6.. Gonometrcký tvar kompleních čísel I Předpoklad: 07, 09, 60 Pedagogcká poznámka: Gonometrcký tvar kompleních čísel není pro student njak obtížný. Velm obtížné je pro student s po roce vzpomenout na hodnot gonometrckých funkcí. Varuj je dopředu a případnou neznalost trestám. Bez přpomenutí hodnot gonometrckých funkcí ztrácí následující hodn smsl, protože student nebudou řešt problém kompleních čísel, ale pouze hodnot gonometrckých funkcí. Př. : Nakresl do Gaussov rovn obraz čísla z = +. - - - - Obraz bodu z = + je určen pomocí dvou čísel [ ;], kartézských souřadnc. Jak kartézské souřadnce určují polohu bodu? ; = posuň se ve vodorovném směru (ve směru os ) o dva zpátk (o ) a pak se posuň [ ] ve svslém směru (ve směru os ) od dva nahoru (o +) a dostaneš se do bodu [ ;]. - - - - - Je možné se do stejného místa dostat jným způsobem (předpokládáme, že stojíme v počátku a díváme se v kladném směru os? Způsobů je nekonečně mnoho. Jným jednoduchým je:
Otoč se o úhel 35, pak ujd přímým směrem vzdálenost ( ) + = 8 =. - 35 - - - - polohu obrazu čísla z = + jde určt více způsob: ; - kartézské souřadnce pomocí čísel [ ] pomocí čísel ;35 - polární souřadnce Jak se říká polárním souřadncím? - vzdálenost od počátku = absolutní hodnota kompleního čísla z (značí se r) 35 - úhel otočení od kladného směru os = argument, značí se ϕ Jaký je vztah mez [ a; b ] a [ ; ] r ϕ? Srovnáme s jednotkovou kružncí. sn() - cos() S a r b - souřadnce zakresleného bodu mají hodnot: cos ϕ;snϕ [ ] stejný obrázek jako vlevo, ale vzdálenost bodu od počátku je r místo souřadnce zakresleného bodu mají hodnot: r cos ϕ; r snϕ. Dosud jsme je označoval [ ] [ a; b ] platí: a = r cosϕ, b = r snϕ
zapíšeme algebracký tvar kompleního čísla pomocí [ r; ϕ ]: z a b ( r cosϕ ) ( r snϕ ) r ( cosϕ snϕ ) = + = + = + = gonometrcký tvar kompleního čísla Gonometrcký tvar není jednoznačný, obě gonometrcké funkce se opakují po π, proto platí: z = r ( cosϕ + snϕ ) = r cos( ϕ + k π ) + sn ( ϕ + k π ) Gonometrckým tvarem čísla rozumíme jeho vjádření ve tvaru z = r cosϕ + snϕ, kde ϕ je argument kompleního čísla z a r je jeho ( ) absolutní hodnota. Př. : Zapš komplení číslo z = + v gonometrckém tvaru. gonometrcký tvar potřebujeme znát ϕ a r, obojí už známe z obrázků r = z = 3 ϕ = 35 = π 3 3 z = r ( cosϕ + snϕ ) = cos π + sn π Argument kompleních čísel se téměř výhradně udává v radánech. Jak převedeme číslo z gonometrckého tvaru do algebrackého? z = r cosϕ + snϕ = a + b stačí zapsat hodnot gonometrckých funkcí a roznásobt ( ) závorku 3 3 z = cos π + sn π = + = + = + Př. 3: Zapš komplení čísla v algebrackém tvaru: 7 7 a) z = cos + sn b) z = cos π + sn π 6 6 3 3 70 70 c) z3 = cos π + sn π d) z = cos π + sn π 3 3 e) z5 = 5( cos 0 + sn 0 ) a) z = cos + sn = + = + 7 7 3 b) z = cos π + sn π = 6 6 3 3 c) z3 = cos π + sn π = z3 = 0 + ( ) = 3
