2.4.3 Kreslení grafů funkcí metodou napodobení výpočtu II
|
|
- Aneta Pospíšilová
- před 6 lety
- Počet zobrazení:
Transkript
1 ..3 Kreslení grafů funkcí metodou napodobení výpočtu II Předpoklady: 0 Př. : Nakresli graf funkce y = x +. Určení hodnoty pro x vypadá takto: Vybereme x, například x = Nakreslíme funkci y = x Uděláme ( ) = Nakreslíme funkci y = x Uděláme ( ) 3 Dopočteme ( ) 3 + = Nakreslíme funkci y = x + + = Nakreslíme funkci y = x Graf funkce y = x Hodnoty předchozí funkce (y-ové souřadnice) násobíme, měníme znaménko z kladných hodnot se stávají záporné, ze záporných kladné body nad osou x převrátíme pod ní ; ; ), body pod osou x převrátíme nad ní
2 - - - K hodnotám předchozí funkce (y-ové souřadnice) přičítáme jedničku všechny hodnoty zvětšíme o jednu ; ;3 ) graf se posune o jedničku nahoru souřadnice) děláme absolutní hodnotu kladné hodnoty neměníme (body nad osou x zůstávají stejné), záporným hodnotám změníme znaménko na kladné (body pod osou x převrátíme nad ní)) - Poznámka: Graf předchozí funkce je stejný jako graf funkce y = x z minulé hodiny (kvůli rovnosti ( ) x = x = x + ). Př. : Nakresli graf funkce y = x +. Určení hodnoty pro x vypadá takto: Vybereme x, například x = Nakreslíme funkci y = x Uděláme = 3 Nakreslíme funkci y = x Uděláme = 3 Nakreslíme funkci y = x Uděláme = 3 Nakreslíme funkci y = x Dopočteme + = Nakreslíme funkci y = x +
3 - - - Graf funkce y = x Od hodnot předchozí funkce (y-ové souřadnice) odečítáme jedničku všechny hodnoty zmenšíme o jedna ; ; 3 ) graf se posune o jednu dolů souřadnice) děláme absolutní hodnotu kladné hodnoty neměníme (body nad osou x zůstávají stejné), záporným hodnotám změníme znaménko na kladné (body pod ; 3 ;3 ) osou x převrátíme nad ní [ ] [ ] Hodnoty předchozí funkce (y-ové souřadnice) násobíme, měníme znaménko z kladných hodnot se stávají záporné body nad osou x převrátíme pod ;3 ; 3 ) ní [ ] [ ] - 3
4 - - - K hodnotám předchozí funkce (y-ové souřadnice) přičítáme jedničku všechny hodnoty zvětšíme o jednu ; 3 ; ) graf se posune o jedničku nahoru - Pedagogická poznámka: Studenti mají poměrně často problémy sestavit správnou posloupnost funkcí z funkce y = x přecházejí rovnou na funkci y = x. Př. 3: Nakresli graf funkce y = x. Určení hodnoty pro x vypadá takto: Vybereme x, například x = Nakreslíme funkci y = x Uděláme ( ) = Nakreslíme funkci y = x Uděláme ( ) 6 Dopočteme ( ) 6 = Nakreslíme funkci y = x = Nakreslíme funkci y = x Graf funkce y = x -
5 souřadnice) děláme dvojnásobek dojde například k těmto změnám ; ; ; ;, [ ] [ ], [ ] [ ] [ 0;0] [ 0;0], [ ;] [ ; ], [ ;] [ ;] graf funkce bude více strmý, Od hodnot předchozí funkce (y-ové souřadnice) odečítáme dvojku všechny hodnoty zmenšíme o dvě ; ; 6 ) graf se posune o dvě dolů souřadnice) děláme absolutní hodnotu kladné hodnoty neměníme (body nad osou x zůstávají stejné), záporným hodnotám změníme znaménko na kladné (body pod ; 6 ; 6 ) osou x převrátíme nad ní [ ] [ ] - Pedagogická poznámka: Někteří studenti mají tendenci začínat funkcí y = x. To je samozřejmě možné, ale já to v tomto okamžiku zakazuji, aby se na přechodu y = x y = x naučili chápat, jak graf funkce mění násobení dvěma. Př. : Nakresli graf funkce y = x. Určení hodnoty pro x vypadá takto: Vybereme x, například x = Nakreslíme funkci y = x Uděláme = Nakreslíme funkci y = x 5
