Expresní systémy a klonovací strategie

Rozměr: px
Začít zobrazení ze stránky:

Download "Expresní systémy a klonovací strategie"

Transkript

1 Expresní systémy a klonovací strategie živé systémy využívající rekombinantních DNA technologií pro produkci bioorganických látek (především proteinů)

2 Heterologní expresní systémy Bakteriální Kvasinkové Hmyzí buňky Savčí buňky Transgenní rostliny

3 charakteristika E. coli kvasinky hmyzí buňky savčí buňky rostlinné b. buněčný růst rapidní (30min) rapidní (90min) pomalý (18-24h) pomalý (24 h) pomalý požadavky na růstové medium minimální minimální komplexní medium komplexní medium minimální cena růstového media nízká nízká vysoká vysoká nízká množství exprimovaného proteinu velké malé až velké malé až velké malé nebo střední malé extracelulární exprese sekrece do inkl. tělísek sekrece do media sekrece do media sekrece do media sekrece do media posttranslační modifikace skládání proteinů obvykle nutné dodatečné složení v některých případech nutné dodatečné složení řádně složené proteiny řádně složené proteiny řádně složené proteiny O-glykosylace - vysoký obsah manosy jednoduché, bez sialové kyseliny komplexní komplexní N-glykosylace fosforylace acetylace acylace γ-karboxylace

4 Bakteriální expresní systémy Escherichia coli + rychlá produkce + nejvýkonnější (až 0.5 g na 1 litr kultury) + levné a jednoduché na manipulaci - chybí posttranslační úprava proteinů (neaktivní produkty eukaryotních genů) - přirozeně neprobíhá sekrece do média preferují jiný genetický kód než vyšší eukaryota

5 rekombinatní genetická informace je vklonována do vhodného expresního plasmidu, nedochází k integraci do genomu TA klonování Taq polymerasy bez 3-5 samoopravné aktivity přidávají na 3 konce datp

6 TA TOPO klonování linearizovaný vektor ošetřen DNA topoisomerasou I rychlá reakce bez účasti T4 DNA ligasy

7 rekombinační klonování místně specifický rekombinační systém bakteriofága lambda slouží k integraci do genomu hostitele (aktivuje lysogenní cyklus) attb x attp attl x attr ( x znamená rekombinaci). 250bp 25bp

8 Invitrogen dodává všechny typy vektorů kompatibilních pro rekombinantní klonování reakce trvá 1 hodinu při laboratorní teplotě zachovávání čtecích rámců (ORF), žádné složité plánování

9 přímá amplifikace s primery obsahující rekombinační sekvence: attb1 attb2 rekombinace do donorového vektoru: pentr a pdonr: pomocné vektory pdest: cílové vektory k použití

10 Klasické klonování do vstupního vektoru: pentr vektory udržované v E.coli kmen DB3.1 (mutovaná gyrasa tak, že je necitlivá na ccdb inhibici) po rekombinaci dvojitá selekce (1) na antibiotikum a (2) v sensitivním kmeni k ccdb nerostou nezrekombinované plasmidy 100% účinné není třeba selektovat pozitivní klony

11 rekombinační klonování rekombinace probíhá v obou směrech a je katalýzována proteiny z λdna i bakteriálními. selekce antibiotikum a gen ccdb mezi rekombinantními místy, protein ccdb inhibuje bakteriální DNA gyrasu a způsobuje smrt buněk nesoucí prázdný vektor vstupní vektor destinační vektor

12 LR reakce se účastní integrasa a ekscionasa (αdna) a IHF (integration host factor) z bakterie BP reakce se účastní IHF a integrasa rekombinační klonování

13 GIBSONOVO KLONOVÁNÍ účinnou a jednoduchá metoda klonování v rámci jedné reakce za použití tří různých enzymů (T5 exonucleasa, T4 DNA ligasa, Pfu DNA polymerasa můžeme najednou pospojovat několik dvouřetězcových fragmentů DNA v jeden úsek.

14 Kvasinkové rekombinační klonování Kvasinka upravená tak aby měla robustní systém pro homologní rekombinace Segmenty, které chceme spojit jsou PCR amplifikovány s bp přesahy homologními k oblasti vektoru, kde proběhne rekombinace Vektor se linearizuje Všechny fragmenty se transformují do kvasinky, kde spontánně mezi fragmenty proběhne homologní rekombinace a ty se pospojují

