Základy genomiky II, Identifikace genů
|
|
- Eliška Soukupová
- před 6 lety
- Počet zobrazení:
Transkript
1 Základy genomiky II. Identifikace genů Jan Hejátko Masarykova univerzita, Laboratoř funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin
2 Základy genomiky II. Zdrojová literatura ke kapitole II: Plant Functional Genomics, ed. Erich Grotewold, 2003, Humana Press, Totowa, New Jersey Majoros, W.H., Pertea, M., Antonescu, C. and Salzberg, S.L. (2003) GlimmerM, Exonomy, and Unveil: three ab initio eukaryotic genefinders. Nucleic Acids Research, 31(13). Singh, G. and Lykke-Andersen, J. (2003) New insights into the formation of active nonsensemediated decay complexes. TRENDS in Biochemical Sciences, 28 (464). Wang, L. and Wessler, S.R. (1998) Inefficient reinitiation is responsible for upstream open reading frame-mediated translational repression of the maize R gene. Plant Cell, 10, (1733) de Souza et al. (1998) Toward a resolution of the introns earlyylate debate: Only phase zero introns are correlated with the structure of ancient proteins PNAS, 95, (5094) Feuillet and Keller (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution Ann Bot, 89 (3-10) Frobius, A.C., Matus, D.Q., and Seaver, E.C. (2008). Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I. PLoS One 3, e4004
3 Základy genomiky II. Postupy přímé a reverzní genetiky rozdíly v myšlenkových přístupech k identifikaci genů a jejich funkcí Predikce funkce genů in silico struktura genů a jejich vyhledávání genomová kolinearita a genová homologie Experimentální identifikace genů příprava genově obohacených knihoven pomocí technologie metylačního filtrování EST knihovny
4 Základy genomiky II. Postupy přímé a reverzní genetiky rozdíly v myšlenkových přístupech k identifikaci genů a jejich funkcí
5 Přístupy klasické genetiky Přímá vs. reverzní genetika Revoluce v chápání pojmu genu Reverzně genetický přístup 5 TTATATATATATATTAAAAAATAAAATAAA AGAACAAAAAAGAAAATAAAATA.3 inzerční mutageneze 3 : 1?
6 Identifikace role genu ARR21 Předpokládaný přenašeč signálu u dvoukomponentního signálního systému Arabidopsis
7 Identifikace role genu ARR21 regulátor odezvy v dvoukomponentním signálním systému Recent Model of the CK Signaling via Multistep Phosphorelay (MSP) Pathway CYTOKININ PM AHK sensor histidine kinases AHK2 AHK3 CRE1/AHK4/WOL HPt Proteins AHP1-6 NUCLEUS Response Regulators ARR1-24 REGULATION OF TRANSCRIPTION INTERACTION WITH EFFECTOR PROTEINS Hormonal regulations of plant development
8 Identifikace role genu ARR21 Předpokládaný přenašeč signálu u dvoukomponentního signálního systému Arabidopsis Mutant identifikován vyhledáváním v databázi inzerčních mutantů (SINS-sequenced insertion site) pomocí programu BLAST
9 Identifikace role genu ARR21 identifikace inzerčního mutanta vyhledávání v databázi inzerčních mutantů (SINS) lokalizace inzerce dspm v genomové sekvenci ARR21 pomocí sekvenace PCR produktů
10 Identifikace role genu ARR21 Předpokládaný přenašeč signálu u dvoukomponentního signálního systému Arabidopsis Mutant identifikován vyhledáváním v databázi inzerčních mutantů (SINS-sequenced insertion site) pomocí programu BLAST Exprese ARR21 u standardního typu a Inhibice exprese u inzerčního mutanta potvrzena na úrovni RNA
11 Identifikace role genu ARR21 analýza expresního profilu Standardní typ Inzerční mutant
12 Identifikace role genu ARR21 Předpokládaný přenašeč signálu u dvoukomponentního signálního systému Arabidopsis Mutant identifikován vyhledáváním v databázi inzerčních mutantů (SINS-sequenced insertion site) pomocí programu BLAST Exprese ARR21 u standardního typu a Inhibice exprese u inzerčního mutanta potvrzena na úrovni RNA Analýza fenotypu inzečního mutanta
13 Identifikace role genu ARR21 analýza fenotypu inzerčního mutanta Analýza citlivosti k regulátorům růstu rostlin 2,4-D a kinetin etylén světlo různých vlnových délek Doba kvetení i počet semen nezměněn
14 Identifikace role genu ARR21 možné příčiny absence odchylek fenotypu u inzerčního mutanta Funkční redundance v rámci genové rodiny?
