Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z



Podobné dokumenty
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

4. Práce, výkon, energie a vrhy

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

Příklad 5.3. v 1. u 1 u 2. v 2

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

3 Mechanická energie Kinetická energie Potenciální energie Zákon zachování mechanické energie... 9

Digitální učební materiál

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Testovací příklady MEC2

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

Práce, výkon, energie

BIOMECHANIKA KINEMATIKA

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

Práce, výkon, energie

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Přípravný kurz z fyziky na DFJP UPa

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Práce, výkon, energie

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

(test version, not revised) 9. prosince 2009

III. Dynamika hmotného bodu

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)

Dynamika. Dynamis = řecké slovo síla

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

7. Gravitační pole a pohyb těles v něm

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).

Práce, energie a další mechanické veličiny

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

Mechanika tuhého tělesa

Příklady z teoretické mechaniky pro domácí počítání

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

Počty testových úloh

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

Rychlost, zrychlení, tíhové zrychlení

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

1 Rozdělení mechaniky a její náplň

Mechanická práce, výkon a energie pro učební obory

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A

Mechanika - kinematika

MECHANIKA TUHÉHO TĚLESA

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

Projekty - Vybrané kapitoly z matematické fyziky

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

Kinematika. Tabulka 1: Derivace a integrály elementárních funkcí. Funkce Derivace Integrál konst 0 konst x x n n x n 1 x n 1.

Test jednotky, veličiny, práce, energie, tuhé těleso

m.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice.

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

11. Dynamika Úvod do dynamiky

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

Pokyny pro písemné vypracování úloh

Mechanické kmitání (oscilace)

Příklady: 7., 8. Práce a energie

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

1 Tuhé těleso a jeho pohyb

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

Mechanické kmitání a vlnění

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.

VIDEOSBÍRKA ENERGIE A HYBNOST

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

FYZIKA I cvičení, FMT 2. POHYB LÁTKY

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie B

1141 HYA (Hydraulika)

vsinα usinβ = 0 (1) vcosα + ucosβ = v 0 (2) v u = sinβ , poměr drah 2fg v = v 0 sin 2 = 0,058 5 = 5,85 %

Přípravný kurz - příklady

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

Derivace goniometrických. Jakub Michálek,

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Theory Česky (Czech Republic)

Dynamika hmotného bodu

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY listopadu 2015

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku

Laboratorní práce č. 3: Měření součinitele smykového tření

Transkript:

5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r (1) (1) () (1) F z dz. Okamžitý výkon P dw P = d t r r = F v. Potenciální energie E p (x, y, z) F x E = x p, F y E = y p, F z E = z p. a) potenciální energie tělesa o hmotnosti m v homogenním tíhovém poli Země E p = mg o h. Poznámka tento vztah lze použít pro výpočet rozdílu potenciální energie pouze za předpokladu, že g = konst. b) potenciální energie elastická (např. pro případ deformované pružiny o tuhosti k) 1 E pe = ky. Kinetická energie částice, pohybující se rychlostí v 1 E k = mv. Věta o kinetické energii r () r 1 1 F d = mv ( 1) mv 1 Věta o zachování mechanické energie E k + E p = konst.. Poznámka platí pro ryze mechanické děje při působení konzervativních sil. Síly nekonzervativní (dissipativní) síly tření, síly odporu prostředí. E k + E p = konst. W d, kde W d je práce nekonzervativních sil. Práce nekonzervativních sil je funkcí dráhy, z čehož plyne, že součet (E k + E p ) není podél trajektorie stálý. 46

