DETERMINANTY EKONOMICKÉHO



Podobné dokumenty
18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1

Všeobecná rovnováha 1 Statistický pohled

Ilustrační příklad odhadu LRM v SW Gretl

ROVNOVÁHA. 5. Jak by se změnila účinnost fiskální politiky, pokud by spotřeba kromě důchodu závisela i na úrokové sazbě?

Regrese. 28. listopadu Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly:

1 Odvození poptávkové křivky

4EK211 Základy ekonometrie

cíl teorie růstu zjistit příčiny bohatství národů

4EK211 Základy ekonometrie

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

4. Aplikace matematiky v ekonomii

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

3 Bodové odhady a jejich vlastnosti

z dat nasbíraných v letech Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

Regresní a korelační analýza

4EK211 Základy ekonometrie

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

Makroekonomie I cvičení

MODELY HOSPODÁŘSKÉHO RŮSTU

Diferenciální rovnice 1

ÚVOD. Nyní opuštění předpokladů Zkoumání vývoje potenciálního produktu. Cíl: Ujasnit si pojmy před představením různých teorií k ekonomickému růstu

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

= = 2368

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

1 Modelování systémů 2. řádu

Cvičení 9 dekompozice časových řad a ARMA procesy

Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Normální (Gaussovo) rozdělení

Makroekonomie I. Osnova přednášky: Zdroje ekonomického růstu. Užití metody výdajové základní východisko Souhrnné opakování a podstatné

Ilustrační příklad odhadu SM v SW Gretl

INDUKTIVNÍ STATISTIKA

5.3. Implicitní funkce a její derivace

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Solowův model dlouhodobého ekonomického růstu

Regresní a korelační analýza

You created this PDF from an application that is not licensed to print to novapdf printer (

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

AVDAT Klasický lineární model, metoda nejmenších

FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ VOLBA TECHNOLOGIE. Semestrální práce MIE2

METODY ODHADU REDUKOVANÉHO A STRUKTURNÍHO TVARU MODELŮ SIMULTÁNNÍCH ROVNIC.

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty

1 Polynomiální interpolace

PRAVDĚPODOBNOST A STATISTIKA

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Tomáš Karel LS 2012/2013

Makroekonomie I. Podstata a východiska. Definice: Přednáška 2. Ekonomický růst. Osnova přednášky: Ekonomický růst. Definování ekonomického růstu

6. EKONOMICKÝ RŮST I:

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

12. cvičení z PST. 20. prosince 2017

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.

Jednofaktorová analýza rozptylu

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

PRAVDĚPODOBNOST A STATISTIKA

TECHNICKÁ UNIVERZITA V LIBERCI

AVDAT Nelineární regresní model

MAKROEKONOMIE. Blok č. 5: ROVNOVÁHA V UZAVŘENÉ EKONOMICE

Konvergence kuncova/

2. EKONOMICKÁ ROVNOVÁHA. slide 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Regresní analýza 1. Regresní analýza

4ST201 STATISTIKA CVIČENÍ Č. 7

Testování statistických hypotéz

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.

Jednoduchá exponenciální rovnice

7. Funkce jedné reálné proměnné, základní pojmy

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

M - Příprava na 1. zápočtový test - třída 3SA

Bodové a intervalové odhady parametrů v regresním modelu

Krátkodobá rovnováha na trhu peněz

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

PRAVDĚPODOBNOST A STATISTIKA

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

Teorie regionálního rozvoje. Neoklasické teorie

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

(Cramerovo pravidlo, determinanty, inverzní matice)

Normální (Gaussovo) rozdělení

2 Hlavní charakteristiky v analýze přežití

Cvičení č. 4, 5 MAE 1. Pokud vycházíme ze speciální formy produkční funkce, můžeme rovnici pro tempo růstu potenciální produktu vyjádřit následovně

Funkce jedné proměnné

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík

Dynamika vázaných soustav těles

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5

Derivace goniometrických funkcí

Transkript:

MASARYKOVA UNIVERZITA EKONOMICKO-SPRÁVNÍ FAKULTA Studijní obor: Matematické a statistické metody v ekonomii DETERMINANTY EKONOMICKÉHO RŮSTU - MEZINÁRODNÍ STUDIE Determinants of Economic Growth - International Survey Diplomová práce Vedoucí práce: Ing. Miroslav Hloušek Autor: Bc. Michaela Stehlíková Brno 2010