70 70 d) z = cos π + sn π 3 3 70 66 musíme najít základní hodnotu úhlu π = π + π = π + π = π 3 3 3 3 3 70 70 3 z = cos π + sn π = cos π + sn π = + = 3 3 3 3 3 e) z5 = 5( cos 0 + sn 0 ) pro úhel 0 neznám tabulkové hodnot gonometrckých funkcí s kalkulačkou jen přblžný výsledek z5 = 5( cos 0 + sn 0 ) 5( 0,77 + 0,6) = 3,85 + 3, Př. : Petáková: strana 37/cvčení 3 z strana 37/cvčení 33 Na druhou stranu to bude horší. Chceme převést do gonometrckého tvaru z = musíme najít r a ϕ. r = z = a + b = + =. Najít r není problém: ( ) Jak najít ϕ?. pomocí obrázku 3 - r Stačí určt úhel α a máme úhel ϕ. -
3 - r 7 7 z = = cos π + sn π - Zelený trojúhelník: 3 π 7 ϕ = π + = π π tgα = = α =. pomocí rovnc Vezmeme algebracký tvar a budeme ho upravovat na gonometrcký: a b a b z = a + b = z + = r + z z r r z = r cosϕ + snϕ platí: srovnáme s algebrackým tvarem: ( ) a a cos ϕ = r = z sn b b ϕ = = r z můžeme určt hodnot sn a cos pro hledaný argument a z nch argument určt z =, r = (už jsem spočítal) a cosϕ = = = r b snϕ = = = r hledáme úhel pro který platí: cosϕ =, snϕ = 7 7 z = = cos π + sn π 7 ϕ = π Př. 5: Převeď do gonometrckého tvaru čísla: a) z = + 3 b) z = c) z3 = 3 d) z = e) z5 = π f) z6 = 3 a) z 3 = + r z a ( ) b = = + = + 3 =. pomocí obrázku. pomocí rovnc a cosϕ = = r b 3 snϕ = = r 5
r= 3 hledáme úhel pro který platí: 3 π snϕ = ϕ = 3 z = + 3 = cos + sn 3 3 cosϕ =, 3 π Zelený trojúhelník: snϕ = ϕ = 3 z = + 3 = cos + sn 3 3 b) z =. pomocí obrázku r= r z a b π ϕ = z = = cos + sn c) z3 3 = = + = + = 0 = r z a b ( ) ( ). pomocí obrázku 3 r= - -. pomocí rovnc a 0 cosϕ = = = 0 r b snϕ = = = r hledáme úhel pro který platí: cosϕ = 0, π snϕ = ϕ = z = = cos + sn = = + = 3 + = 3+ =. pomocí rovnc a 3 3 cosϕ = = = r b snϕ = = = r hledáme úhel pro který platí: 3 7 cosϕ =, snϕ = ϕ = π 6 7 7 z = 3 = cos π + sn π 6 6 6
π Zelený trojúhelník: snα = = α = 6 π 7 ϕ = π + α = π + = π 6 6 7 7 z = 3 = cos π + sn π 6 6 d) r z a b = = + = + = z = ( ). pomocí obrázku ϕ = π r= ( π π ) z = = cos + sn 0 e) z5 = π r = z = a + b = π + 0 = π. pomocí obrázku ϕ = 0 r= ( cos0 sn 0) z = π = π + f) z6 3 = r z a ( ) b. pomocí obrázku 3 - - r= 3 π Zelený trojúhelník: snα = = α = 6. pomocí rovnc a cosϕ = = = r b 0 snϕ = = = 0 r hledáme úhel pro který platí: cosϕ =, snϕ = 0 ϕ = π ( π π ) z = = cos + sn. pomocí rovnc a π cosϕ = = = r π b 0 snϕ = = = 0 r π hledáme úhel pro který platí: cosϕ =, snϕ = 0 ϕ = 0 ( cos0 sn 0) z = π = π + = = + = + 3 = + 3 =. pomocí rovnc a cosϕ = = = r b 3 3 snϕ = = = r hledáme úhel pro který platí: cosϕ =, 3 5 snϕ = ϕ = π 3 5 5 z = 3 = cos π + sn π 3 3 7
3 3 π 0 5 ϕ = π + α = π + = π = π 6 6 3 5 5 z = 3 = cos π + sn π 3 3 Pedagogcká poznámka: Předchozí příklad je jednou z výjmek, kd nechávám student, kteří ho nesthnou ve škole dopočítat zbtek doma. Jeho úspěšné zvládnutí je podmínkou příští hodn. Př. 6: Petáková: strana 37/cvčení 30 z, z 6, z 7 Shrnutí: 8