5.. Otázky a problémové úlohy 5..1. Vysvětlete dráhový účinek síly. 5... Na hmotný bod působí proměnná síla po určité dráze. Vyjádřete práci, kterou tato síla vykoná na úseku dráhy od s l do s. 5..3. Znázorněte graficky práci vykonanou proměnnou silou po dráze s. 5..4. Jaké podmínky musí být splněny, aby bylo možné vyjádřit práci vztahem W = F s? Definujte na základě tohoto vztahu jednotku práce v soustavě SI. 5..5. V jakém případě lze práci vyjádřit jednoduchým vztahem W = F s cos α? Co znamená úhel α? Pro které úhly α síla koná práci a pro které práci spotřebuje? Ve kterém případě síla práci nekoná? 5..6. Hmotný bod se pohybuje rovnoměrným kruhovým pohybem. Koná síla působící na hmotný bod práci? 5..7. Hmotný bod se pohybuje po kružnici rovnoměrně zrychleným pohybem. Vyjádřete práci, kterou koná síla působící na bod. 5..8. Na vlak pohybující se po přímé vodorovné trati působí konstantní tažná síla lokomotivy, která je rovna síle tření. Jaký pohyb vlak koná? Jaký je výkon lokomotivy a jakou práci vykoná tažná síla po dráze s? 5..9. Jak spolu souvisejí jednotky joule, watt a kilowatthodina? Které veličiny v těchto jednotkách měříme? 5..10. Těleso je posouváno vzhůru po nakloněné rovině rovnoměrným pohybem. Vyjádřete práci, kterou musíme vykonat při posunutí tělesa o dráhu s, je-li součinitel tření a) roven nule, b) různý od nuly. 5..11. Jak je definován průměrný výkon a jak okamžitý výkon? 5..1. Automobil se rozjíždí z klidu rovnoměrně zrychleně působením konstantní tažné síly motoru. Odvoďte vztah pro okamžitý výkon motoru. Tření a odpor vzduchu zanedbejte. 5..13. Jak souvisí práce s mechanickou energií? 5..14. Nakreslete graf závislosti kinetické energie tělesa o hmotnosti m na okamžité rychlosti. 5..15. Vyslovte větu o zachování mechanické energie. Za jakých podmínek tato věta platí? 5..16. Jak je obecně definována potenciální energie? 47

5..17. Odvoďte vztah pro výšku výstupu při svislém vrhu vzhůru pomocí věty o zachování mechanické energie. 5..18. Pro volný pád tělesa v blízkosti povrchu Země stanovte a) pohybovou rovnici, b) závislost výšky tělesa na čase za předpokladu, že pro čas t 0 = 0 je z = h a v 0 = 0, c) kinetickou a potenciální energii a určete jejich součet, d) rychlost dopadu tělesa na zemský povrch, e) směr vektoru rychlosti v r v okamžiku dopadu. 5..19. Pro pohyb tělesa v blízkosti povrchu Země stanovte a) pohybovou rovnici, b) závislost polohy tělesa na čase za předpokladu, že pro čas t 0 = 0 je x 0 0, y 0 0, z 0 0 a v 0 0, c) kinetickou a potenciální energii, d) rychlost dopadu tělesa na zemský povrch a směr vektoru rychlosti v r v okamžiku dopadu. 5..0. Určete energii mechanického oscilátoru (závaží na pružině) kmitajícího v tíhovém poli Země. 5..1. Těleso bylo vrženo šikmo vzhůru ve vakuu. Ve kterém bodě trajektorie má nejmenší kinetickou energii? Ve kterém bodě trajektorie má nejmenší potenciální energii? Dokažte, že celková mechanická energie tělesa je konstantní. 5... Síly, které lze odvodit z potenciální energie, se nazývají konzervativní. Proč? 5..3. Může být kinetická energie hmotného bodu záporná? 5..4. Může být potenciální energie hmotného bodu záporná? 5..5. Formulujte obecný princip zachování energie. 5..6. Vyložte přeměny energie při pádu tělesa v odporujícím prostředí a při pohybu tělesa po nakloněné rovině s třením. V jaký druh energie se mění mechanická energie? 5.3. Řešené úlohy 5.3.1. Na těleso o hmotnosti m ležící na vodorovné podložce působí ve vodorovném směru stálá síla F. Jakou práci W tato síla vykoná, dosáhne-li těleso na konci dráhy s rychlosti v? Součinitel tření mezi tělesem a podložkou je f. 48