6 Uděláme = Nakreslíme funkci y = x Dopočteme = 8 Nakreslíme funkci y = x Graf funkce y = x Od hodnot předchozí funkce (y-ové souřadnice) odečítáme dvojku všechny hodnoty zmenšíme o dvě ; ; ) graf se posune o dvě dolů souřadnice) děláme absolutní hodnotu kladné hodnoty neměníme (body nad osou x zůstávají stejné), záporným hodnotám změníme znaménko na kladné (body pod ; ; ) osou x převrátíme nad ní [ ] [ ] - 6
7 - - - souřadnice) děláme dvojnásobek dojde například k těmto změnám ; ; ; ;, [ ] [ ], [ ] [ ] [ 0;0] [ 0;0], [ ;] [ ; ], [ ;] [ ;] graf funkce bude více strmý, - Dodatek: Protažení grafu funkce po vynásobení dvěma si můžeme ukázat na nafukovacím balónku. Vynásobení dvěma zvětší na dvojnásobek všechny svislé vzdálenosti na grafu, stejně tak jako bychom graf nakreslený na gumě balónku zdeformovali tím, že gumu balónku natáhneme ve svislém směru na dvojnásobek. Pedagogická poznámka: Zásadní okamžik, kde se studenti setkávají s násobením dvěma (natahuje funkci ve svislém směru na dvojnásobek), pokud se jim podaří tento krok udělat samostatně nebudou mít problém ani s následujícím příkladem. U některých studentů jsem se setkal se zajímavou chybou, kdy se jim podaří zjistit, ;0 je graf strmější a proto, aby zachovali tvar grafu že napravo do bodu [ ] ( véčko ), nakreslí graf nalevo od bodu [ ;0 ] (vlastně otočí véčko okolo bodu [ ;0 ] o cca úhel 30 ). Př. 5: Nakresli graf funkce y = x +. Určení hodnoty pro x vypadá takto: Vybereme x, například x = Nakreslíme funkci y = x Uděláme + = Nakreslíme funkci y = x + Uděláme + = Nakreslíme funkci y = x + Dopočteme + = Nakreslíme funkci y = x + 7
8 - - - Graf funkce y = x K hodnotám předchozí funkce (y-ové souřadnice) přičítáme dvojku všechny hodnoty zvětšíme o dvě ; ; ) graf se posune o dvě nahoru souřadnice) děláme absolutní hodnotu kladné hodnoty neměníme (body nad osou x zůstávají stejné), záporným hodnotám změníme znaménko na kladné (body pod ; ; ) osou x převrátíme nad ní [ ] [ ] souřadnice) děláme polovinu dojde ; ;, například k těmto změnám [ ] [ ] [ 3;] [ 3;0,5], [ ;0] [ ; 0], [ ;] [ ; 0,5], [ 0; ] [ 0;] graf funkce bude méně strmý - 8
9 Př. 6: Nakresli graf funkce y = x +. Teď budeme postupovat rychleji, nakreslíme do jednoho obrázku více grafů y = x y = x + y = x + - y = x y = x + - y = x + y = x y = x + - Pedagogická poznámka: Problémem je přechod od funkce y = x + k funkci y = x +, kde absolutní hodnota vytvoří další zalomení. Studenti se podvědomě snaží udržet tvar funkce podobný písmenu V. 9
10 Př. 7: Nakresli graf funkce y = x 3 +. Teď budeme postupovat rychleji, nakreslíme do jednoho obrázku více grafů y = x y = x 3 y = x y = x 3 y = x 3 y = x y = x 3 y = x 3 + y = x Př. 8: Nakresli graf funkce y = x 3 +. Teď budeme postupovat rychleji, nakreslíme do jednoho obrázku více grafů. 0
11 y = x y = x y = x y = x y = x y = x y = x 3 y = x Př. 9: Petáková: strana 8/cvičení 0 g, g, g3, g Shrnutí: Když si dáme pozor, nakreslíme i úplné šílenosti.