Jméno a příjmení autora: Michaela Stehlíková Název diplomové práce: Determinanty ekonomického růstu - mezinárodní studie Název práce v angličtině: Determinants of Economic Growth - International Survey Katedra: ekonomie Vedoucí diplomové práce: Ing. Miroslav Hloušek Rok obhajoby: 2010 Anotace Cílem práce je pomocí ekonometrického přístupu kvantifikovat zdroje ekonomického růstu v mezinárodním měřítku. K tomu je využito dvou přístupů, a to tzv. Barro regressions a přístupu vycházejícího ze studie Mankiwa, Romera a Weila (1992). Model pro Barro regressions je složen pouze z proměnných, u kterých se předpokládá, že mohou ovlivňovat úroveň ustáleného stavu. Přístup Mankiwa, Romera a Weila (1992) oproti tomu vychází čistě z teoretických předpokladů Solowova-Swanova modelu. Výsledky obou přístupů jsou také porovnávány s vybranými studiemi zabývajícími se ekonomickým růstem. Odhady modelů jsou provedeny pomocí programu Gretl. Anotation The aim of the thesis is to quantify the resources of economic growth in the international scale using econometric approach. There are two approaches used, the so-called Barro regressions and approach based on study of Mankiw, Romer and Weil (1992). The model for Barro regressions is compound only from variables, which are expected to be able to influence the level of steady state. The approach of Mankiw, Romer and Weil (1992) is in contrast based on pure theoretical assumptions of Solow-Swan model. The results of both approaches are also compared with selected studies dealing with the economical growth. The estimates of the models are made with use of Gretl program. Klíčová slova ekonomický růst, ekonometrická analýza, Solowův-Swanův model, Barro regressions, konvergence Keywords economic growth, econometrics analysis, Solow-Swan model, Barro regressions, convergence

Čestné prohlášení Prohlašuji, že jsem diplomovou práci Determinanty ekonomického růstu - mezinárodní studie vypracovala samostatně pod vedením Ing. Miroslava Hlouška a uvedla v ní všechny použité literární a jiné odborné zdroje v souladu s právními předpisy, vnitřními předpisy Masarykovy univerzity a vnitřními akty řízení Masarykovy univerzity a Ekonomickosprávní fakulty MU. V Brně, dne Michaela Stehlíková

Poděkování Na tomto místě bych ráda poděkovala Ing. Miroslavu Hlouškovi za cenné rady, připomínky a čas, který mi věnoval. Také bych zde ráda poděkovala své rodině a to především za trpělivost, kterou mi věnovala během psaní této práce.

Obsah Úvod 7 1 Solowův-Swanův model 8 1.1 Předpoklady modelu.............................. 8 1.2 Řešení modelu.................................. 10 1.3 Model s technologickým pokrokem....................... 13 1.4 Model s lidským kapitálem........................... 15 2 Růst a konvergence v datech 16 2.1 Cobbova-Douglasova produkční funkce.................... 16 2.2 Ekonometrická analýza modelu........................ 18 2.2.1 Data................................... 19 2.2.2 Výsledky pro model bez lidského kapitálu.............. 19 2.2.3 Výsledky pro rozšířený model s lidským kapitálem.......... 22 2.3 Růst a konvergence............................... 27 2.3.1 Výsledky testování konvergence.................... 29 3 Barro regressions 39 3.1 Výsledky regrese................................ 41 3.1.1 Dílčí výsledky regrese.......................... 42 3.1.2 Zhodnocení výsledků.......................... 51 Závěr 52 Literatura 53 Seznam obrázků 55 Seznam tabulek 56 A Tabulka: Data pro model typu MRW 57 B Tabulky: Data pro Barro regressions 61

ÚVOD Úvod Cílem této diplomové práce je kvantifikovat determinanty ekonomického růstu v mezinárodním měřítku za pomocí ekonometrického přístupu. Bude se tedy jednat o odhad modelu (v našem případě dvou modelů) sestaveného pro určitou skupinu zemí s různými vysvětlujícími proměnnými. K samotnému způsobu odhadu a především k sestavování modelu v práci využijeme dvou zcela odlišných přístupů. První přístup bude vycházet z práce Mankiwa, Romera a Weila (1992) a bude založen pouze na konkrétních teoretických předpokladech Solowova-Swanova modelu. Cílem pak bude, mimo samotného ověření teoretického vlivu předpokládaných zdrojů ekonomického růstu na růst, ověření i teoretických závěrů tohoto modelu týkajících se konvergence a její rychlosti. Odhad modelu provedeme pomocí metody nejmenších čtverců a s využitím programu Gretl. Druhý přístup bude založen na tzv. Barro regressions. V tomto případě již nebudeme vycházet přímo z nějakého konkrétního modelu, který nám přesně určí podobu odhadovaného modelu, ale budeme si ho vytvářet sami. Za vysvětlující proměnné zde budeme dosazovat takové proměnné, u kterých budeme předpokládat, že by mohli mít vliv na úroveň ustáleného stavu. Vzhledem k možné endogenitě proměnných v tomto případě využijeme dvoustupňovou metodu nejmenších čtverců, namísto jednoduché OLS, a opět s využitím programu Gretl. Součástí práce bude také jak samotné porovnání jednotlivých výsledků obou přístupů navzájem, tak jejich porovnání s několika významnými studiemi jako jsou např. Mankiw, Romer a Weil (1992), Barro a Sala-i-Martin (2003), Easterly a Levin (2001), nebo Przeworski a Limongi (1993). 7

