4.2.5 Orientovaný úhel II. π π = π = π (není násobek 2π ) 115 π není velikost úhlu α. Předpoklady: Nejdříve opakování z minulé hodiny.
|
|
- Kamila Bártová
- před 6 lety
- Počet zobrazení:
Transkript
1 .2. Orientovaný úhel II Předpoklady: 20 Nejdříve opakování z minulé hodiny. Př. 1: Rozhodni, které z následujících hodnot jsou velikosti úhlu α = π. a) 11 π b) 7 a) Pokud je úhel π základní velikostí úhlu α musí platit: 11 π = π + k 2π. Upravíme: 11 π π = k 2π rozdíl 11 π π by měl být násobek 2π π π = π = π (není násobek 2π ) 11 π není velikost úhlu α. 2 b) α = π = 22 Má platit 7 = 22 + k rozdíl 7 22 by měl být násobek = 0, 0 = 1,... 7 není velikost úhlu α. Pedagogická poznámka: Nechávám studenty, aby si algoritmus na určení základní velikosti vymysleli sami. U stupňové míry s tím nejsou problémy. Při kontrole třetího příkladu si říkáme, jak najít výhodnější algoritmus, ale v žádném případě nikoho nenutím, aby se vzdal svého. Př. 2: Urči základní velikost úhlu Pro základní velikost musí platit 1220 = α + k α = 1220 k stačilo by od 1200 odečítat, dokud se nedostaneme do intervalu 0; ). Je to ale moc zdlouhavé. Zjistíme, kolik je k: 1220 =,8... k =. Teď dosadíme: α = 1220 k = 1220 = 10. Pedagogická poznámka: Se třídou si kontrolujeme pouze výsledek ne postup. Někteří studenti používají v předchozím příkladě i ten nejprimitivnější postup postupného odčítání. Tento postup je už v příštím příkladu nepoužitelný. Lepší studenti počítají i rychleji, třeba když si uvědomí, že zbytek po dělení velikosti úhlu vzniká dělením základní velikosti úhlu. Stačí tedy, když zbytek po dělení vynásobí a získají základní velikost: 1220 =,8 α = 0, 8 = 10. Snažím se studenty přesvědčit, aby si našli rychlejší algoritmus, ale zároveň se snažím ho neprozrazovat. 1
2 Př. : Urči základní velikost úhlů: a) 127 b) 2. a) Pro základní velikost musí platit: 127 = α + k α = 127 k. Zjistíme, kolik je k: 127 = 2,7... k = 2. Teď dosadíme: α = 127 k = = 207. b) Pro základní velikost musí platit 2 = α + k α = 2 k. Zjistíme, kolik je k: 2 = 180,78... k = 180. Teď dosadíme: α = 2 k = = 2. Dodatek: Můžeme použít rychlejší postup: 2 = 180,78... α = 0,78... = 2. Tento postup vychází z následujících úprav: 2 = α + k / : 2 α = + / k k 2 α k = 2 k = α. Můžeme si také uvědomit, že základní velikost u kladných úhlů se rovná zbytku po dělení. Desetinná místa, která po tomto dělení vzniknou pochází právě z tohoto zbytku a vynásobením se dostaneme k hledanému zbytku. Př. : Urči základní velikost úhlu 28. Pro základní velikost musí platit 28 = α + k α = 28 k. Zjistíme, kolik je k: 28 =, 9... k =. α = 28 k = 28 = 178. Teď dosadíme: ( ) 178 není základní velikost musíme ještě přičíst. α = = 182. Postřeh: Prostým zopakováním postupu pro kladnou velikost jsme u záporné nezjistili základní velikost, ale největší zápornou velikost (neboli zápornou velikost s nejmenší absolutní hodnotou). Museli jsme pak ještě jednou připočítat. Připočítávání jsme si mohli ušetřit, kdybychom použili hodnotu k = 7 (o jednu menší neboli s absolutní hodnotou o jednu větší), abychom přičítali větší počet násobků. Př. : Urči základní velikost úhlu 892. Pro základní velikost musí platit 892 = α + k α = 892 k. Zjistíme, kolik je k: 892 = 1,8 k = 17. 2