15 Identifikace role genu ARR21 příbuznost jednotlivých ARR genů u Arabisopsis
16 Identifikace role genu ARR21 možné příčiny absence odchylek fenotypu u inzerčního mutanta Funkční redundance v rámci genové rodiny? Fenotypový projev pouze za velmi specifických podmínek (?)
17 Inzerční mutageneze ve funkční genomice Arabidopsis thaliana Gen ARR21 identifikován pomocí srovnávací analýzy genomu Arabidopsis Na základě analýzy sekvence byla předpovězena jeho funkce Byla prokázána místně specifická exprese genu ARR21 na úrovni RNA Inzerční mutageneze v případě identifikace funkce genu ARR21 ve vývoji Arabidopsis byla neúspěšná, pravděpodobně v důsledku funkční redundance v rámci genové rodiny
18 Základy genomiky II. Postupy přímé a reverzní genetiky rozdíly v myšlenkových přístupech k identifikaci genů a jejich funkcí Predikce funkce genů in silico struktura genů a jejich vyhledávání
19 Predikce funkce genů in silico struktura genů struktura genů promotor počátek transkripce 5 UTR počátek translace místa sestřihu stop kodon 3 UTR polyadenylační signál TATA 5 UTR ATG.ATTCATCAT ATTATCTGATATA.ATAAATAAATGCGA 3 UTR
20 Predikce funkce genů in silico vyhledávání genů vyhledávání genů ab inicio zanedbání 5 a 3 UTR identifikace počátku translace (ATG) a stop kodonu (TAG, TAA, TGA) nalezení donorových (většinou GT) a akceptorových (AG) míst sestřihu většina ORF není skutečně kódujícími sekvencemi u Arabidopsis je asi 350 mil. ORF na každých 900 bp (!) využití různých statistických modelů (např. Hidden Markov Model, HMM, viz doporučená studijní literatura, Majoros et al., 2003) k posouzení a ohodnocení váhy identifikovaných donorových a akceptorových míst
21 Predikce funkce genů in silico vyhledávání genů vyhledávání genů ab inicio programy pro predikci míst sestřihu (specificita přibližně 35%) GeneSplicer ( SplicePredictor (
22 Predikce funkce genů in silico vyhledávání genů
23 Predikce funkce genů in silico vyhledávání genů vyhledávání genů ab inicio programy pro predikci míst sestřihu (specificita přibližně 35%) GeneSplicer ( SplicePredictor ( NetGene2 (
24 Predikce funkce genů in silico vyhledávání genů
25 Predikce funkce genů in silico vyhledávání genů odchylky rozpoznávání míst sestřihu u rostlin v praxi - příklad vývojové plasticity (nejen) rostlin identifikace mutanta s bodovou mutací (tranzice G A) přesně v místě sestřihu na 5 konci 4. exonu BsmI AlwNI analýza pomocí RT PCR prokázala přítomnost BpmI PflMI AseI PsiI SpeI BclI fragmentu kratšího než by odpovídalo cdna po normálním sestřihu CT GC GAA TT ACA AA GTT GT TAT TG TCT TG ATC CT AAA TT GAA TG CTC TT GTG TT TTC TA TTT CT CCA GG AAC