Předpoklady modelu Kapitola 1 Solowův-Swanův model Již dlouhá léta můžeme pozorovat značné odlišnosti mezi zeměmi. To nás samozřejmě přivádí k řadě otázek, na které bychom chtěli znát odpovědi. A jednou z nejčastěji diskutovaných otázek je bezesporu tato: Proč jsou některé země chudé a jiné bohaté? Jak víme z historie, tak téměř každá ekonomická škola si vytvořila svůj vlastní pohled na to, co ve skutečnosti ovlivňuje ekonomický růst. At už to byla klasická škola, která kladla důraz na dělbu práce a akumulaci kapitálu, nebo např. novější endogenní růstové modely, všechny poskytly alespoň minimální možné vysvětlení zdrojů růstu. A o něco podobného se pokusíme i my. Abychom mohli dobře kvantifikovat determinanty ekonomického růstu, tak je dobré si za výchozí model zvolit takový model, který je vystavěn na poměrně silném teoretickém základě. Jedním z takovýchto modelů je i Solowův-Swanův model, který budeme v této práci využívat. Nyní si tedy uvedeme jeho základní předpoklady, pomocí nichž si pak odvodíme ty nejdůležitější vlastnosti modelu. V celém textu pak budeme vycházet z děl Barroa a Sala-i-Martina (2003) a Acemoglua (2009). 1.1 Předpoklady modelu Mezi základní předpoklady Solowova-Swanova modelu patří to, že můžeme agregátní produkční funkci vyjádřit jako Y (t) = F [K(t), L(t), t], (1.1) kde Y (t) je tok výstupu vyprodukovaný za čas, K(t) fyzický kapitál, L(t) práce a t čas. Dále se předpokládá pouze jednosektorová produkce homogenního zboží, které můžeme bud spotřebovat C(t), nebo investovat I(t) k vytvoření nové jednotky fyzického kapitálu K(t). Navíc se předpokládá, že ekonomika je uzavřená, tedy že platí S(t) = I(t) = Y (t) C(t). (1.2) Jak jsme již uvedli, tak model předpokládá to, že investice slouží k růstu kapitálu. Jde ale pouze o hrubý růst kapitálu, protože fyzický kapitál podléhá opotřebení. Proto musíme při výpočtu čistého růstu kapitálové zásoby ještě odečíst velikost δ, která nám udává míru depreciace. 8

Předpoklady modelu K(t) = I(t) δk(t) (1.3) Navíc zde předpokládáme dvě exogenní veličiny n a s, které označují míru přírůstku obyvatelstva a míru úspor. Platí tedy pro ně, že n = L/L a s = S(t)/Y (t). (1.4) Posledním a možná nejdůležitějším předpokladem je to, že uvažujeme pouze tzv. neoklasickou produkční funkci, která splňuje následující podmínky. 1. Pro každé K > 0 a L > 0, je F (.) kladná a platí: F (K, L) K F (K, L) L > 0, > 0, 2 F (K, L) < 0, K 2 2 F (K, L) < 0. L 2 (1.5) 2. F (.) má konstantní výnosy z rozsahu: F (λk, λl) = λf (K, L) pro každé λ, (1.6) 3. a pro mezní produkt kapitálu a práce platí: ( ) ( ) F (K, L) F (K, L) lim = lim = K 0 K L 0 L ( ) ( ) F (K, L) F (K, L) lim = lim = 0. K K L L (1.7) Tyto poslední podmínky jsou často označovány jako tzv. Inadovy podmínky. Z těchto tří základních podmínek také vyplývá to, že každý vstup je pro produkci nezbytný. Tzn., že F (0, L) = F (K, 0) = 0, což lze jednoduše dokázat. Nejprve si všimněme, že jestli Y a K, pak lim (Y/K) = lim ( Y/ K) = 0. K K Z podmínky o konstantních výnosech z rozsahu také plyne, že pro nějaké konečné L můžeme předcházející limitu zapsat jako lim (Y/K) = lim [F (1, L/K)] = F (1, 0). K K A pokud podmínku konstantních výnosů z rozsahu využijeme ještě jednou, a to v následující podobě F (K, 0) = K F (1, 0), 9

Řešení modelu tak dostáváme, že a tedy lim (Y/K) = F (1, 0) = 0, K F (K, 0) = K F (1, 0) = 0 pro každé konečné K. Analogicky také můžeme dokázat, že F (0, L) = 0 pro každé konečné L. Konstantních výnosů z rozsahu se ještě využívá při jednom důležitém odvozování, a to při odvozování tzv. intenzivního vyjádření produkční funkce. V tomto vyjádření si totiž produkční funkci vyjádříme jako produkci na pracovníka, neboli Y/L. K tomu nám poslouží následující značení. Necht y = Y/L označuje produkci na pracovníka, k = K/L podíl kapitálu na pracovníka a f(k) je definována jako F (k, 1). Pak si jenom stačí uvědomit, že platí a tedy Y = F (K, L) = L F (K/L, 1) = L f(k), (1.8) Y/L = y = f(k). (1.9) Nyní si již můžeme odvodit základní dynamickou rovnici pro kapitál. 1.2 Řešení modelu Jak jsme si uvedli dříve, tak platí K(t) = I(t) δk(t). Odtud si pak můžeme vyjádřit i K(t)/L(t) jako K(t)/L(t) = I(t)/L(t) δk(t)/l(t) = s Y (t)/l(t) δk = s f(k) δk. (1.10) Tento výraz pak využijeme v následující rovnici pro funkci k. Funkce k je totiž definovaná jako derivace k podle času a proto platí k = d(k/l) dt = K/L L/L k = K/L nk, (1.11) a pokud za výraz K/L dosadíme vyjádření z předcházející rovnice, tak dostaneme k = s f(k) δk nk = s f(k) (n + δ)k. (1.12) Takto jsme tedy získali tzv. fundamentální rovnici Solowova-Swanova modelu, kde vidíme, že k závisí pouze na k, a výraz (n + δ) můžeme chápak jako tzv. efektivní míru depreciace pro k. Tím je myšleno to, že k se snižuje nejen díky samotnému opotřebení δ, ale také částečně kvůli růstu L rychlostí n. Pokud se nyní podíváme na obrázek 1.1 znázorňující Solowův-Swanův model, tak dospějeme k jednoduchému závěru, a to k tomu, že celý systém konverguje do stavu, kde k = 0. Tento stav se nazývá ustálený stav a platí pro něj, 10