3 Teď dosadíme: k ( ) α = α = 892 = =. Dodatek: V obou předchozích příkladech můžeme používat i přímý výpočet pomocí zbytků: 28 =, ,9... = , 28 nebo, 9... ( 1 0,9... ) 182 = =. Pedagogická poznámka: Následující příklady jsou algoritmicky stejné jako předchozí, ale zlomky je činí pro studenty podstatně zajímavější. Velkých problémem bývalo zohledňování různých jmenovatelů při výpočtu. Při posledním průchodu, kdy jsem nechal studenty algoritmy na hledání základní velikosti samostatně vymyslet, byly problémy zdaleka nejmenší. Z toho soudím, samostatně vyvinutý algoritmus vnímají studenti daleko neformálněji. Př. : Urči základní velikost úhlu 17 π. Pro základní velikost musí platit π = α + k 2π α = π k 2π stačilo by od 17 odečítat 2 dokud se nedostaneme do intervalu 0;2 ), ale je to moc zdlouhavé. 17 α = π k π, přepsali jsme si 2π na třetiny, abychom mohli snadno odečítat ze zlomku. Zjišťujeme k, kolikrát se do 17 vejde, tedy kolikrát se do 17 vejde. Zjistíme, kolik je k: 17 = 2,8... k = Teď dosadíme: α = π k π = π 2 π = π. Základní velikost úhlu 17 π je π. Př. 7: Urči základní velikost úhlu 7777 π. Pro základní velikost musí platit 7777 π = α + k 2π α = π k 2π = π k π - jiný zlomek než v předchozím příkladě. Zjistíme, kolik je k: 7777 = 972,12 k = Teď dosadíme: α = π k π = π 972 π = π.
4 Základní velikost úhlu 7777 π je 1 π. Pedagogická poznámka: Předchozí příklad zadávám stejně jako předchozí a neupozorňuji na fakt, že se změnil jmenovatel zlomku (a proto se při zjišťování k dělí jiným číslem). Jde o jeden z velmi dobrých testů formálního přístupu k matematice. Pokud mají někteří studenti opravdu velké problémy s tím, že počítají s číslem π, ukažte jim, že všechny výpočty při převádění na základní velikost prakticky probíhají zcela bez tohoto čísla. Př. 8: Urči základní velikost úhlu 917 π. Pro základní velikost musí platit 917 π = α + k 2π α = π k 2π = π k π - jiný zlomek než v předchozím příkladě. Zjistíme, kolik je k: 917 = 712, 2 k = Teď dosadíme: α = π k π = π 712 π = π = π. 2 Základní velikost úhlu 917 π je 1 2 π. Př. 9: Urči základní velikost úhlu 221 π. 221 Pro základní velikost musí platit π = α + k 2π α = π k 2π = π k π. Zjistíme, kolik je k: 221 =,8... k =. Teď dosadíme: α = 221 π k π = 221 π ( ) π = π. π není základní velikost musíme ještě přičíst 2π. 1 α = π + 2π = π 221 Základní velikost úhlu π je 1 π. Postřeh: Stejně jako u výpočtu ve stupňové míře je jednodušší použít hodnotu 7 k = (o jednu menší neboli s absolutní hodnotou o jednu větší), abychom přičítali větší počet násobků 2π.
5 Př. 10: Urči základní velikost úhlů: a) 21 π b) 21 π. 21 a) Pro základní velikost musí platit π = α + k 2π α = π k 2π = k π. Zjistíme, kolik je k: 21 = 8, 1... k = Teď dosadíme: α = 21 π k 12 π = 21 π ( 9) 12 π = 7 π. 21 Základní velikost úhlu π je 7 π. 21 b) Pro základní velikost musí platit π = α + k 2π α = π k 2π = π k π. Zjistíme, kolik je k: 21 = 702,2 k = Teď dosadíme: α = 21 π k 8 π = 21 π ( 70) 8 π = π. 21 Základní velikost úhlu π je π. Př. 11: Petáková: strana 0/cvičení 7 α ) β ) x 1 ) x ) x ) Shrnutí: Orientovaný úhel má nekonečně mnoho velikostí, které se liší o násobky 2π.