2.4.2 Kreslení grafů funkcí metodou napodobení výpočtu I
.. Kreslení grafů funkcí metodou napodobení výpočtu I Předpoklady: 01 Opakování metoda napodobení výpočtu: Nakreslím si graf funkce y = x a postupně s ním provádím úpravy odpovídající provádění výpočtů
2.4.13 Kreslení graf obecné funkce II
..1 Kreslení graf obecné funkce II Předpoklady: 0, 0, 1 Stejně jako v minulé hodině budeme kreslit grafy funkcí odvozených od funkce y = f ( x), která je dána grafem na obrázku: Př. 1: Nakresli graf funkce
2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
2.5.1 Kvadratická funkce
.5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou
Grafy funkcí odvozených z funkcí sinus a cosinus II
.. Grafy funkcí odvozených z funkcí sinus a cosinus II Předpoklady: 0 Pedagogická poznámka: Pokud máte málo času můžete z této hodiny vyřešit pouze první tři příklady a ve zbývajících 5 minutách projít
+ 2 = 1 pomocí metody dělení definičního oboru. ( )
..0 Rovnice s absolutní hodnotou II Předpoklady: 09 Pedagogická poznámka: Jenom nejlepší studenti stihnou spočítat obsah celé hodiny. Většina třídy se dostane přibližně k příkladu 7, což stačí na obstojné
Grafy funkcí odvozených z funkcí sinus a cosinus I
4..0 Grafy funkcí odvozených z funkcí sinus a cosinus I Předpoklady: 409 Pedagogická poznámka: Kvůli následující hodině je třeba dát pozor, příliš se nezaseknout na začátku hodiny a postupovat tak, aby
= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme
- FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).
x 0; x = x (s kladným číslem nic nedělá)
.. Funkce absolutní hodnota Předpoklady: 08, 07 x - zničí znaménko čísla, všechna čísla změní na nezáporná Jak vyjádřit matematicky? Pomocí číselné osy: x je vzdálenost obrazu čísla na číselné ose od počátku.
2.1.17 Parametrické systémy lineárních funkcí II
.1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů
2.5.1 Kvadratická funkce
.5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou
Lineární funkce IV
.. Lineární funkce IV Předpoklady 0 Pedagogická poznámka Říkám studentům, že cílem hodiny není naučit se něco nového, ale použít to, co už známe (a možná se také přesvědčit o tom, jak se nemůžeme obejít
4.3.3 Základní goniometrické vzorce I
4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
( 2 ) ( 8) Nerovnice, úpravy nerovnic. Předpoklady: 2114, Nerovnice například 2x
..5 Nerovnice, úpravy nerovnic Předpoklady:, 03 Nerovnice například 3 < + 5 - zápis nerovnosti hodnot dvou výrazů. Za můžeme dosazovat různá čísla, tím měníme hodnoty obou výrazů. Hledáme takové, aby nerovnost
2.4.9 Rovnice s absolutní hodnotou I
..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete
Nepřímá úměrnost I
.. Nepřímá úměrnost I Předpoklady: 000 Př. : Která z následujících slovních úloh popisuje nepřímou úměrnost? Zapiš nepřímou úměrnost jako funkci. a) 7 rohlíků stojí Kč. Kolik bude stát rohlíků? b) Pokud
2.4.9 Rovnice s absolutní hodnotou I
..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete
Použití substituce pro řešení nerovnic II
.7. Použití substituce pro řešení nerovnic II Předpoklad: 7, 7, 7 Pedagogická poznámka: Platí to samé, co pro předchozí hodinu. Skvělé cvičení na orientaci v příkladu, přehledný zápis a schopnost řešit
. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
7.5.13 Rovnice paraboly
7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
Absolutní hodnota I. π = π. Předpoklady: = 0 S nezápornými čísly absolutní hodnota nic nedělá.