Řešení modelu že v něm různé veličiny rostou ve stálých poměrech. Říkáme, že model vykazuje tzv. vyvážený růst. Tomuto stavu odpovídá v gafu průsečík přímky (n + δ)k s křivkou s f(k), tedy platí s f(k ) = (n + δ)k, (1.13) kde k označuje hodnotu k v ustáleném stavu. Pokud se tedy nacházíme v ustáleném stavu, pak musí platit, že nejen k, ale i y a c = C/L jsou konstanty, které mají následující podobu: y = f(k ) c = (1 s) f(k ). Obrázek 1.1: Solowův-Swanův model V tomto okamžiku si také můžeme odvodit některé poměrně významné závěry vyplývající ze Solowova-Swanova modelu. Hned ten první, a možná nejdůležitější, nám říká, že v dlouhém období nejsme schopni vysvětlit růst výstupu na pracovníka. Dalším důležitým poznatkem je to, že to co nám způsobuje konvergenci k ustálenému stavu, je klesající mezní produkt kapitálu. Dále vidíme, že i když nám míra úspor nemůže dlouhodobě zvýšit růst, protože má svoji určitou hranici a tou je jednička, neboli 0 s 1, 11

Řešení modelu tak krátkodobě to způsobit může. A posledním důležitým zjištěním je to, že v našem modelu nemá dlouhodobě žádný efekt na růst ani hospodářská politika. Poslední věc, kterou si ještě v této části ukážeme, je vykreslení míry růstu v závislosti na podílu kapitálu a práce. Pokud si chceme vyjádřit míru růstu, označme ji γ k, tak si vlastně chceme spočítat podíl k/k. Stačí nám tedy dopočítat, čemu se tento podíl rovná a jsme hotovi. Tedy což se po dosazení za k z rovnice (1.12) rovná γ k = k k, (1.14) γ k = s f(k)/k (n + δ). (1.15) Obrázek 1.2: Dynamika Solowova-Swanova modelu Pokud se nyní podíváme na obrázek 1.2 pozorně, tak dospějeme k jednomu důležitému závěru. Budeme-li totiž předpokládat, že dvě různé ekonomiky mají stejný ustálený stav a v současnosti se nacházejí pod tímto ustáleným stavem, tak pro ně platí, že ta chudší bude ke svému ustálenému stavu konvergovat rychleji než ta bohatší. Ale jak tomu bude, pokud uvolníme předpoklad o stejných ustálených stavech obou zemí, tedy dovolíme jim, aby se lišily např. v míře úspor? Tuto situaci máme znázorněnu na obrázku 1.3. 12

Model s technologickým pokrokem Zde máme dvě ekonomiky s různými ustálenými stavy a vidíme, že už nemusí platit, že chudší země, tedy země s menším k(0), vždy konvergují ke svému ustálenému stavu rychleji než ty bohatší. Dospěli jsme tedy k závěru, že v Solowově-Swanově modelu platí pouze tzv. podmíněná konvergence, tedy že chudší ekonomika konverguje ke svému ustálenému stavu rychleji než bohatší, pouze pokud se obě ekonomiky nacházejí pod svými ustálenými stavy, které jsou pro obě ekonomiky stejné. Pokud bychom uvažovali situaci, kdy se alespoň jedna z ekonomik nenachází pod svým ustáleným stavem, tak bychom řekli, že rychleji konverguje ta ekonomika, která je dále od svého ustáleného stavu. Samozřejmě opět platí podmínka stejných ustálených stavů pro obě ekonomiky. Obrázek 1.3: Podmíněná konvergence 1.3 Model s technologickým pokrokem K obdobným závěrům, ke kterým jsme došli v předcházející části, bychom dospěli i u modelu s technologickým pokrokem. Protože se při odvozování používá prakticky stejný postup jaký jsme použili již dříve, tak si v této části ukážeme pouze výsledné řešení modelu. Nyní tedy uvažujeme produkční funkci Y, pro kterou platí, že Y (t) = F [K(t), L(t), T (t)], (1.16) 13

Model s technologickým pokrokem kde Y je produkční funkce, K je kapitál, L práce a T je technologický pokrok. Navíc předpokládáme, že technologický pokrok je tzv. labor-augmenting, 1 což znamená, že pro produkční funkci platí následující vyjádření: Y (t) = F (K, T L). (1.17) Tento předpoklad je poměrně důležitý, protože nám zajišt uje, aby model vykazoval vyvážený růst. A stejně jako jsme předpokládali růst u práce, tak jej předpokládáme i u technologického pokroku, kde jej budeme značit jako x = T /T. Řešení modelu je pak následující: kde ˆk = K/(T L) a ŷ = Y/(T L). Pro ustálený stav pak platí což si opět můžeme vyjádřit i graficky. dˆk dt = s ŷ (n + x + δ)ˆk, (1.18) s ŷ = (n + x + δ)ˆk, (1.19) Obrázek 1.4: Solowův-Swanův model s technologickým pokrokem 1 rozšiřující práci 14