15 N-terminal 6xHis tag umožňuje velice účinnou purifikaci proteinu pomocí metal-chelatační chromatografie popř. detekci pomocí Anti-HisG protilátky T7 promotor přesná a silná exprese heterologního proteinu Ribosome binding site Shine-Dalgarnova sekvence, vazba malé ribozomální podjednotky, rozpoznání správného ATG TA TOPO klonovací místo pro PCR produkt Xpress epitop (Asp-Leu-Tyr-Asp-Asp-Asp-Asp- Lys) umožňuje detekci fúzního proteinu pomocí Anti-Xpress protilátky EK rozpoznávací sekvence pro specifickou enterokinasu, odštěpuje His-tag T7 transcription termination region silný terminační systém T7 bacteriofága gen pro rezistenci k ampicilinu umožňuje selekci plasmidu v E. coli puc origin zajišťuje vysokou replikaci plasmidu a růst E. coli

16 exprimovaný protein signální peptid exprimovaný protein reverse primertag V5 epitop his tag ATGforward primer detekce izolace his tag x-press signální peptid exprimovaný protein reverse primertag izolace detekce forward primer

17 usnadnění izolace rekombinantního proteinu koncové značky nejpoužívanější N a C-terminální značky (tagy): His-tag pro metal chelatační chromatografii (Ni) FLAG epitope - tag DYKDDDDK (Sigma; specifická protilátka) CBP - calmodulin binding peptide (26 AK) CBD - cellulose binding domain

18 izolace proteinu z bakteriální kultury: pokud není protein ukládán do inkluzních tělísek, rozbití buněk tepelným šokem, případně sonifikací nebo lysozymem pokud je ukládán do inkluzních tělísek, oddělení nerozpustné frakce a denaturace 9M močovinou nebo guanidium chloridem poté je nutno protein renaturovat - SLOŽITÉ!!!! marker IB 1M 0.5mM imidazol 200mM 100mM wash II wash I IB bakt.extrakt

19 tagy založené na sacharid-vazebných proteinech MBP - maltosa binding protein - amylosa CBP - intein chitin binding protein - chitin

20 Mechanismus štěpení inteinu Intein má transpeptidazovou aktivitu, která katalyzuje vznik amidové vazby mezi volnou aminoskupinou a karbonylovou skupinou, v rámci již existující peptidové vazby

21 Který kmen E.coli zvolit? tona mutace chrání bakterii před napadením T1 a T5 fágem, chrání tak vaše klony lacz.m15 částečná delece wild-typového lacz genu, po vložení plasmidu dochází k tzv.α- komplementaci potřebné pro blue/white screening na miskách s X-gal enda1 deficience endonukleasy I zaručuje kvalitní izolaci plasmidové DNA laciq produkuje lacz represor negativně regulující transkripci z lacz promotoru; zrušení přídavkem IPTG mcra, mcrbc, a mrr mutace v těchto genech zaručuje možnost klonování i methylované genomové DNA reca1 zabraňuje rekombinaci mezi plasmidovou a bakteriální DNA F episom je potřebný pro produkci ssdna kóduje protein tvořící tzv pilus na vnější membráně E.coli

22 kmen mutace účel firma BL21(DE3) BL21 (DE3) plyss BL21 Star (DE3) deficientní na proteasy deficientní na proteasy, exprese lysozymu RNaseE mutant obecná exprese přesně řízená exprese exprese s redukovanou degradací RNA DB3.1 gyra462 alela propagace GATEWAY vektorů s toxickým genem ccdb DH5λ první laboratorní kmen propagace plasmidu, klonování Origami (DE3) trxb a gor mutant exprese, tvoří disulfidické můstky v cytoplasmě Rosetta Nejpoužívanější laboratorní kmeny E.coli Geny pro argu, argw, glyt, IleX, leuw, mett, prol, thrt, thru, and tyru exprese eukaryotních genů Stratagene Novagen Invitrogen Invitrogen Life Technologies Novagen Novagen Top10 ara mutant propagace plasmidu, klonování Invitrogen

23 regulace exprese pod T7 promotorem exprese naklonovaného genu je kontrolována velice silným promotorem z bakteriofága T7, který původně řídí expresi genu 10 pro obalový protein pro expresi je nutno dodat do hostitelským buněk T7 RNA polymerasu a to buď infekcí bakteriofágem, nebo její indukovanou expresi. v sytému pcr T7 TOPO TA Expression je exprese T7 RNA polymerasy indukována lacz promotorem pomocí IPTG a tento systém je uložen v genomu hostitelských buněk