1..10 Absolutní hodnota I Předpoklady: 01005 = 0 = 0 S nezápornými čísly absolutní hodnota nic nedělá. π = π = = Záporná čísla absolutní hodnota změní na kladná (vynásobí je 1). 5 5 = Absolutní hodnota
2.8.6 Parametrické systémy funkcí
.8.6 Parametrické sstém funkcí Předpoklad:, 0,, 50, 60 Stejně jako parametrická rovnice zastupuje mnoho rovnic najednou, parametrick zadaná funkce zastupuje mnoho funkcí. Pedagogická poznámka: Názornost
4.2.15 Funkce kotangens
4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.
2.1.10 Lineární funkce III
..0 Lineární funkce III Předpoklad: 09 Minulá hodina Lineární funkce je každá funkce, která jde zapsat ve tvaru = a + b, kde a, b R. Grafem lineární funkce je přímka (část přímk), kterou kreslíme většinou
2.3.7 Lineární rovnice s více neznámými I
..7 Lineární rovnice s více neznámými I Předpoklady: 01 Pedagogická poznámka: Následující hodinu považuji za velmi důležitou hlavně kvůli pochopení soustav rovnic, které mají více než jedno řešení. Proto
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 40, 4, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli (nejlépe tak, aby se zápis mohl otočit nebo jinak schovat
Nerovnice v podílovém tvaru II. Předpoklady: 2303, x. Podmínky: x x 1, 2 x 0 x 2, 1 3x
.. Nerovnice v podílovém tvaru II Předpoklady: 0, 04 Př. : ( x )( x + ) ( x + )( x)( x) 0. Podmínky: x + 0 x, x 0 x, x 0 x x + je vždy kladný nebudeme se s ním dále zabývat, znaménko neovlivňuje. Člen
2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic
.3.0 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
4.2.9 Vlastnosti funkcí sinus a cosinus
4..9 Vlastnosti funkcí sinus a cosinus Předpoklady: 408 Grafy funkcí y = sin a y = cos, které jsme získali vynesením hodnot v minulé hodině. 0,5-0,5 - Obě křivky jsou stejné, jen kosinusoida je o π napřed
4.3.3 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
( ) Grafy mocninných funkcí. Předpoklady: 2414, 2701, 2702
74 Graf mocninných funkcí Předpoklad: 44, 70, 70 Pedagogická poznámka: Hodina se skládá ze dvou částí V první nakreslíme opakováním základní metod graf několika odvozenin z mocninných funkcí V druhé části
2.9.13 Logaritmická funkce II
.9. Logaritmiká funke II Předpoklady: 9 Logaritmus se základem nazýváme dekadiký logaritmus a místo log píšeme pouze log pokud v zápisu logaritmu hybí základ, předpokládáme, že základem je číslo (logaritmus
[ ] Parametrické systémy lineárních funkcí I. Předpoklady: 2110
..6 Parametrické sstém lineárních funkcí I Předpoklad: 0 Pedagogická poznámka: Tato hodina vznikla až v Třeboni kvůli problémům, které studenti měli s následující hodinou. Ukázalo se, že problém, kterých
( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924
5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět
Řešené příklady ze starých zápočtových písemek
Řešené příklady ze starých zápočtových písemek Úloha. Najděte všechna reálná řešení rovnice log x log x 3 = log 6. Řešení. Nebot logaritmus je definovaný pouze pro kladné hodnoty dostáváme ihned podmínku
4.3.2 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
2.9.4 Exponenciální rovnice I
9 Eponenciální rovnice I Předpoklady: 90 Pedagogická poznámka: Eponenciální rovnice a nerovnice jsou roztaženy do celkem sedmi hodin zejména proto, že jsou brány jako nácvik výběru metody Nejprve si v
2.6.5 Další použití lineárních lomených funkcí