Řešení Na těleso působí výsledná síla o velikosti F v = F mgf ve směru pohybu. Protože se těleso pohybuje po vodorovné podložce, nemění tedy svou potenciální energii a práce výsledné síly F v se spotřebuje na zvýšení kinetické energie tělesa, tedy 1 F v s = mv. Pro práci síly F platí vztah W = F s, tedy po dosazení za F v do předchozí rovnice a po úpravě dostaneme ( v + fgs) m W =. 5.3.. Těleso o hmotnosti m koná rovnoměrný přímočarý pohyb s rychlostí v. Je potřeba jej zastavit bržděním po dráze s 0. Velikost brzdící síly F klesá lineárně s uraženou dráhou s tak, že na konci působení (těleso se zastavilo) klesne její velikost na polovinu původní hodnoty F 0. Určete velikost brzdící síly F 0 na počátku brždění. Řešení: Pro brzdící sílu F platí vztah (síla F je klesající lineární funkcí dráhy s(t)) F = F 0 k s(t), kde k je koeficient úměrnosti. Dosazením koncového bodu (s(t) = s 0, dostaneme pro koeficient k po úpravě vztah F0 k =. s Pro práci síly F platí 0 F F = 0 ) s 0 W = Fds, 0 kde znaménko minus je z důvodu opačných směrů síly F r Dosazením za sílu F, integrací a úpravou dostaneme vztah a posunutí s r d. 3 W = F0 s0. 4 Potenciální energie tělesa se nemění, a proto se tato práce musí spotřebovat pouze na snížení kinetické energie z hodnoty nulovou rychlost, tedy i kinetickou energii), tedy 1 mv na hodnotu 0 (těleso má na konci pohybu 49

1 3 E k + W = mv F0 s0 = 0, 4 odkud dostaneme pro hledanou sílu F 0 0 mv F 0 =. 3s 5.3.3. Kulička o hmotnosti m je zavěšena na niti neměnné délky l. Kuličku uvedeme do rovnoměrného pohybu po kružnici tak, aby nit, na které je kulička zavěšena, opisovala kuželovou plochu a aby rovina, ve které kulička rotuje, se nacházela v poloviční vzdálenosti od bodu závěsu než v případě klidu. Určete práci W, kterou je třeba při tom vykonat, a tahovou sílu F, kterou působí kulička na vlákno. Řešení: Nejdříve určíme, jakou rychlostí v se kulička pohybuje po kružnici. Musí platit, že výsledná síla F r má směr vlákna, jinak by docházelo ke změně úhlu odklonu a kulička by se nepohybovala po kružnici. Tedy (viz obr. 5) F F o G l 3 r = = = l l 3, kde r jsme vypočetli z Pythagorovy věty. Jednotlivé síly se vypočítají podle vztahů o. v v F = m = m ; FG = mg r l 3 obr. 5 Po dosazení do předchozí rovnice a po úpravě dostaneme pro hledanou rychlost v následující vztah v 3 = gl. Na počátku byla kulička v klidu ve vzdálenosti l od bodu závěsu. Práce, kterou je třeba vykonat se spotřebuje na zvýšení potenciální a kinetické energie kuličky. Tedy 50

l 1 3 l 5 W = E E 1 mv k + p = + mg = m gl + mg = mgl. 4 Z podobnosti trojúhelníků plyne l F G 1 = cos ϕ = =, F l tedy F = F G = mg. 5.3.4. Určete periodu periodického pohybu tělesa, které klouže po dvou nakloněných rovinách, které svírají s vodorovnou rovinou úhly α a β, jestliže v čase t = 0 s je volně puštěno z polohy A ve výšce h (viz obr. 6). Tření i ztráty kinetické energie při přechodu z jedné nakloněné roviny na druhou zanedbejte. obr. 6 Řešení: Protože nedochází ke ztrátám energie, musí platit zákon jejího zachování. Oud plyne, že na druhé nakloněné rovině vystoupá těleso do stejné výšky h jako na první a poté se vrátí zpět do bodu A na první nakloněné rovině. Označme t 1 a s 1 čas a dráhu tělesa na první nakloněné rovině a t a s čas a dráhu tělesa na druhé nakloněné rovině. Velikost zrychlení tělesa a 1 na první nakloněné rovině a a na druhé nakloněné rovině jsou a 1 = g sin α, a = g sin β. Pro dráhy na obou nakloněných rovinách platí 1 1 h 1 1 h s 1 = a1t1 = gt1 sinα =, s = at = gt sin β =. sinα sin β Oud vyjádřením časů t 1 a t dostaneme doby pohybu tělesa v jednom směru po jednotlivých nakloněných rovinách. Celková perioda tohoto pohybu potom bude T = h β 1 sinα 1. sin β ( t + t ) = + = + 1 g sin α h g sin 5.3.5. Z otvoru o průřezu S vytéká proud vody ve vodorovném směru stálou rychlostí v a dopadá na svislou stěnu, která se pohybuje v tomtéž směru rychlostí u (u < v). Jak h g 51