Model s lidským kapitálem 1.4 Model s lidským kapitálem O něco komplikovanější je to ovšem pokud do Solowova-Swanova modelu zahrneme také lidský kapitál. Předpokládejme, že nyní máme produkční funkci vyjádřenou jako funkci závislou nejen na fyzickém kapitále, práci a technologickém pokroku, ale že také závisí na kapitále lidském. Tedy platí Y (t) = F [K(t), H(t), T (t)l(t)], (1.20) kde H(t) označuje lidský kapitál. Vidíme, že v tomto případě už nebude vyjádření tak jednoduché jako v předcházejících příkladech a bude záviset na dvou proměnných. Těmito proměnnými budou k = K/(T L) a h = H/(T L) a výsledným řešením bude systém rovnic d k dt = s k ỹ (n + x + δ k ) k d h dt = s h ỹ (n + x + δ h ) h, (1.21) kde s k je část úspor, která je pak investována do fyzického kapitálu, s h je část úspor investovaných do lidského kapitálu, δ k a δ h označují opotřebení příslušného kapitálu a ỹ značí stejně jako v modelu s technologickým pokrokem výstup na efektivního pracovníka. 2 Nyní již můžeme snadno odvodit systém rovnic, které nám budou určovat ustálený stav. Tyto rovnice mají následující podobu: s k ỹ = (n + x + δ k ) k s h ỹ = (n + x + δ h ) h. (1.22) 2 výstup na efektivního pracovníka můžeme zapsat jako ỹ = Y/(T L). 15

Cobbova-Douglasova produkční funkce Kapitola 2 Růst a konvergence v datech V této kapitole se již podrobněji podíváme na to, jak těsně nám předcházející modely sedí na datech. K tomu si ovšem nevystačíme pouze s teoretickým vyjádřením modelu, ale budeme potřebovat nějaké konkrétní vyjádření. Přesněji, budeme potřebovat konkrétní podobu neoklasické produkční funkce. A právě k tomu využijeme tzv. Cobbovu-Douglasovu produkční funkci. Při odhadování modelů pak využijeme stejný přístup jako Mankiw, Romer a Weil (1992), 1 ale na novějších datech. 2.1 Cobbova-Douglasova produkční funkce Jednou z nejběžnějších a nejčastěji využívaných neoklasických produkčních funkcí je Cobbova-Douglasova produkční funkce, která má pro model s technologickým pokrokem následující podobu: Y = K α (T L) 1 α, (2.1) kde Y je výstup, K je kapitál, T je technologický pokrok, L je práce a α je konstanta, pro kterou platí 0 < α < 1. Pokud nyní využijeme teoretické odvození řešení Solowova-Swanova modelu s technologickým pokrokem, tak si můžeme vyjádřit i konkrétní podobu řešení pro model s Cobbovou-Douglasovou produkční funkcí. Stačí si odvodit čemu se rovná výstup na efektivního pracovníka a ten pak dosadit do řešení. Pomocí jednoduchých úprav pak dostaneme, že Y/(T L) = K α (T L) 1 α /(T L) = K α (T L) α = ˆk α, (2.2) a po dosazení do rovnice (1.18) obdržíme dˆk dt = s ˆk α (n + x + δ)ˆk. (2.3) Nyní si také můžeme vyjádřit i hodnotu ˆk v ustáleném stavu. Víme totiž, že musí platit 1 v dalším textu značeno pouze jako MRW s ˆk α = (n + x + δ)ˆk, (2.4) 16

Cobbova-Douglasova produkční funkce odkud plyne, že a tedy a konečně ˆk α = [(n + x + δ)ˆk ]/s, (2.5) ˆk (α 1) = (n + x + δ)/s, (2.6) ˆk 1 = [s/(n + x + δ)] (1 α). (2.7) Takto jsme si tedy odvodili ustálenou stavovu hodnotu pro ˆk a vidíme, že nám pozitivně závisí na míře úspor a negativně na růstu populace, technologického pokroku a depreciaci kapitálu, samozřejmě za předpokladu, že 0 < α < 1. Obdobným způsobem bychom dospěli i k řešení Solowova-Swanova modelu s lidským kapitálem. Jen by se nám změnila podoba Cobbovy-Douglasovy produkční funkce a to do tvaru Y = K α H β (T L) 1 α β, (2.8) kde H je lidský kapitál, α a β jsou konstanty, pro které platí α +β < 1, 2 a ostatní veličiny jsou definovány jako v předcházející části. Nyní bychom si opět vyjádřili čemu se rovná ustálený stav, a to bychom opět provedli díky dosazení ỹ, které se v tomto případě rovná k α h β, do soustavy rovnic (1.22). A pomocí jednoduchých úprav bychom následně získali ( n + x + δ k = s k s h ) 1 α 1 h β 1 α ( ) 1 (2.9) n + x + δ h β 1 = k α 1 β. Tento zápis ale můžeme ještě mírně upravit, kdy k celému odvození využijeme pouze obě předcházející rovnice, které do sebe navzájem dosadíme. Např. u k dosadíme do první rovnice ze soustavy rovnic (2.9) rovnici druhou a poté pomocí standardních matematických úprav upravíme. Dostaneme tedy, že odkud ( n + x + δ k = s k ( n + x + δ = s k ) 1 ) 1 α 1 [ (n + x + δ s h α 1 ( n + x + δ 2 díky této podmínce uvažujeme klesající výnosy z kapitálu s h ) ] β 1 1 α β 1 k α 1 β ) β = (2.10) (β 1)(1 α) αβ k (1 β)(1 α), 17