4.2.5 Orientovaný úhel II
.2.5 Orientovaný úhel II Předpoklady: 20 Minulá hodina Orientovaný úhel rozlišujeme: směr otáčení (proti směru hodinových ručiček je kladný směr), počáteční rameno. Každý úhel má nekonečně mnoho velikostí:...,
4.2.3 Orientovaný úhel
4.2. Orientovaný úhel Definice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevím jaký úhel
4.2.4 Orientovaný úhel I
44 Orientovaný úhel I Předpoklady: 3508 Definice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel) Nevýhody této definice:
4.3.4 Základní goniometrické vzorce I
.. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
Nerovnice v podílovém tvaru II. Předpoklady: 2303, x. Podmínky: x x 1, 2 x 0 x 2, 1 3x
.. Nerovnice v podílovém tvaru II Předpoklady: 0, 04 Př. : ( x )( x + ) ( x + )( x)( x) 0. Podmínky: x + 0 x, x 0 x, x 0 x x + je vždy kladný nebudeme se s ním dále zabývat, znaménko neovlivňuje. Člen
4.3.3 Základní goniometrické vzorce I
4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
6.1.2 Operace s komplexními čísly
6.. Operace s komplexními čísly Předpoklady: 60 Komplexním číslem nazýváme výraz ve tvaru a + bi, kde a, b jsou reálná čísla a i je číslo, pro něž platí i =. V komplexním čísle a + bi se nazývá: číslo
III Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208
4..0 Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 40, 408 Pedagogická poznámka: Tato kapitola nepřináší nic nového. Sám autor si myslí, že by bylo lepší, kdyby si studenti metodu rychlého
2.7.6 Rovnice vyšších řádů
6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení
Lomené výrazy sčítání a odčítání lomených výrazů
VY_32_INOVACE_M-Ar 8.,9.15 Lomené výrazy sčítání a odčítání lomených výrazů Anotace: Prezentace připomene sčítání a odčítání zlomků. Žák použije poznatky zopakované při počítání se zlomky u zjišťování
Logaritmická rovnice
Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,
1.2.9 Usměrňování zlomků
9 Usměrňování zlomků Předpoklady: 0008 Pedagogická poznámka: Celá hodina by měla být naplňováním jediné myšlenky Při usměrňování rozšiřujeme zlomek tím, co potřebujeme Fakt, že si příklad upravíme, jak
Goniometrické rovnice
Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u
Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.
..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální
3.2.3 Podobnost trojúhelníků I
.. Podobnost trojúhelníků I Předpoklady: 01 Shodné útvary je možné je přemístěním ztotožnit, lidově řečeno jsou stejné Co splňují útvary, které jsou podobné? Mají stejný tvar, ale různou velikost. Kdybychom
[ 0,2 ] b = 2 y = ax + 2, [ 1;0 ] dosadíme do předpisu Soustavy lineárních nerovnic. Předpoklady: 2206
..7 Soustavy lineárních nerovnic Předpoklady: 06 Pedagogická poznámka: První příklad je opakování, pokud se u někoho objeví problémy, je třeba je řešit před hodinou 0009. Př. : Urči předpis funkce f. Odhadni
4.2.3 Oblouková míra. π r2. π π. Předpoklady: Obloukovou míru známe z geometrie nebo z fyziky (kruhový pohyb) rychlé zopakování.