24 kmeny E.coli vhodné pro expresi - BL21(DE3) nebo BL21(DE3)LysS

25 před indukci IPTG probíhá bazální exprese T7 RNA polymerasy, pokud je exprimovaný produkt toxický pro bakterii, nedojde k selekci, selektují se pouze mutované klony, které neprodukují rekombinantní protein kmen E.coli BL21(DE3) nese v genomu T7 RNA polymerasový gen pod lacz promotorem, tento konstrukt je vložen do genu pro integrasu, jehož inaktivaci se zabrání lyzi, vyštěpení fágové částice v nepřítomnosti pomocného fága. Přirozený lac represor, jehož gen je taktéž vložený genomu bakterie, brání expresi bez přítomnosti induktoru (IPTG) někdy ovšem i přesto dochází k bazální expresi T7 RNA polymerasy a pokud je pod T7 promotor vložen gen produkující toxický produkt pro E.coli může docházet k redukci růstu, smrti baktérie či nestabilitě plasmidu. Kmen BL21(DE3)LysS navíc obsahuje T7 lysozym (produkovaný genem LysS), uložený na speciálním vektoru s nízkou expresí a nezávislou selekci na chloramfenikol. T7 lysozym je schopen se vázat na T7 RNA polymerasu a inhibovat bazální transkripci, exprese indukovaná IPTG je daleko silnější a T7 RNA polymerasa se dostane z této inhibice T7 lysozym je bifunkční enzym, který má navíc vlastní lytickou funkci, naštěpuje bakteriální peptidoglykanovou stěnu a usnadňuje tak následnou izolaci exprimovaného proteinu.

26 Jaké geny lze v E.coli exprimovat? většinu z prokaryotických organismů eukaryotní geny jejichž produkty nepodléhají posttranslačním modifikacím většina cytosolárních proteinů (není glykosylovaná) geny kódované chloroplastovou nebo mitochondriální DNA (podobný genetický kód, evoluční příbuznost) všechny geny jejichž produkty nepotřebujeme v aktivní formě

27 stabilizace exprimovaného proteinu 2004 SUMO peptide Small Ubiquitin like MOdifier ochrana před proteolýzou zvyšování rozpustnosti proteinu zvyšuje množství exprimovaného proteinu Sumo proteasa

28 Bacillus subtilis alternativní prokaryotické expresní systémy gram pozitivní půdní baktérie není lidský patogen má vyvinutý sekreční systém neprodukuje žádné endotoxiny (rek. proteiny se dají využít v medicíně) využití pro průmyslovou produkci proteas (prací prášky) a amylas (sladovnictví) a hlavně průmyslově nejdůležitější zdroj kyseliny hyaluronové (polysacharid)

29 kvasinkové expresní systémy jednoduchá a levná exprese v eukaryotním organismu rychlá propagace a jednoduchá média jednoduchá manipulace s genem (klonovací systémy kompatibilní s bakteriálními, shuttle vektor) většinou lze produkovat nativní proteiny z vyšších eukaryot (správná posttranslační modifikace glykosylace, folding) jednoduchý a prozkoumaný systém pro sekreční expresi do média hostitelské organismy: Saccharomyces cerevisiae Schizosaccharomyces pombe Pichia pastoris Kluyveromyces lactis Yarrowia lipolytica

30 Saccharomyces cerevisiae (od 1979) SHUTTLE VEKTOR GAL1 promotor zajišťuje induktivní expresi vloženého genu T7 promotor/priming site umožňuje in vitro transkripci a sekvenaci inzertu T7 priming site Multiple cloning site má 9 jedinečných klonovacích míst CYC1 terminátor transkripce, stabilizuje mrna transkript pmb1 origin (puc-derived) udržuje high copy replikaci v E. coli Ampicillin resistance gene selekce v bakterii URA3 selekce kvasinek v uracil-deficientním médiu 2 μ origin udržování replikace v kvasince f1 origin produkce single-stranded DNA

31 Saccharomyces cerevisiae REGULACE EXPRESE u kmene INVSc1 je transkripce z GAL1 promotoru inhibována přítomnosti glukosy v médiu transkripce je indukována odstraněním glukosy a přidáním galaktosy jako zdroje uhlíku do média alternativně se může kvasinková kultura propagovat v médiu obsahující rafinosu, která neinhibuje ani neindukuje galaktosový promotor a transkripce se spustí pouze přídavkem galaktosy, bez nutnosti odstraňování rafinosy HOSTITELSKÉ BUŇKY A) standardní kmen E. coli např. TOP10F který slouží pro namnožení plasmidu, jeho udržování a manipulaci s ním. B) kmen S.cerevisiae INVSc1 Genotyp: MATa his3 D1 leu2 trp1-289 ura3-52/mata his3 D1 leu2 trp1-289 ura3-52 Fenotyp: His-, Leu-, Trp-, Ura- INVSc1 je diploidní kmen autotrofní na histidin, leucin, tryptofan, a uracyl.