Ekonometrická analýza modelu a konečně k 1 α β (1 β)(1 α) ( ) 1 n + x + δ = s k α 1 ( n + x + δ s h ) β (β 1)(1 α), (2.11) k = [ (n + x + δ s k ) 1 α 1 ( n + x + δ s h Obdobným způsobem bychom získali i h = ) β ] (1 β)(1 α) 1 α β (β 1)(1 α) [ s 1 β k s β h = n + x + δ ] 1 1 α β. (2.12) [ s α k s 1 α ] 1 1 α β h. (2.13) n + x + δ Vidíme tedy, že jak pro model s technologickým pokrokem, tak i pro rozšířený model s lidským kapitálem, jsme schopni poměrně jednoduše vyjádřit jejich ustálené stavy. 2.2 Ekonometrická analýza modelu V předcházejících částech jsme si ukázali, které veličiny nám mohou ovlivnit naše hodnoty v ustáleném stavu. A my bychom rádi zjistili, jak přesně nám tyto teoretické závěry sedí na datech. K tomuto účelu využijeme základní ekonometrické nástroje. Jak jsme si mohli všimnout, tak Solowův-Swanův model nám předpovídá větší reálný důchod v zemích s vyšší mírou úspor nebo s nižší hodnotou výrazu n + x + δ. Tuto skutečnost si můžeme ověřit, pokud využijeme některé již dříve odvozené závěry modelů. Nejprve předpokládejme pouze model bez lidského kapitálu. Pokud si produkční funkci vyjádříme tak, abychom dostali výstup na hlavu, tedy Y/L, a dosadíme do ní ustálenou stavovou hodnotu pro ˆk z rovnice (2.7), tak zjistíme, že Y (t) L(t) = K(t)α T (t) 1 α L(t) α = ˆk(t) [ ] α 1 α T (t) = (s/(n + x + δ)) (1 α) T (t). (2.14) Hodnotu T (t) pak můžeme nahradit výrazem T (0) e xt, protože jak jsme si již řekli dříve, technologický pokrok roste tempem x, a celou rovnici (2.14) pak zlogaritmovat. ( ) Y (t) ln = ln T (0) + xt + α L(t) 1 α ln(s) α ln(n + x + δ) (2.15) 1 α Takto upravený zápis modelu pak můžeme odhadnout pomocí metody nejmenších čtverců. Při odhadu předpokládáme, že jak tempo růstu technologického pokroku, tak míra depreciace, jsou ve všech zemích stejné. 3 Stejný předpoklad ovšem není příliš vhodný pro veličinu T (0). Ta totiž v sobě minimálně ukrývá i velikost počátečních možností země, dané 3 u technologie vycházíme z poměrně logického předpokladu volně šiřitelného know-how mezi zeměmi a u depreciace jsme nenašli žádný důvod pro to, abychom očekávali nějaké výrazné rozdíly mezi zeměmi. Navíc nemáme ani žádná data, pomocí nichž bychom se o tom mohli přesvědčit. 18