.6.5 Další použití lineárních lomených funkcí Předpoklady: 60, 603 U předchozích funkcí jsme měli vždy s funkcemi rovnice existují lineární lomené rovnice a nerovnice? Jak by vypadaly? Například takto:
Funkce přímá úměrnost III
.. Funkce přímá úměrnost III Předpoklad: 000 Př. : Na obrázku jsou nakreslen graf následujících přímých úměrnosti. Popiš je. a) = b) = c) = d) = Která z nakreslených funkcí není v nabídce? Odhadni její
Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá
4..4 Funkce tangens Předpoklady: 40 c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro
( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919
.. Logaritmické nerovnice I Předpoklady: 08, 7, Pedagogická poznámka: Pokud mají studenti pracovat samostatně budou potřebovat na všechny příklady minimálně jeden a půl vyučovací hodiny. Pokud není čas,
4.3.4 Základní goniometrické vzorce I
.. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
[ 0,2 ] b = 2 y = ax + 2, [ 1;0 ] dosadíme do předpisu Soustavy lineárních nerovnic. Předpoklady: 2206
..7 Soustavy lineárních nerovnic Předpoklady: 06 Pedagogická poznámka: První příklad je opakování, pokud se u někoho objeví problémy, je třeba je řešit před hodinou 0009. Př. : Urči předpis funkce f. Odhadni
III Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208
4..0 Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 40, 408 Pedagogická poznámka: Tato kapitola nepřináší nic nového. Sám autor si myslí, že by bylo lepší, kdyby si studenti metodu rychlého
7.1.3 Vzdálenost bodů
7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z
Grafy funkcí s druhou odmocninou
.7.0 Grafy funkcí s druhou odmocninou Předpoklady: 003, 00709 Pedagogická poznámka: V první části hodiny při kreslení grafů nesmí jít o nic nového, studenti musí chápat, že jde znovu o pouhé opakování
Soustavy více rovnic o více neznámých III
2..15 Soustavy více rovnic o více neznámých III Předpoklady: 214 Největší problém při řešení soustav - výroba trojúhelníkového tvaru (tedy vyrábění nul). Postup v dosavadních příkladech byl rychlý - využíval
Vzorce pro poloviční úhel
4.. Vzorce pro poloviční úhel Předpoklady: 409 Chceme získat vzorce pro poloviční úhel vyjdeme ze vzorců pro dvojnásobný úhel: sin = sin cos, cos = cos sin. Výhodnější je vzorec cos = cos sin, obsahuje
Kreslení elipsy Andrej Podzimek 22. prosince 2005
Kreslení elipsy Andrej Podzimek 22. prosince 2005 Kreslení elipsy v obecné poloze O co půjde Ukázat přesný matematický model elipsy Odvodit vzorce pro výpočet souřadnic důležitých bodů Nalézt algoritmus
2.7.3 Použití grafů základních mocninných funkcí
.7.3 Použití grafů základních mocninných funkcí Předpoklady: 70, 70 Pedagogická poznámka: Jedním z nejdůležitějších cílů hodiny je, aby si studenti kreslili obrázky, které jim při řešení příkladů doopravdy
Nápovědy k numerickému myšlení TSP MU
Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě
7.2.12 Vektorový součin I
7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné
Hyperbola. Předpoklady: 7507, 7512
7.5.6 Hperbola Předpoklad: 7507, 75 Pedagogická poznámka: Na první pohled se nezdá, že b hodina bla příliš zaplněná, ale kreslení obrázků studentům (spíše studentkám) docela trvá. Je dobré vsvětlit, že
III Určování hodnot funkcí sinus a cosinus
..7 Určování hodnot funkcí sinus a cosinus Poznámka: Obsah této kapitoly nepřináší nic nového. Sám autor si myslí, že by asi bylo lepší, kdyby si studenti nějako metodu rychlého určování hodnot vymysleli