velikou silou F působí voda na svislou stěnu, předpokládáme-li, že se vodní paprsek po nárazu na stěnu rozptýlí rovnoměrně do všech stran (vliv tíhy vody zanedbáváme)? Při jaké rychlosti u je výkon P maximální? Hustota vody je ρ. Řešení: Síla F r, kterou voda působí na stěnu, je dána časovou změnou hybnosti malého elementu hmotnosti vody dm, pro který platí dm = ρ S v. Tedy pro velikost síly F je ( mv ) dp d 0 dm dv0 F = = = v0 + m, kde v 0 je rychlost pohybu elementu dm vody vzhledem ke svislé stěně. Protože je tato rychlost konstantní (v 0 = v u), je druhý člen v předchozím vztahu nulový a po dosazení za dm a v 0 dostaneme F = ρ S v (v u). Pro výkon P vodního paprsku platí ( Fs) dw d df ds P = = = s + F, kde s je posunutí stěny. Ze vztahu pro sílu je zřejmé, že síla F je konstantní v čase, a tedy první člen v předchozím vztahu je nulový. Derivace posunutí s podle času je rychlost posunu svislé stěny, tedy platí ds P = F = F u = ρ Sv ρ. Aby byl výkon P maximální, musí být jeho derivace podle u rovna nule, tj. ( v u) u = Sv ( uv u ) dp = ρ Sv ( v u) = 0 du a tedy pro rychlost pohybu stěny musí platit v u =. Druhá derivace výkonu P podle rychlosti u je rovna ρsv, a je tedy vždy záporná, a proto je pro vypočtenou rychlost u výkon P opravdu maximální. 5

5.4. Úlohy 5.4.1. Koule plave v kapalině o hustotě ρ tak, že je do ní ponořená právě do poloviny. Jakou práci W vykonáme při vytáhnutí koule nad hladinu kapaliny? Poloměr koule je R. W 5 = 1 π 4 R ρg 5.4.. Lokomotiva o hmotnosti m se začíná pohybovat z klidu tak, že se její rychlost mění podle vztahu v = c s, kde c je konstanta a s dráha. Najděte celkovou práci W všech sil, působících na lokomotivu za prvních t sekund od začátku pohybu. 1 4 W = mc t 8 5.4.3. Lokomotiva se stálým výkonem P = 600 kw táhne vlak o hmotnosti m = 5 10 5 kg. Součinitel tření je f = 0,01. Určete zrychlení a vlaku v okamžiku, kdy je jeho rychlost v = 10 m s -1, a maximální rychlost v max, které může při daném výkonu vlak dosáhnout. Vlak jede po vodorovných kolejích. P a = fg = 0,0 m s -, mv P v max = = 1,3 m s -1 fmg 5.4.4. Malé těleso klouže po nakloněné rovině, která na konci přechází ve válcovou plochu o poloměru R (viz obr. 7). Určete a) do jaké výšky h 1 těleso vystoupí, klouže-li z výšky h, b) jaká musí být výška h, aby těleso vykonalo celou obrátku. a) h 1 h + R 5 =, b) h = R 3 obr. 7 5.4.5. Na těleso, které se pohybuje po přímé dráze, působí proměnná síla. Počáteční hodnota síly je F 0 = 5 N, síla rovnoměrně roste tak, že se její velikost na každém 53