.. Oblouková míra Předpoklady: 8 Obloukovou míru známe z geometrie nebo z fyziky (kruhový pohyb) rychlé zopakování. Př. : Jsou dány dvě kružnice o poloměrech r a r. Do tabulky doplň délky oblouků těchto
f(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0
KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že
2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208
4.. Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 4, 48 Pedagogická poznámka: Tato kapitola nepřináší nic nového a nemá ekvivalent v klasických učebnicích. Cílem hodiny je uspořádat v hlavách
4.3.2 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306
..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled
Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
2.6.5 Další použití lineárních lomených funkcí
.6.5 Další použití lineárních lomených funkcí Předpoklady: 60, 603 U předchozích funkcí jsme měli vždy s funkcemi rovnice existují lineární lomené rovnice a nerovnice? Jak by vypadaly? Například takto:
Pythagorova věta II
.8.0 Pythagorova věta II Předpoklady: 0081, 00818 Pedagogická poznámka: První část hodiny obsahuje opakování mocnin, na které není v minulé hodině místo. Př. 1: Vypočti. 10 5 e) = = = = = 10 1000 10 0,
2.7.6 Rovnice vyšších řádů
6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení
2.4.9 Rovnice s absolutní hodnotou I
..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete
Soustavy více rovnic o více neznámých II
2.3.14 Soustavy více rovnic o více neznámých II Předpoklady: 2313 Pedagogická poznámka: U odčítání rovnic je třeba se připravit na to, že slabší část třídy bude různě rozepisovat mezivýpočty, vynechávat
2.7.3 Použití grafů základních mocninných funkcí
.7.3 Použití grafů základních mocninných funkcí Předpoklady: 70, 70 Pedagogická poznámka: Jedním z nejdůležitějších cílů hodiny je, aby si studenti kreslili obrázky, které jim při řešení příkladů doopravdy
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
( 2 ) ( 8) Nerovnice, úpravy nerovnic. Předpoklady: 2114, Nerovnice například 2x
..5 Nerovnice, úpravy nerovnic Předpoklady:, 03 Nerovnice například 3 < + 5 - zápis nerovnosti hodnot dvou výrazů. Za můžeme dosazovat různá čísla, tím měníme hodnoty obou výrazů. Hledáme takové, aby nerovnost
Grafy funkcí odvozených z funkcí sinus a cosinus II
.. Grafy funkcí odvozených z funkcí sinus a cosinus II Předpoklady: 0 Pedagogická poznámka: Pokud máte málo času můžete z této hodiny vyřešit pouze první tři příklady a ve zbývajících 5 minutách projít
4.3.3 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
Hledání úhlů se známou hodnotou goniometrické funkce
4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických
4.2.6 Tabulkové hodnoty orientovaných úhlů
.. abulkové hodnoty orientovaných úhlů Předpoklady: 0 Pedagogická poznámka: Největším problémem při zavádění goniometrických funkcí pro orientovaný úhel je rychlá orientace v poloze koncového ramene a
( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis
1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž
arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků
METODICKÝ LIST DA Název tématu: Autor: Předmět: Zlomky smíšené číslo, složené zlomky a převod na desetinná čísla Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky:
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
1.3.3 Množinové operace
1.3.3 Množinové operace Předpoklady: 010302 Pedagogická poznámka: Stejně jako v předchozích dvou hodinách by žáci měli sami podle znění definic řešit příklady. Př. 1: Pokud provedeme s množinami, množinovou
CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
2.4.9 Rovnice s absolutní hodnotou I
..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete
Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá
4..4 Funkce tangens Předpoklady: 40 c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro
Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0
Příklad Vypočítejte ity funkcí: a) b) c) d) Poznámka Po dosazení do všech těchto úloh dostaneme nedefinovaný výraz. Proto je třeba provést úpravy vedoucí k vykrácení a následně k výsledku. Řešení a Budeme
= + = + = 105,3 137, ,3 137,8 cos37 46' m 84,5m Spojovací chodba bude dlouhá 84,5 m. 2 (úhel, který spolu svírají síly obou holčiček).