32 Saccharomyces cerevisiae N-a O-glykosylace se u kvasinek liší od vyšších eukaryot a způsobuje tvorbu neaktivního heterologního proteinu např. kvasinky preferuji glykosylaci manosou na zbytky asparaginu zatímco vyšší eukaryota preferuji N-glykosylaci sialovou kyselinou a N-acetylglucosaminem tyto rozdíly mohou způsobovat špatný folding, nestabilitu či jinou imunogenicitu od původních proteinů O-glykosylace většinou probíhá bez problému SEKRECE HETEROLOGNÍHO PROTEINU V KVASINKÁCH sekrece proteinu v kvasinkách je komplexní proces a není zde obecně akceptovaný sekreční signální peptid některé heterologní jsou sekretovány úspěšně pod svým vlastním signálem často se k heterolognímu proteinu přidává kvasinkový sekreční signál odvozený od S.cerevisae genů pro invertasu (SUC2), kyselou fosfatasu (PHO5) nebo alfa-faktor (MFa1) POSTRANSLAČNÍ ÚPRAVY HETEROLOGNÍHO PROTEINU problémy mohou nastat u složitějších proteinů s jejich fosforylaci, acetylaci, methylaci, miristylaci a isoprenylaci problém jsou nejčastěji kvasinkové endoproteasy, které rády napadají exprimované cizí proteiny

33 N-glycosylation in different organisms

34

35 Pichia pastoris v ideálních případech poskytuje 10 až 100 krát vyšší výtěžky než klasická Saccharomyces klonování a manipulace s Pichii je velmi obdobná jako pro Saccharomyces selekce zeocin nebo nutriční autotrofie Pichia přirozeně sekretuje daleko méně vlastních proteinů než Saccharomyces - zjednodušuje izolací rekombinantního proteinu Pichia pastoris je methylotrofní organismus tzn. jako zdroj uhlíků využívá metanol nejdříve ho oxiduje na formaldehyd (dva geny pro alkoholdehydrogenasu) za přítomností kyslíku, proces probíhá v peroxizomech jelikož vzniká toxický peroxid vodíku. Kvasinková AOX má velice slabou afinitu ke kyslíku a proto je AOX exprimováná ve velice velkém množství (5% veškeré mrna). toho využívá heterologní expresní systém, kdy je transgen vložen pod AOX promotor.

36 Pichia pastoris HIS4 selekce v Pichii ampicilinová selekce v bakterií AOX1 promotor AOX1 TT terminátor pbr322 bakteriální počátek replikace S signální sekvence alfa faktoru 3 AOX1 3 UTR pro AOX gen místo pro homologní rekombinaci

37 Pichia pastoris

38 rekombinace a integrace v Pichia pastoris transformace lineární plasmidovou DNA vede k integraci do genomu kvasinky pomocí homologní rekombinace. transformanti vykazují vysokou stabilitu i bez selekčního tlaku integrace na AOX1 lokus gen narušen může nastat i mnohonásobná inzerce s pravděpodobností 1-10% jednoduché inzerce

39 rekombinace a integrace v Pichia pastoris

40 MNOHONÁSOBNÁ REKOMBINACE A INTEGRACE v PICHII selekce na základě stupňující se koncentrace antibiotika v médiu je třeba otestovat stovky kolonií (1-10% účinnost)

41 různé typy selekce transformované Pichia pastoris ANTIBIOTIKA zeocin 50 μg μg /ml blasticidin Kanamycin/G418 G418 kanamycin nutriční autotrofie gen pro histidinol fosfatasu (his4) lepší pro udržování integrity transformanta při kultivacích ve velkých objemech (fermentace) narušení genu pro AOX1 způsobuje ztrátu aktivity alkohol dehydrogenasy a kvasinka získává MutS fenotyp (methanol utilization slow). Je schopná zpracovávat metanol pouze AOX2 (která má daleko nižší aktivitu 5%) využívá se toho pro selekci integrantů po transformaci: ti co vyrostou daleko později než ti co mají v sobě cirkulární plasmid a nemají narušený gen pro AOX1

42 Pichia pastoris - glykosylace N-glykany mají vysoký obsah manosy

43 Yarrowia lipolytica je to lipofilní kvasinka, která spotřebovává jako zdroj uhlíku n-alkany a mastné kyseliny do prostředí sekretuje velké množství extraceluární proteasy (gen XPR2) promotor tohoto genu byl upraven, tak aby nebyl reprimován okolními vlivy hybridní promotor má 4x opakující se tandemové části z pxpr2 a vykazuje konstitutivní expresi za hybridní promotor je vložená signální sekvence proteasy XPR2 nebo sekretované lipasy klonovací místo SfiI a KpnI (XbaI)

44 Yarrowia lipolytica vektory jsou integrativní (rekombinatní DNA se zabudovává do genomu kvasinky) odvozené od základního plasmidu pbr322 pina1267 mono-integrativní (homologní rekombinace na Po1g lokus, který byl klonován do hostitelského kmene kvasinky do Leu2 genu, linearizace přes jedinečné NotI místo pina1294 mnohonásobná integrace, do vektoru vložená Ylt1 retraspozonová sekvence, která aktivuje nehomologní rekombinaci do genomu kvasinky hostitelský kmen má knockoutovány geny pro extracelulární proteasy do hostitelské Yarrowia je vložen gen Suc2 ze Saccharomyces který umožňuje růst nového kmenu na sacharóze (snadnější propagace)