4.3.3 Goniometrické nerovnice I
4 Goniometrické nerovnice I Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.
..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální
5.1.3 Obrazy těles ve volném rovnoběžném promítání I
5.1.3 Obrazy těles ve volném rovnoběžném promítání I Předpoklady: 5102 Pedagogická poznámka: K obrazům těles ve volném rovnoběžném promítání je možné přistoupit dvěma způsoby: Látku v podstatě přeskočit
( ) ( ) Obsahy. Předpoklady:
1.4. Obsahy Předpoklady: 0409 Př. 1: Jarda a Pavel si koupili zahradu a dohadují se, kdo nakoupil lépe. Jardova zahrada má tvar čtverce o straně m, Pavlova tvar obdélníku o stranách 0 m x 30 m. Kolik metrů
Průběh funkce I (monotónnost)
0..0 Průěh funkce I (monotónnost) Předpoklad: 00, 009 Pedagogická poznámka: Tato hodina je značně osáhlá, tak je nutné uď přenechat poslední příklad na příští hodinu, neo se příliš nezdržovat úvodní částí.
( ) ( ) Lineární nerovnice II. Předpoklady: Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < 3 :
.. Lineární nerovnice II Předpoklady: 00 Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < : Správné řešení. x < / + x 0 < + x / < x K = ( ; ) Test možné správnosti: x = :
2.3.9 Lineární nerovnice se dvěma neznámými
.3.9 Lineární nerovnice se dvěma neznámými Předpoklady: 308 Př. 1: Najdi všechna řešení nerovnice 6x + 1 10. Zkusíme jako u rovnice. 6x + 1 10 3y 9 6x 9 6x y = 3 x 3 Jak zapsat množinu všech řešení? K
Grafy relací s absolutními hodnotami
..5 Grafy relací s absolutními hodnotami Předpoklady: 0, 0, 03, 0, 05,, 3 Pedagogická poznámka: Tato hodina nepatří do klasických středoškolských osnov. Je reakcí na fakt, že relace s absolutními hodnotami
( ) Absolutní hodnota. π = π. Předpoklady: základní početní operace. 0 = 0 S nezápornými čísly absolutní hodnota nic nedělá
1..9 Absolutní hodnota Předpoklady: základní početní operace = 0 = 0 S nezápornými čísly absolutní hodnota nic nedělá π = π = 3 3 = Záporná čísla absolutní hodnota změní na kladná (vynásobí je 1) 5 5 3
( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př.
.. Nerovnice v součinovém tvaru II Předpoklady: 0 Př. 1: Řeš nerovnici x x 0. Problém: Na levé straně není součin musíme ho nejdříve vytvořit: x x x x x x x x x x + 0. ( ( ( = = + řešíme nerovnici: ( (
Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.
5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?
Průběh funkce II (hledání extrémů)
.. Průběh funkce II (hledání etrémů) Předpoklad: Pedagogická poznámka: Poslední příklad v běžné vučovací hodině nestíháme. Rchlost postupu je možné značně ovlivnit tím, kolik času dáte studentům na výzkumné
5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202
5.2.3 Duté zrcadlo I Předpoklady: 520, 5202 Dva druhy dutých zrcadel: Kulové zrcadlo = odrazivá plocha zrcadla je částí kulové plochy snazší výroba, ale horší zobrazení (pro přesné zobrazení musíme použít
2.1.5 Graf funkce I. Předpoklady: 2104
..5 Graf funkce I Předpoklad: 0 Pedagogická poznámka: Největší změnou oproti klasickému řazení v gmnaziální sadě, je spojení dílů o rovnicích a funkcích. Představa grafu umožňuje studentům daleko lépe
7.5.1 Středová a obecná rovnice kružnice
7.5.1 Středová a obecná rovnice kružnice Předpoklady: kružnice, 505, 7103, 730 Pedagogická poznámka: Pro tuto hodinu (a mnoho dalších hodin v kapitole o kuželosečkách) je rozhodující, aby studenti uměli
4.2.5 Orientovaný úhel II. π π = π = π (není násobek 2π ) 115 π není velikost úhlu α. Předpoklady: Nejdříve opakování z minulé hodiny.