4.4.4 Trigonometrie v praxi Předpoklady: 443 Nejdřív něco jednoduchého na začátek. Př. : vě přímé důlní chodby ústící do stejného místa svírají úhel α = 37 46' mají být spojeny chodbou, spojující bodu
3.2.3 Podobnost trojúhelníků I
.. Podobnost trojúhelníků I Předpoklady: 01 Shodné útvary je možné je přemístěním ztotožnit, lidově řečeno jsou stejné Co splňují útvary, které jsou podobné? Mají stejný tvar, ale různou velikost. Kdybychom
Hledání mocnin a odmocnin v tabulkách
.8.14 Hledání mocnin a odmocnin v tabulkách Předpoklady: 00801 Pedagogická poznámka: Hodinu je samozřejmě možné vynechat, pravděpodobnost, že žáci budou v budoucnu hledat hodnoty mocnin a odmocnin v tabulkách
Lineární funkce IV
.. Lineární funkce IV Předpoklady 0 Pedagogická poznámka Říkám studentům, že cílem hodiny není naučit se něco nového, ale použít to, co už známe (a možná se také přesvědčit o tom, jak se nemůžeme obejít
Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Algebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g
Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně
Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207
78 Skalární součin II Předpoklady: 707 Pedagogická poznámka: Hodina má tři části, považuji tu prostřední za nejméně důležitou a proto v případě potřeby omezuji hlavně ji Na začátku hodiny je důležité nechat
( ) ( ) ( ) Tečny kružnic I. Předpoklady: 4501, 4504
7.5.5 Tečny kružnic I Předpoklady: 451, 454 Pedagogická poznámka: Následující dvě hodiny jsou na gymnázium asi početně nejnáročnější. Ačkoliv jsou příklady optimalizované na co nejmenší početní obtížnost,
Limita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
{ } 1.3.2 Množina všech dělitelů. Předpoklady: 010301
1.3.2 Množina všech dělitelů Předpoklady: 010301 Pedagogická poznámka: Na začátku si rozebereme řadu z poslední Odpočítávané. Na způsob jejího generování většinou nikdo nepřijde a proto ji dostanou žáci
Největší společný dělitel
1..1 Největší společný dělitel Předpoklady: 01016 Číslo Číslo nsn Platí pravidlo "nsn získáme jako součin obou čísel"? = 1 = Násobící pravidlo platí. 1 = Násobící pravidlo platí. 1 = Násobící pravidlo
4.2.6 Tabulkové hodnoty orientovaných úhlů
.. abulkové hodnoty orientovaných úhlů Předpoklady: 0 Pedagogická poznámka: Největším problémem při zavádění goniometrických funkcí pro orientovaný úhel je rychlá orientace v poloze koncového ramene a
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
1.2.3 Racionální čísla I
.2. Racionální čísla I Předpoklady: 002 Racionální jsou všechna čísla, která můžeme zapsat ve tvaru zlomku p q, kde p Z, q N. Například 2 ; ; 2 ; 6 ; umožňují počítat s částmi celků (třeba polovina dortu),
HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27
Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus
( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.
Vzorce pro dvojnásobný úhel Předpoklady: 0 Začneme příkladem Př : Pomocí součtových vzorců odvoď vzorec pro sin x sin x sin x + x sin x cos x + cos x sin x sin x cos x Př : Pomocí součtových vzorců odvoď
Vzorce pro poloviční úhel
4.. Vzorce pro poloviční úhel Předpoklady: 409 Chceme získat vzorce pro poloviční úhel vyjdeme ze vzorců pro dvojnásobný úhel: sin = sin cos, cos = cos sin. Výhodnější je vzorec cos = cos sin, obsahuje
3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům
RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních
GONIOMETRICKÉ FUNKCE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ
Práce s kalkulátorem
..8 Práce s kalkulátorem Předpoklady: 007 Ke koupi kalkulátoru: Myslím, že každý student by si kalkulačku koupit měl. V současnosti sice existují dvě možné náhrady, které buď má (mobilní telefon) nebo
2.3.8 Lineární rovnice s více neznámými II
..8 Lineární rovnice s více neznámými II Předpoklady: 07 Tato hodina má dva cíle: Procvičit si řešení rovnic se dvěma neznámými z minulé hodiny. Zkusit vyřešit dodržováním pravidel a pochopením základů
4.2.15 Funkce kotangens
4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.
( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924
5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především
7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky
0 Učivo Vysvětlení Př. + pozn. Zlomek vyjádření části celku část snědla jsem kousky celek a pizza byla rozdělena na kousky Pojem zlomek Vyjádření zlomku Základní tvar: čitatel a jmenovatel jsou nesoudělná
7.5.1 Středová a obecná rovnice kružnice
7.5.1 Středová a obecná rovnice kružnice Předpoklady: kružnice, 505, 7103, 730 Pedagogická poznámka: Pro tuto hodinu (a mnoho dalších hodin v kapitole o kuželosečkách) je rozhodující, aby studenti uměli
Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
Soustavy více rovnic o více neznámých I
313 Soustavy více rovnic o více neznámých I Předpoklady: 31 Př 1: Co při řešení soustav rovnic o více neznámých představují rovnice? Co představují neznámé? Čím je určen počet řešení? Kdy je řešení právě
4a) Racionální čísla a početní operace s nimi
Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na
( ) ( ) ( ) x Užití derivace. Předpoklady: 10202, 10209
.. Užití derivace Předpoklad:, 9 Pedagogická poznámka: Hodinu dělíme na dvě polovin jednu na tečn a normál, druhou na L Hospitalova pravidla. Už při zavádění derivace, jsme si ukázali, že hodnota derivace
ROVNICE A NEROVNICE. Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec. VY_32_INOVACE_M1r0107
ROVNICE A NEROVNICE Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec VY_32_INOVACE_M1r0107 LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU V této lekci rozšíříme naše znalosti o počítání lineárních rovnic,
Úlohy domácí části I. kola kategorie C
6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,
2.4.13 Kreslení graf obecné funkce II
..1 Kreslení graf obecné funkce II Předpoklady: 0, 0, 1 Stejně jako v minulé hodině budeme kreslit grafy funkcí odvozených od funkce y = f ( x), která je dána grafem na obrázku: Př. 1: Nakresli graf funkce
Určete a graficky znázorněte definiční obor funkce
Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro
Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:
1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou
1.2.3 Racionální čísla I
.2. Racionální čísla I Předpoklady: 002 Pedagogická poznámka: Hodina je trochu netypická, na jejím začátku provedu výklad (spíše opakování), který nechám na tabuli a potom až do konce řeší žáci zbytek
FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př.
.. Nerovnice v součinovém tvaru II Předpoklady: 0 Př. 1: Řeš nerovnici x x 0. Problém: Na levé straně není součin musíme ho nejdříve vytvořit: x x x x x x x x x x + 0. ( ( ( = = + řešíme nerovnici: ( (
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
3.2.8 Oblouková míra. Předpoklady:
3..8 Oblouková mía Předpoklady: Pedagogická poznámka: Tato hodina zabee přibližně jednu a půl vyučovací hodiny. Na 45 minut je možné hodinu zkátit buď vynecháním někteých převodů na konci (vzhledem k tomu,
4.3.1 Goniometrické rovnice I
4.. Goniometrické rovnice I Předpoklady: 4, 4, 46, 47 Pedagogická poznámka: Úspěšnost této hodiny zcela závisí na tom, jak rychle jsou studenti schopni hledat ke známým hodnotám goniometrických funkcí
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická
Metody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
( ) Násobení a dělení komplexních čísel v goniometrickém tvaru. π π. Předpoklady: 6203
6..4 Násobení a dělení komplexních čísel v goniometrickém tvaru Předpoklady: 603 Pedagogická ponámka: Tato hodina vyžaduje spíše jeden a půl vyučovací hodiny Máme dvě komplexní čísla v algebraickém tvaru:
CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
Rovnice a nerovnice v podílovém tvaru
Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu
ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára
9... ZLOMKY A RACIONÁLNÍ ČÍSLA Pojem zlomku Zlomek zápis části celku a b a je část, b je celek, zlomková čára Každé číslo zapsané zlomkem lze vyjádřit jako číslo desetinné 7 Zlomková čára je dělící čára
1.1.3 Práce s kalkulátorem
.. Práce s kalkulátorem Výrazy zadáváme do kalkulačky pokud možno vcelku, pozor na závorky a čísla ve jmenovateli u zlomků. Př. : Spočti na kalkulačce s maximální možnou přesností a bez zapisování mezivýsledků:
Řešení slovních úloh pomocí lineárních rovnic
Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 40, 4, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli (nejlépe tak, aby se zápis mohl otočit nebo jinak schovat