45 exprese proteinů ve velkém měřítku: FERMENTORY regulace: teplota ph obsah kyslíku (případně jiných plynů) přesné dávkování

46 Heterologní exprese v Yarrowia lipolytica srovnání s ostatními heterologními systémy exprese kukuřičného enzymu cytokinin oxidasy/dehydrogenasy Escherichia coli (ptybii cytosolická exprese; protein fúzován s inteinem) ± 5 mg/litr média 3 dny Saccharomyces cerevicae (pyes2 sekrece do média) ± 2 μg/litr média Pichia pastoris pgapz (konstitutivní exprese) ±10 μg/litr média Pichia pastoris ppicz-α (signální peptid z kvasinky, inducibilní) 1 mg/litr média Yarrowia lipolytica pina1294 (signální peptid z kvasinky) 5mg/litr média přirozený zdroj kukuřice (purifikace) 2 μg/kg média kukuřičných zrn 2 měsíce 3 týdny 3 týdny 1 týden 3 měsíce

47 odchylky v genetickém kódu snižují výtěžek heterologní exprese výjímky: jiná preference: kodón pro arginin (6 různých): CGU CGA CGG CGC AGA AGG E. coli Arabidopsis th. H. sapiens AGA 2.2% AGA 18.9% AGA 11.9% AGG 1.6% AGG 11.0% AGG 12.1%

48 Optimalizace syntetického genu firmou Mr.GENE 1. Úprava kodonů 2. Vyvarování se terciárním strukturám mrna 3. Vyhledávání specifických motivů např. Shine-Dalgarnova sekvence 5'-AGGAGGU-3' polyadenylační signály

49 syntéza DNA FOSFORAMIDIT ochrana N-bází

50 Syntéza umělého genu

Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách

Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou

Více

Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna

Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem

Více

Klonování DNA a fyzikální mapování genomu

Klonování DNA a fyzikální mapování genomu Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální

Více

MIKROBIOLOGIE V BIOTECHNOLOGII

MIKROBIOLOGIE V BIOTECHNOLOGII Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického

Více

Exprese rekombinantních proteinů

Exprese rekombinantních proteinů Exprese rekombinantních proteinů Exprese rekombinantních proteinů je proces, při kterém můžeme pomocí různých expresních systémů vytvořit protein odvozený od konkrétního genu, nebo části genu. Tento protein

Více

MIKROBIOLOGIE V BIOTECHNOLOGII

MIKROBIOLOGIE V BIOTECHNOLOGII Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Termín biotechnologie byl poprvé použit v roce 1917 Procesy, při kterých se na tvorbě výsledného produktu podílejí živé organismy Širší definice: biotechnologie

Více

inženýrstv enýrství KBC/BAM - Pokročil

inženýrstv enýrství KBC/BAM - Pokročil Základy klonování a genového inženýrstv enýrství KBC/BAM - Pokročil ilé biochemické a biotechnologické metody Molekulárn rní klonování: KLONOVÁNÍ multikrokový proces který vytvoří kolekci definovaných

Více

charakteristika E. coli kvasinky hmyzí buňky savčí buňky buněčný růst rapidní (30min) rapidní (90min) pomalý (18-24h) pomalý (24 h)

charakteristika E. coli kvasinky hmyzí buňky savčí buňky buněčný růst rapidní (30min) rapidní (90min) pomalý (18-24h) pomalý (24 h) Expresní systémy živé systémy využívající rekombinantních DNA technologií pro produkci bioorganických látek (především proteinů) Heterologní expresní systémy Bakteriální Kvasinkové Hmyzí buňky Savčí buňky

Více

Obsah přednášky. 1) Exprese v Escherichia coli 2) Exprese v Saccharomyces cerevisiae 3) Exprese v Pichia pastoris 4) Exprese v hmyzích buňkách

Obsah přednášky. 1) Exprese v Escherichia coli 2) Exprese v Saccharomyces cerevisiae 3) Exprese v Pichia pastoris 4) Exprese v hmyzích buňkách Obsah přednášky 1) Exprese v Escherichia coli 2) Exprese v Saccharomyces cerevisiae 3) Exprese v Pichia pastoris 4) Exprese v hmyzích buňkách Exprese v Escherichia coli proteiny větší než malé proteiny

Více

Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer

Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Virologie a diagnostika Výzkumný ústav veterinárního lékařství, v.v.i., Brno Alternativní

Více

Autor prezentace: Doc. Mgr. Petr Galuszka, Ph.D.

Autor prezentace: Doc. Mgr. Petr Galuszka, Ph.D. k4 Konstrukce vhodného rekombinantního plasmidu pro uchování a expresi vybraných genů Škola molekulárních biotechnologií Využití molekulárního klonování uchovávání, zmnožení a manipulace s genetickou informací

Více

Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.

Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky. Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální

Více

REKOMBINACE Přestavby DNA

REKOMBINACE Přestavby DNA REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných

Více

BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.

BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické cytogenetické a fyzické molekulární mapy Ing. Hana Šimková, CSc. Cíl přednášky

Více

Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.

Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny. Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou

Více

Bakteriální transpozony

Bakteriální transpozony Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym

Více

MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE)

MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE) MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE) Nejrozšířenější použití transpozonů je mutageneza za účelem lokalizace genů a jejich charakterizace. Výhody: 1. vyšší frekvence mutace než při

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství

Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat

Více

Zajištění exprese klonovaných genů a její optimalizace

Zajištění exprese klonovaných genů a její optimalizace Zajištění exprese klonovaných genů a její optimalizace Faktory ovlivňující expresi klonovaných genů A. Regulační sekvence pro genovou expresi 1. Transkripční úroveň Síla promotoru a jeho charakter Terminátor

Více

Terapeutické klonování, náhrada tkání a orgánů

Terapeutické klonování, náhrada tkání a orgánů Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací

Více

Zajištění exprese klonovaných genů a její optimalizace

Zajištění exprese klonovaných genů a její optimalizace Zajištění exprese klonovaných genů a její optimalizace Faktory ovlivňující expresi klonovaných genů A. Regulační sekvence pro genovou expresi 1. Transkripce Síla promotoru Terminátor transkripce Stabilita

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin

Více

Kontrola genové exprese

Kontrola genové exprese Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Zajištění exprese klonovaných genů a její optimalizace

Zajištění exprese klonovaných genů a její optimalizace Zajištění exprese klonovaných genů a její optimalizace 1 Faktory ovlivňující expresi klonovaných genů A. Regulační sekvence pro genovou expresi 1. Transkripční úroveň Síla promotoru a jeho charakter Terminátor

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Využití houbových organismů v genovém inženýrství MIKROORGANISMY - bakterie, kvasinky a houby využíval

Více

ZÁKLADY BAKTERIÁLNÍ GENETIKY

ZÁKLADY BAKTERIÁLNÍ GENETIKY Zdroj rozmanitosti mikrorganismů ZÁKLADY BAKTERIÁLNÍ GENETIKY Různé sekvence nukleotidů v DNA kódují různé proteiny Různé proteiny vedou k různým organismům s různými vlastnostmi Exprese genetické informace

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno

Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem

Více

Příprava rekombinantních molekul pro diagnostické účely

Příprava rekombinantních molekul pro diagnostické účely 1 Příprava rekombinantních molekul pro diagnostické účely doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 2 Obsah přednášky 1) Pojem rekombinantní DNA 2) Historické milníky

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

BAKTERIÁLNÍ REZISTENCE

BAKTERIÁLNÍ REZISTENCE BAKTERIÁLNÍ REZISTENCE Petr Zouhar, Fyziologický ústav AV ČR, v. v. i.; UK v Praze, PřF, Katedra fyziologie V této úloze se v hrubých rysech seznámíte s některými metodami používanými v běžné molekulárně

Více

Genové knihovny a analýza genomu

Genové knihovny a analýza genomu Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.

Více

Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk

Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Ústav experimentální biologie Oddělení genetiky a molekulární biologie Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk

Více

Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií

Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií Téma bakalářské práce: Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií Nové odvětví molekulární biologie se zabývá RNA molekulami, které se nepřekládají do proteinů, ale slouží

Více

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/ B.Mieslerová (KB PřF UP v Olomouci)

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/ B.Mieslerová (KB PřF UP v Olomouci) Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 2011 B.Mieslerová (KB PřF UP v Olomouci) VYUŽITÍ HOUBOVÝCH ORGANISMŮ V GENOVÉM INŽENÝRSTVÍ MIKROORGANISMY

Více

Kyselina hyaluronová. Kyselina hyaluronová. Streptococcus equi subsp. produkovaná kyselina hyaluronová a. Autor prezentace: Mgr.

Kyselina hyaluronová. Kyselina hyaluronová. Streptococcus equi subsp. produkovaná kyselina hyaluronová a. Autor prezentace: Mgr. Kyselina hyaluronová Streptococcus equi subsp. zooepidemicus a jím produkovaná kyselina hyaluronová a glukuronidáza Marcela Tlustá Biotechnologická laborato Meyer a Palmer, 1934 Extracelulární matrix,

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

Molekulární biotechnologie č.10c. Využití poznatků molekulární biotechnologie. Využití škrobu, cukrů a celulózy.