Výsledky pro model bez lidského kapitálu např. přírodním bohatstvím nebo zavedenými institucemi v této zemi. Proto budeme předpokládat, že ln (T (0)) = a + ɛ, (2.16) kde a je konstanta a ɛ je šok specifický pro každou zemi. Náš odhadovaný model tedy bude mít pro konkrétní stanovený čas, např. t = 0, následující podobu: ( ) Y ln = a + α L 1 α ln(s) α ln(n + x + δ) + ɛ, (2.17) 1 α kdy vycházíme z předpokladu nezávislosti s a n na ɛ stejně jako MRW. 2.2.1 Data K tomu, abychom si mohli model odhadnout, ovšem potřebujeme i příslušná data. Ty jsme z větší části získali z databáze PWT 4 a doplnili jsme je o data z databází GGDC, 5 SourceOECD 6 a UN 7. Tato sesbíraná data jsme pak dali dohromady a vytvořili jsme si vzorek pro 118 zemí zahrnující roční data, která pokrývají období mezi lety 1960 až 2000. Pro každou zemi jsme si tedy obdobně jako u MRW vyjádřili Y/L jako reálné HDP v roce 2000 vydělené počtem tzv. working-age populace, 8 s jako průměrný podíl reálných investic na reálném HDP, a n jako průměrný růst working-age populace. Pro pozdější potřeby během naší analýzy jsme si také data rozdělili do tří skupin. Do skupiny zahrnující pouze země OECD, která obsahuje 30 zemí OECD, do skupiny tzv. non-oil zemí, 9 která obsahuje 93 zemí, a konečně do skupiny tzv. intermediate zemí, 10 ve které je 78 států. Pro míru růstu technologického pokroku a velikost depreciace jsme si poté zvolili stejné konstanty jako MRW, a to x = 0.02 a δ = 0.03. 11 2.2.2 Výsledky pro model bez lidského kapitálu Ještě předtím, než se podíváme na samotné výsledky, si uvedeme jednu důležitou poznámku ohledně parametru α. Ten je totiž v Solowově-Swanově modelu chápán jako podíl kapitálu na důchodu. Stačí si totiž uvědomit, že v konkurenční ekonomice je kapitál odměněn pomocí mezního produktu, tedy R = f (ˆk) = αt 1 αˆkα 1, (2.18) kde R je nájemní cena kapitálu, a odtud si jen vyjádřit, čemu se rovná α. Pak dostaneme 4 Penn World Table, <http://pwt.econ.upenn.edu/php site/pwt index.php> 5 The Groningen Growth and Development Centre, <http://www.ggdc.net/databases/ted.htm> 6 The OECD s Online Library of Statistical Databases, Books and Periodicals, <http://oberon.sourceoecd.org/vl=5755283/cl=19/nw=1/rpsv/home.htm> 7 United Nations, <http://www.un.org/en/databases/ > 8 populace ve věku 15 64 let 9 nejsou zahrnuty země, pro které je dominantní naftový průmysl 10 země, které mají v databázi PWT grade score nejvýše D. Toto skóre ohodnocuje kvalitu dat, a proto jsme vyřadili ty země, u kterých se nemůžeme spolehnout na pravdivost poskytnutých dat. 11 vychází přibližně z U.S. dat 19

Výsledky pro model bez lidského kapitálu α = Rk Rˆk = T α 1ˆk α ŷ = RK Y. (2.19) Díky tomuto zjištění si také můžeme vyjádřit i přibližnou hodnotu parametru α. Podíl kapitálu na důchodu je totiž všeobecně uvažován jako 1/3, a proto budeme tuto hodnotu uvažovat i my jako hodnotu našeho parametru α. Pokud bychom se tedy nyní vrátili k našemu odhadovanému modelu, daného rovnicí (2.17), tak vidíme, že nejemon, že jsme schopni dopředu určit znaménka koeficientů, ale také jejich velikost, kdy očekáváme, že první koeficient bude přibližně 0.5 a druhý 0.5. Nyní se pojd me podívat na samotné výsledky regrese, které máme uvedené v tabulce 2.1. Jak můžeme vidět, tak znaménka nám souhlasí u všech koeficientů ve všech třech sledovaných skupinách. Potvrdil se nám jak pozitivní vliv úspor na důchodu, tak negativní vliv růstu populace. V tomto směru nám odhad přesně korespoduje s teoretickým modelem. Dalším důležitým prvkem je statistická významnost jednotlivých koeficientů. S tou jsme také spokojeni, protože až na skupinu zemí OECD nám vyšla u všech koeficientů silná statistická významnost. Ale ani u zemí OECD nemůžeme být zklamáni, protože i zde můžeme mluvit o statistické významnosti na 5% hladině významnosti, což je stále dobrý výsledek. Co nás jako další zajímalo, byly hodnoty koeficientů determinace. Ty mají naše skupiny zemí poměrně vysoké, opět až na skupinu zemí OECD. Můžeme tedy říci, že naše odhady mají dostatečně vysokou vysvětlovací schopnost. Např. u skupiny zemí non-oil je to téměř 71%. Problém ovšem nastal u velikostí koeficientů. Ty jsou totiž oproti předpokládaným hodnotám větší. Např. u skupiny zemí intermediate nám vyšel koeficient u ln(s k ) roven 1.16384 a u ln(n + x + δ) 2.69986, ale my jsme očekávali hodnoty 0.5 a 0.5. Vidíme tedy, že v tomto ohledu je náš modelem s empirickým pozorováním v rozporu. Celkově však můžeme být s odhadem spokojeni, protože až na zmiňovaný rozdíl ve velikostech koeficientů, nám odhad vyšel přesně tak, jak jsme očekávali. A díky vysoké vysvětlovací schopnosti tak můžeme řící, že model dostatečně vysvětluje většinu nerovností v důchodech mezi zeměmi. Neměli bychom ale zapomínat na to, že model nepodporuje všechny skutečnosti, které z něj vyplývají, jak se můžeme znovu přesvědčit níže. Při našem odhadování jsme totiž také provedli tzv. omezený odhad našeho modelu, který vychází z předpokladu rovnosti absolutních velikostí našich koeficientů. 12 Tento odhad jsme provedli především proto, abychom se přesvědčili o platnosti tohoto tvrzení, a také proto, abychom byli schopni dopočítat velikost našeho parametru α. Jak můžeme vidět v tabulce 2.2, tak nám výsledky testové statistiky nevyšly moc přesvědčivě. Správně bychom měli u zemí non-oil i intermediate zamítnou náš předpoklad, že jsou koeficienty u ln(s k ) a ln(n+x+δ) až na znaménka stejné. V tomto směru náš model selhal. Dále nám náš odhadovaný parametr α vyšel ve všech případech přibližně 0.5. Opět se tedy dostáváme ke stejnému problému jako u velikostí koeficientů při neomezeném odhadování, a to k tomu, že nám samotná velikost přesně nesedí na datech. Celkově pak musíme být s výsledkem omezeného odhadu vzhledem k modelu nespokojeni. 12 stačí nahlédnout do zápisu modelu v rovnici (2.17) 20

