojice protějších stran jsou rovnoběžné. 1. Čtverec - rovinný útvar se čtyřmi vrcholy ABCD, čtyřmi stejně velkými stranami a čtyřmi vnitřními pravými úhly; - má dvě stejně velké úhlopříčky (u1 = u2), které mezi sebou svírají pravý úhel a rozdělují čtverec na čtyři stejné pravoúhlé rovnoramenné trojúhelníky. =4 = = velikost úhlopříčky: =. 2 poloměr kružnice vepsané... = poloměr kružnice opsané... = 1. Ve čtverci ABCD je velikost úhlopříčky 12 cm. Vypočítejte obsah a obvod čtverce? [ S = 72 cm 2 ; o = 33,94 cm] 2. Ve čtverci ABCD o hraně a = 8 cm vypočítejte poloměr kružnice vepsané i opsané? [ = 4 cm; r = 5,66 cm] 3. Zahrada tvaru čtverce ležící jednou svou stranou u řeky, má výměru 0,08 ha. Vypočítejte, kolik metrů pletiva bude potřeba na její oplocení? [ 84,84 m] 1

2. Obdélník - rovinný útvar se čtyřmi vrcholy ABCD, čtyřmi stranami (vždy protilehlé strany jsou stejné) a čtyřmi vnitřními pravými úhly; - má dvě stejně velké úhlopříčky (u1 = u2), které mezi sebou nesvírají pravý úhel a rozdělují obdélník na čtyři rovnoramenné trojúhelníky, přičemž dva proti sobě ležící jsou stejné; - platí: úhel α = α a β = β. =2.( + ) =. velikost úhlopříčky: = + poloměr kružnice opsané... = 4. V obdélníku ABCD známe stranu a = 12 cm a úhlopříčku u =13 cm. Vypočítejte obsah a obvod obdélníku? [ S = 60 cm 2 ; o = 34 cm] 5. V obdélníku ABCD svírá úhlopříčka o velikosti u = 20 cm s vodorovnou stranou obdélníka úhel o velikosti 32 o. Vypočítejte obsah a obvod obdélníku ABCD? [ S = 179,78 cm 2 ; o = 55,12 cm] 6. Úhlopříčky obdélníka ABCD o velikosti u = 16 cm svírají mezi sebou úhel o velikosti 60 o. Vypočítejte obsah a obvod tohoto obdélníka ABCD? [ S = 110,88 cm 2 ; o = 43,72 cm] 7. Vypočítejte obsah a obvod obdélníka ABCD, když víte, že úhlopříčky obdélníka svírají mezi sebou úhel 50 o a jedna strana obdélníka je b = 6 cm? [ S = 77,22 cm 2 ; o = 37,74 cm] 8. Obdélníku ABCD o straně a = 8 cm jsme opsali kružnici o poloměru 22 cm. Vypočítejte obsah a obvod obdélníka ABCD? [ S = 60,4 cm 2 ; o = 31,1 cm] 2

3. Kosočtverec - rovinný útvar se čtyřmi vrcholy ABCD, čtyřmi stejně velkými stranami a čtyřmi vnitřními úhly, přičemž dva protilehlé jsou stejné; - má dvě úhlopříčky (u1 u2), které mezi sebou svírají pravý úhel a rozdělují obdélník na čtyři trojúhelníky, přičemž dva proti sobě ležící jsou stejné; - platí: úhel α = α a β = β. =4. =. =. =.sin =.sin poloměr kružnice vepsané = 1 2.sin 9. Vypočítejte obsah a obvod kosočtverce o straně a = 5 cm, jestliže jeho strany svírají úhel 48 o? [ S = 18,58 cm 2 ; o = 20 cm] 10. Vypočítejte obsah a obvod kosočtverce s výškou v = 4 cm, jestliže jeho strany svírají úhel 66 o? [ S = 17,52 cm 2 ; o = 17,52 cm] 11. Vypočítejte obsah a obvod kosočtverce o úhlopříčkách u1 = 8 cm a u2 = 6 cm? [ S = 24 cm 2 ; o = 20 cm] 12. Vypočítejte obsah a obvod kosočtverce o úhlopříčce u1 = 10 cm a úhel α = 80 o? [ S = 41,99 cm 2 ; o = 26,12 cm] 3

4. Kosodélník - rovinný útvar se čtyřmi vrcholy ABCD, čtyřmi stranami (vždy protilehlé strany jsou stejné) a čtyřmi vnitřními úhly, přičemž dva protilehlé jsou stejné; - má dvě úhlopříčky (u1 u2), které mezi sebou nesvírají pravý úhel a rozdělují kosodélník na čtyři trojúhelníky, přičemž dva proti sobě ležící jsou stejné; - platí: úhel α = α, β = β, γ = γ, δ = δ. =2.( + ) =. ; =. =.sin =.sin 13. Vypočítejte obsah a obvod kosodélníku o stranách a = 5 cm a b = 3 cm, jestliže jeho strany svírají úhel 48 o? [ S = 11,15 cm 2 ; o = 16 cm] 14. Vypočítejte obvod kosodélníku o obsahu S = 64 cm 2, straně a = 5 cm a úhlu α = 64 o? [ o = 38,48 cm] 15. Vypočítejte obsah a obvod kosodélníku o straně a = 9 cm; va = 5 cm a vb = 11 cm? [ S = 45 cm 2 ; o = 26,18 cm] 4