Molekulární biotechnologie č.10c. Využití poznatků molekulární biotechnologie. Využití škrobu, cukrů a celulózy. Molekulární biotechnologie č.10c Využití poznatků molekulární biotechnologie. Využití škrobu, cukrů a celulózy. Využití škrobu, cukrů a celulózy Zejména v potravinářském průmyslu Škrob je hydrolyzován

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek

Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají

Více

Izolace nukleových kyselin

Izolace nukleových kyselin Izolace nukleových kyselin Požadavky na izolaci nukleových kyselin V nativním stavu z přirozeného materiálu v dostatečném množství požadované čistotě. Nukleové kyseliny je třeba zbavit všech látek, které

Více

AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny

AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení

Více

Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém

Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém Lesk a bída GM plodin Lesk a bída GM plodin Problémy konstrukce GM plodin: 1) nízká efektivita 2) náhodnost integrace transgenu 3) legislativa

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Ivo Frébort 5. Metody molekulární biologie II DNA footprinting hledání interakcí DNA s proteiny Polymerázová řetězová reakce (Polymerase chain reaction PCR) Malé

Více

Využití vektorů při klonování DNA

Využití vektorů při klonování DNA školní rok 2015/2016, kurz Bi6400 Využití vektorů při klonování DNA Jan Šmarda Ústav experimentální biologie Přírodovědecká fakulta MU 1 Klonování = proces tvorby klonů Klon: soubor geneticky identických

Více

Replikace, transkripce a translace

Replikace, transkripce a translace Replikace, transkripce a translace Pravděpodobnost zařazení chybné báze cca 1:10 4, reálně 1:10 10 ; Proč? Výběr komplementární base je zásadní pro správnost mezigeneračního předávání genetické informace

Více

1. Metodika. Protokol č. F1-4 Metodika: Srovnávací analýza efektivity přípravy rekombinantního proteinu ve fermentoru

1. Metodika. Protokol č. F1-4 Metodika: Srovnávací analýza efektivity přípravy rekombinantního proteinu ve fermentoru Protokol č.: F1-4 Datum: 20.12.2010 Metodika: analýza efektivity přípravy výběr z výsledků ze zkušebních provozů výroby antigenů. Vypracoval: Ing. Václav Filištein, Mgr. Tereza Chrudimská, Spolupracující

Více

MOLEKULÁRNÍ BIOLOGIE PROKARYOT

MOLEKULÁRNÍ BIOLOGIE PROKARYOT Informační makromolekuly MOLEKULÁRNÍ BIOLOGIE PROKARYOT Funkce a syntéza informačních makromolekul Regulace metabolické aktivity Nukleové kyseliny Proteiny Pořadí monomerních jednotek nese genetickou informaci

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a

Více

analýza dat a interpretace výsledků

analýza dat a interpretace výsledků Genetická transformace bakterií III analýza dat a interpretace výsledků Předmět: Biologie ŠVP: Prokaryotní organismy, genetika Doporučený věk žáků: 16-18 let Doba trvání: 45 minut Specifické cíle: analyzovat

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Petr Müller Masarykův onkologický ústav. Genová terapie

Petr Müller Masarykův onkologický ústav. Genová terapie Genová terapie Petr Müller Masarykův onkologický ústav Genová terapie =terapie využívající vpravení exogenní DNA do buněk či tkání organismu za účelem opravy fenotypu (deficience či mutace genu, vrozené

Více

ÚLOHA C Klonování PCR produktu do plasmidu

ÚLOHA C Klonování PCR produktu do plasmidu Jméno a učo: Datum: ÚLOHA C Klonování PCR produktu do plasmidu TEORETICKÝ ÚVOD Při klonování PCR produktů do plasmidů se využívá vlastnosti Taq polymerasy, a jiných non-proofreading polymeras, přidávat

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny

Více

MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)

MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR) MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční

Více

4. Genové inženýrství ve farmaceutické biotechnologii

4. Genové inženýrství ve farmaceutické biotechnologii 4. Genové inženýrství ve farmaceutické biotechnologii Hlavními produkty rekombinantních technologií ve farmacii jsou rekombinantní proteiny, které budeme označovat spíše jako terapeutické proteiny, protože

Více

Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému

Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému regenerujícího ATP v mitochondriích, - uspořádání DNA v

Více

Buněčný cyklus. Replikace DNA a dělení buňky

Buněčný cyklus. Replikace DNA a dělení buňky Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

Metody používané v MB. analýza proteinů, nukleových kyselin

Metody používané v MB. analýza proteinů, nukleových kyselin Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace

Více

Základy genetiky prokaryotické buňky

Základy genetiky prokaryotické buňky Základy genetiky prokaryotické buňky Chromozomová (jaderná) DNA U prokaryot (bakterie, archea) dvouřetězcová většinou kružnicová U eukaryot dvouřetězcová lineární U DNA-virů dvouřetězcová lineární, jednořetězcová

Více

Klonování gen a genové inženýrství

Klonování gen a genové inženýrství Klonování gen a genové inženýrství Genové inženýrství užite né termíny Rekombinantní DNA = DNA, ve které se nachází geny nejmén ze dvou zdroj, asto ze dvou zných druh organism Biotechnologie = manipulace