Výsledky pro model bez lidského kapitálu Model pro Non-oil: OLS, za použití pozorování 1 93 Závisle proměnná: ln Y 2000 Koeficient Směr. Chyba t-podíl p-hodnota const 11,5199 1,07569 10,7093 9,71e 18 ln s k 1,12461 0,109914 10,2318 9,44e 17 ln n x d 2,89693 0,477365 6,0686 3,00e 8 Střední hodnota závisle proměnné 9.109749 S.O. závisle proměnná 1.086196 Součet čtverců reziduí 32.16413 S.CH. regrese 0.597812 R 2 0.703675 Adjustované R 2 0.697090 F (2, 90) 106.8604 P-hodnota(F ) 1.70e 24 Logaritmus věrohodnosti 82.59001 Akaikovo kritérium 171.1800 Schwarzovo kritérium 178.7778 Hannan Quinn 174.2478 Model pro Intermediate: OLS, za použití pozorování 1 78 Závisle proměnná: ln Y 2000 Koeficient Směr. Chyba t-podíl p-hodnota const 11,1048 1,13230 9,8073 4,40e 15 ln s k 1,16384 0,141830 8,2059 4,84e 12 ln n x d 2,69986 0,467422 5,7761 1,64e 7 Střední hodnota závisle proměnné 9,422799 S.O. závisle proměnná 0,989625 Součet čtverců reziduí 23,83943 S.CH. regrese 0,563790 R 2 0,683871 Adjustované R 2 0,675441 F (2, 75) 81,12259 P-hodnota(F ) 1,76e 19 Logaritmus věrohodnosti 64,44785 Akaikovo kritérium 134,8957 Schwarzovo kritérium 141,9658 Hannan Quinn 137,7260 Model pro OECD: OLS, za použití pozorování 1 30 Závisle proměnná: ln Y 2000 Koeficient Směr. Chyba t-podíl p-hodnota const 9,91130 1,99210 4,9753 3,25e 05 ln s k 1,01480 0,429555 2,3624 0,0256 ln n x d 1,62731 0,653708 2,4894 0,0193 Střední hodnota závisle proměnné 10,34978 S.O. závisle proměnná 0,471264 Součet čtverců reziduí 4,207776 S.CH. regrese 0,394770 R 2 0,346680 Adjustované R 2 0,298286 F (2, 27) 7,163690 P-hodnota(F ) 0,003193 Logaritmus věrohodnosti 13,10421 Akaikovo kritérium 32,20842 Schwarzovo kritérium 36,41201 Hannan Quinn 33,55318 Tabulka 2.1: Odhad modelu bez lidského kapitálu 21

Výsledky pro rozšířený model s lidským kapitálem Model pro Non-oil Omezení: b[ln s k] + b[ln n x d] = 0 Testovací statistika: F(1, 90) = 11,3127, s p-hodnotou = 0,00113224 Odhady modelu s omezením: Koeficient Směr. Chyba t-podíl p-hodnota const 7,91889 0,109903 72,05 4,69e 82 ln s k 1,32205 0,0980497 13,48 2,05e 23 ln n x d 1,32205 0,0980497 13,48 2,05e 23 Standardní chyba regrese = 0,630777 Odpovídající α = 0,569346 Model pro Intermediate Omezení: b[ln s k] + b[ln n x d] = 0 Testovací statistika: F(1, 75) = 8,12871, s p-hodnotou = 0,00562457 Odhady modelu s omezením: Koeficient Směr. Chyba t-podíl p-hodnota const 7,90062 0,144575 54,65 9,26e 63 ln s k 1,40696 0,118529 11,87 5,54e 19 ln n x d 1,40696 0,118529 11,87 5,54e 19 Standardní chyba regrese = 0,589639 Odpovídající α = 0,584538 Model pro OECD Omezení: b[ln s k] + b[ln n x d] = 0 Testovací statistika: F(1, 27) = 0,527019, s p-hodnotou = 0,474109 Odhady modelu s omezením: Koeficient Směr. Chyba t-podíl p-hodnota const 8,51142 0,495842 17,17 2,14e 16 ln s k 1,21659 0,324714 3,747 0,0008 ln n x d 1,21659 0,324714 3,747 0,0008 Standardní chyba regrese = 0.391422 Odpovídající α = 0,548857 Tabulka 2.2: Odhad omezeného modelu bez lidského kapitálu 2.2.3 Výsledky pro rozšířený model s lidským kapitálem Jak jsme si uvedli v předcházející části, tak Solowův-Swanův model bez lidského kapitálu má s určitými částmi modelu problém. Proto se nyní podíváme na to, zda nám rozšíření tohoto modelu o lidský kapitál pomůže tyto problémy odstranit. 22