.2. Orientovaný úhel II Předpoklady: 20 Nejdříve opakování z minulé hodiny. Př. 1: Rozhodni, které z následujících hodnot jsou velikosti úhlu α = π. a) 11 π b) 7 a) Pokud je úhel π základní velikostí úhlu
( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis
1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž
Funkce rostoucí, funkce klesající II
.. Funkce rostoucí, funkce klesající II Předpoklad: Př. : Rozhodni, zda funkce = na následujícím obrázku je rostoucí nebo klesající. = - - - - Pro záporná jde funkce dolů, pro kladná nahoru není ani rostoucí
POČÍTAČOVÁ GRAFIKA VEKTOROVÁ GRAFIKA POKROČILEJŠÍ ČINNOSTI
POČÍTAČOVÁ GRAFIKA VEKTOROVÁ GRAFIKA POKROČILEJŠÍ ČINNOSTI MALOVÁNÍ HODIN Naším úkolem bude namalovat nástěnné hodiny. VODÍCÍ LINKY Vodící linky umožňují přesné umístění kreslených objektů. Není nutné
( ) Slovní úlohy vedoucí na soustavy rovnic I. Předpoklady:
4..7 Slovní úlohy vedoucí na soustavy rovnic I Předpoklady: 0405 Pedagogická poznámka: Naprostou většina chyb při sestavování rovnic v následujících příkladech tvoří obrácené rovnosti ve kterých studenti
Nerovnice v součinovém tvaru, kvadratické nerovnice
Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí
Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:
1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou
Učebnice pro modeláře Ing. Ivo Mikač 2008
Strana 1 Obdélníkové konstrukční křídlo V této lekci se seznámíme s postupem kreslení konstrukčního obdélníkového křídla. Postup je poměrně jednoduchý a bude vám v mnohém připomínat postup při kreslení
( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207
78 Skalární součin II Předpoklady: 707 Pedagogická poznámka: Hodina má tři části, považuji tu prostřední za nejméně důležitou a proto v případě potřeby omezuji hlavně ji Na začátku hodiny je důležité nechat
Programování v jazyku LOGO - úvod
Programování v jazyku LOGO - úvod Programovací jazyk LOGO je určen pro výuku algoritmizace především pro děti školou povinné. Programovací jazyk pracuje v grafickém prostředí, přičemž jednou z jeho podstatných
Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A)
Funkce úvod Co je funkce Funkce je předpis, který číslu z množiny A přiřazuje právě jedno číslo z množiny B. Množina A je definiční obor funkce a množina B je obor hodnot funkce. Že tuto definici znáte,
2.4.7 Omezenost funkcí, maximum a minimum
..7 Omezenost funkcí, maimum a minimum Předpoklady: 03, 0 Př. : Nakresli vedle sebe grafy funkcí: y =, y =, y3 =. Urči jejich obory hodnot. f - - - - - - - - - - - - H ( f ) = R H ( f ) = ; ) H ( f ) =
4.2.5 Orientovaný úhel II
.2.5 Orientovaný úhel II Předpoklady: 20 Minulá hodina Orientovaný úhel rozlišujeme: směr otáčení (proti směru hodinových ručiček je kladný směr), počáteční rameno. Každý úhel má nekonečně mnoho velikostí:...,
1.8.5 Sčítání a odčítání celých čísel I
1.8.5 Sčítání a odčítání celých čísel I Předpoklady: 010804 Př. 1: Nepočítej, pouze rozhodni, zda výsledek bude kladné nebo záporné celé číslo. Rozhodnutí zdůvodni. a) 2015 1995 12581 4525 25152 + 9585
Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a