metru dráhy zvětší o hodnotu k = N m -1. Vypočtěte práci W, kterou síla vykoná po dráze s = 16 m, jestliže má směr dráhy. 1 W = F 0 s + ks = 336 J 5.4.6. Jaký impuls I udělí stěna pružné kuličce o hmotnosti m = 00 g, která na ni narazí ve směru svírajícím s normálou ke stěně úhel α = 60? Rychlost kuličky je v = 0 m s -1. I = mv cos α = 4 kg m s -1 5.4.7. Jak velkou práci W vykonal motor nákladního auta, jestliže auto o hmotnosti m = 3000 kg zvýšilo na vodorovné silnici rychlost z v 1 = 1 m s -1 na v = 0 m s -1? Tření a odpor vzduchu zanedbejte. 1 W m ( v v ) = 1 = 3,84 10 5 J 5.4.8. Zvedací zařízení výtahu o celkové hmotnosti m = 1000 kg zvedá výtah s konstantním zrychlením a = m s -. Určete práci W, kterou zařízení vykoná za prvních t = 5 s zvedání. 1 W = ma a + g t =,95 10 5 J ( ) 5.4.9. Určete výkon P motoru osobního automobilu o hmotnosti m = 750 kg, jestliže se pohybuje po vodorovné silnici rychlostí v = 60 km h -1. Součinitel tření je f = 0,07. Odpor prostředí zanedbejte. P = fmgv = 8,58 kw 5.4.10. Dřevěný válec je ponořený ve vodě do své výšky h. Poloměr válce je r = 10 cm a 3 výška h = 60 cm. Určete práci W potřebnou na vytažení válce z vody. W = πr h ρg = 4,64 J 9 5.4.11. Těleso o hmotnosti m bylo vytaženo na vrcholek pomocí síly F, která má v každém okamžiku směr tečny k dráze (obr. 8). Vypočtěte práci W této síly, jestliže je výška vrcholku h, délka jeho základny l a koeficient tření f. W = mg (h + f l) 54

obr. 8 5.4.1. Na vrcholu dokonale hladké koule o poloměru R leží malé těleso. V jaké hloubce h (viz obr. 9) se těleso oddělí od koule, začne-li klouzat a) s nulovou počáteční rychlostí, b) s počáteční rychlostí v 0 0. c) Jaká musí být počáteční rychlost v 0, aby se těleso oddělilo od koule hned na jejím vrcholu? a) R h =, b) 3 gr v 3g 0, c) v0 gr obr. 9 5.4.13. Vypočtěte frekvenci f harmonického pohybu hmotného bodu o hmotnosti m = 0 g, je-li amplituda kmitání A = 10 cm a celková energie E = 1 J. 1 E f = = 15,9 s -1 π A m 5.4.14. Těleso o hmotnosti m = 100 kg se pohybuje rychlostí v 0 = 0 km h -1. Jakou konstantní silou F musíme na těleso působit, máme-li jej zastavit na dráze s = 0 m? mv0 F = = 77,16 N s 5.4.15. Jaká je hmotnost m automobilu, který se pohybuje po vodorovné silnici rychlostí v = 50 km h -1, při výkonu motoru P = 7 kw? Koeficient tření je f = 0,07. m = P fgv = 733,9 kg 55

5.4.16. Jakou práci W je třeba vykonat, abychom břemeno o hmotnosti m l = 00 kg zvedli do výšky h = 40 m pomocí lana, jehož hmotnost je m = 40 kg? 1 W = gh m 1 + m = 8,6 10 4 J 5.4.17. Míč o hmotnosti m = 100 g jsme nárazem uvedli do pohybu s rychlostí v = 10 m s -1. Jak velkou silou F jsme do něj udeřili, trval-li náraz po dobu t = 0,01 s? mv F = = 100 N t 5.4.18. Těleso o hmotnosti m = 0,8 kg bylo vystřeleno svisle vzhůru. Jakou maximální výšku h max těleso dosáhne, jestliže ve výšce h = 10 m mělo kinetickou energii E k = 196, J? h max Ek = h + = 35 m mg 5.4.19. Střela o hmotnosti m = 0 g zasáhne rychlostí v 0 = 400 m s -1 strom. Do jaké hloubky h pronikne, je-li průměrná síla odporu dřeva vůči pohybu kulky F = 10 4 N? mv0 s = = 16 cm F 5.4.0. Jakou mechanickou energii E má matematické kyvadlo o délce l = 1 m a hmotnosti m = 1 kg, je-li jeho maximální výchylka od rovnovážné polohy ϕ = 30? Jakou silou F je namáhán závěs při průchodu kyvadla rovnovážnou polohou? E = mgl (1 cos ϕ) = 1,31 J, F = mg (3 cos ϕ) = 1,44 N 56