Více

Úvod do mikrobiologie

Úvod do mikrobiologie Úvod do mikrobiologie 1. Lidské infekční patogeny Subcelulární Prokaryotické o. Eukaryotické o. Živočichové Priony Chlamydie Houby Červi Viry Rickettsie Protozoa Členovci Mykoplasmata Klasické bakterie

Více

Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)

Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén

Více

Havarijní plán PřF UP

Havarijní plán PřF UP Havarijní plán PřF UP v němž se nakládá s geneticky modifikovanými organismy (GMO), zpracovaný podle 20, odst. 4 zákona č. 78/2004 Sb. pro pracoviště kateder Buněčné biologie a genetiky a Oddělení molekulární

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním

Více

Metody používané v MB. analýza proteinů, nukleových kyselin

Metody používané v MB. analýza proteinů, nukleových kyselin Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace

Více

MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha

MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII Martina Nováková, VŠCHT Praha MOLEKULÁRNÍ BIOLOGIE V BIOREMEDIACÍCH enumerace FISH průtoková cytometrie klonování produktů PCR sekvenování

Více

Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému

Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému Důvody pro klonování genů v eukaryotech A. Funkce charakteristické pro eukaryotické buňky, které se u baktérií nevyskytují: - lokalizace systému regenerujícího ATP v mitochondriích, - spojení DNA s histony

Více

doc. RNDr. Milan Bartoš, Ph.D.

doc. RNDr. Milan Bartoš, Ph.D. doc. RNDr. Milan Bartoš, Ph.D. Konference Klonování a geneticky modifikované organismy Parlament České republiky, Poslanecká sněmovna 7. května 2015, Praha Výroba léků rekombinantních léčiv Výroba diagnostických

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

Buněčné kultury a produkce rekombinantních proteinů. Ing. Marta Greplová, Ph.D.

Buněčné kultury a produkce rekombinantních proteinů. Ing. Marta Greplová, Ph.D. Buněčné kultury a produkce rekombinantních proteinů Ing. Marta Greplová, Ph.D. Buněčné kultury - definice Procesy in vitro za účelem udržení životaschopnosti, rozšíření a využití buněk živých organismů.

Více

Autor prezentace: Mgr. Michal Křupka

Autor prezentace: Mgr. Michal Křupka Práce s inkluzními tělísky Refoldování Fúzní proteiny Autokatalitická technika odštěpení fúzní kotvy a její separace od rekombinantního proteinu Mgr. Michal Křupka Ústav imunologie LF UP Inkluzní tělíska

Více

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v

Více

19.b - Metabolismus nukleových kyselin a proteosyntéza

19.b - Metabolismus nukleových kyselin a proteosyntéza 19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění

Více

+ Vektor. Produkce rekombinantních proteinů. Teoretický úvod. Gen. Rekombinantní DNA. Hostitelská buňka. Aplikovaná bioinformatika, Jaro 2013

+ Vektor. Produkce rekombinantních proteinů. Teoretický úvod. Gen. Rekombinantní DNA. Hostitelská buňka. Aplikovaná bioinformatika, Jaro 2013 Gen + Vektor + Rekombinantní DNA Hostitelská buňka Produkce rekombinantních proteinů Teoretický úvod Aplikovaná bioinformatika, Jaro 2013 Práce s proteiny Zisk proteinů Protein je správně sbalený, aktivní,

Více

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu. Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové

Více

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru: Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -

Více

Transpozony - mobilní genetické elementy

Transpozony - mobilní genetické elementy Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Ivo Frébort 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci

Více

TRANSLACE - SYNTÉZA BÍLKOVIN

TRANSLACE - SYNTÉZA BÍLKOVIN TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy

Více

25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.

25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů. Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. 1 Strukturní genomika stanovení sledu nukleotidů genomu organismu,

Více

Školení GMO Ústav biochemie a mikrobiologie

Školení GMO Ústav biochemie a mikrobiologie Školení GMO Ústav biochemie a mikrobiologie 2.2.2018 Agrobacterium tumefaciens OZNÁMENÍ o uzavřeném nakládání první a druhé kategorie rizika na Ústavu biochemie a mikrobiologie VŠCHT a Ústavu biotechnologie

Více

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní

Více

NGS analýza dat. kroužek, Alena Musilová

NGS analýza dat. kroužek, Alena Musilová NGS analýza dat kroužek, 16.12.2016 Alena Musilová Typy NGS experimentů Název Materiál Cílí na..? Cíl experimentu? amplikon DNA malý počet vybraných genů hledání variant exom DNA všechny geny hledání

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně

Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně

Více

Translace (druhý krok genové exprese)

Translace (druhý krok genové exprese) Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace

Více

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného

Více