4.. Funkce kotangens Zopakuj všechny části předchozí kapitoly pro funkci kotangens. c B a A b C Tangens a kotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá
2.1.2 Měsíční fáze, zatmění Měsíce, zatmění Slunce
2.1.2 Měsíční fáze, zatmění Měsíce, zatmění Slunce Předpoklady: 020101 Pomůcky: lampičky s klasickými žárovkami, stínítko, modely slunce, země, měsíce na zatmění Měsíc je velmi zajímavé těleso: jeho tvar
Soustavy rovnic obsahující kvadratickou rovnici II
.7. Soustavy rovnic obsahující kvadratickou rovnici II Předpoklady: 70 Soustavy s kvadratickou rovnicí se často vyskytují v analytické geometrii (náplň druhého pololetí třetího ročníku). Typický příklad
K výsečovým souřadnicím
3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové
Hledání úhlů se známou hodnotou goniometrické funkce
4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických
Definice funkce tangens na jednotkové kružnici :
Registrační číslo projektu: CZ..07/../0.00 FUNKCE TANGENS Definice funkce tangens na jednotkové kružnici : Funkce tangens je daná ve tvaru : y tgx sin x. cos x Důvod je dobře vidět na předchozím obr. z
Kvadratické rovnice (dosazení do vzorce) I
.. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: 000 Rovnicí se nazývá vztah rovnosti mezi hodnotami dvou výrazů obsahujícími jednu nebo více neznámých. V této kapitole se budeme zabývat pouze
2.5.1 Opakování - úměrnosti se zlomky
.. Opakování - úměrnosti se zlomky Př. : Spočti: a) b) c) 6 0 0 : 7 9 a) 0 6 = = = 7 7 b) 9 = = 6 0 c) 0 0 0 9 0 9 : = = = 7 9 7 0 9 0 6 Př. : Přímá úměrnost má předpis y = x. Doplň tabulku této přímé
2.5.11 Přímá úměrnost II
.5.11 Přímá úměrnost II Předpoklady: 00510 Př. 1: Jirka odebral za celý rok na zahradě pouze 300 kwh a zaplatil za 1575 Kč. Platí za kwh více nebo méně než je typická cena? Doplň pro jeho cenu za kwh tabulku.
( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.
Vzorce pro dvojnásobný úhel Předpoklady: 0 Začneme příkladem Př : Pomocí součtových vzorců odvoď vzorec pro sin x sin x sin x + x sin x cos x + cos x sin x sin x cos x Př : Pomocí součtových vzorců odvoď
Soustavy více rovnic o více neznámých II
2..14 Soustavy více rovnic o více neznámých II Předpoklady: 21 Největší problém při řešení soustav = výroba trojúhelníkového tvaru (tedy vyrábění nul). Postup v dosavadních příkladech byl rychlý - využíval
7.1.2 Kartézské soustavy souřadnic II
7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě
Rovnoměrný pohyb IV
2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí
2.9.1 Exponenciální funkce
.9. Eponenciální funkce Předpoklad: 7 Funkce, které už známe: 5 =, =, =,. = =, = =, = =, 3 3 = =, = =, ( 9 = 3, protože 3 = 9. Odmocnina je inverzní k mocnině a proto ověřujeme hodnot odmocnin pomocí mocnění)
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 4, 4605 Minulá hodina: Ohmický odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly
Rozšiřování a krácení zlomků Rozšiřování vynásobení čitatele i jmenovatele stejným číslem různým od nuly rozšířený zlomek vznikl tak, že jsme čitatel i jmenovatel původního zlomku vynásobili číslem rozšířený