TG GTG AA GCT CA CTG GT GCA AA AAC AC ATG AA GCC AA GAT AA ACA TT ATT AA TGA TG TTA AT GGC AT TAT AA AGC CA GGA AG GTT AG TAG TT GTC TC CTA AC TAG TT TTG AT CAA AG TTT TA TAC CT TCA AG TGT GC T GA CG CTT AA TGT TT CAA CA ATA AC AGA AC TAG GA TTT AA CTT AC GAG AA CAC AA AAG AT AAA GA GGT CC TTG AC CAC TT CGA GT GAC CA CGT TT TTG TG TAC TT CGG TT CTA TT TGT AA TAA TT ACT AC AAT TA CCG TA ATA TT TCG GT CCT TC CAA TC ATC AA CAG AG GAT TG ATC AA AAC TA GTT TC AAA AT ATG GA AGT TC ACA CG A sekvenace tohoto fragmentu pak ukázala na alternativní sesřih s využitím nejbližšího možného místa sestřihu v EXON 3 exonu 4 BsmI BpmI R L V V V S. L V L I K V L Y L Q V C PDR_U1b S no splicing E L V K L T G A K T H E A K I N I I N D V N G I I K P G R PDR exon 3 ORF AlwNI PflMI AseI PsiI SpeI PstI BclI BspMI CT GC GAA TT ACA AA GTT HpaI GT TAT TG TCT TG ATC CT AAA TT GAA TG CTC TT GTG TT TTC TA TTT CT CCA GG AAC TG StuI GTG AA GCT CA CTG GT GCA AA AAC AC ATG AA GCC AA GAT AA ACA TT ATT AA TGA TG TTA AT GGC AT TAT AA AGC CA GGA AG GTT AG TAG TT GTC TC CTA ACPvuII TAG TT TTG AT CAA AG TTT TA TAC CT TCA AG TGT GC T GA CG CTT AA TGT TT CAA CA ATA AC AGA AC TAG GA TTT AA CTT AC GAG AA CAC AA AAG AT AAA GA GGT CC TTG AC CAC TT CGA GT GAC CA CGT TT TTG TG TAC TT CGG TT CTA TT TGT AA TAA TT ACT AC AAT TA CCG TA ATA TT TCG GT CCT TC CAA TC ATC AA CAG AG GAT TG ATC AA AAC TA GTT TC AAA AT ATG GA AGT TC ACA CG A TA TT CTT CT TGC TG TTG CA GGT TA ACA CT GTT GC TTG GT CCT CC TAG CT GCG GA AAA AC AAC TT TGT TA AAG GC CTT GT CTG GA AAT TT AGA AA ACA AT CTA AA GGT TC TAA TG ATG AA AGC AG TTA TA TCA TT TTC TT GTG AA GAT TT TTT TG CTG CA GCT GT GTG AA GTT TG TAC CT TTT C R L V V V S. L V L I K V L Y L Q1653 V C PDR_U1b S no splicing existence podobných obranných mechanizmů prokázána i u jiných organizmů, např. AT AA GAA GA ACG AC AAC GT CCA AT TGT GA CAA CG AAC CA GGA GG ATC GA CGC CT TTT TG TTG AA ACA AT TTC CG GAA CA GAC CT TTA AA TCT TT TGT TA GAT TT CCA AG ATT AC TAC TT TCG TC AAT AT AGT AA AAG AA CAC TT CTA AA AAA AC GAC GT CGA CA CAC TT CAA AC ATG GA AAA G EXON 3 pis1 intron nestabilita mutantní mrna E L V K L Tse G A Kvznikem T H E A K I N předčasného I I N D V N G I I K P G stopkodonu R (> bp před L F F L L L Q L T L L L G P P PDR exon 3 ORF no splicing pis1 DEL pis1 EXON 4 PstI normálním stop kodonem) u eukaryot, viz doporučená studijní literatura, Singh and BspMI HpaI StuI PvuII C G K T T L L K A L S G N L E N N L K TA TT CTT CT TGC TG TTG CA GGT TA ACA CT GTT GC TTG GT CCT CC TAG CT GCG GA AAA AC AAC TT TGT TA AAG GC CTT GT CTG GA AAT TT AGA AA ACA AT CTA AA GGT TC TAA TG ATG AA AGC AG TTA TA TCA TT TTC TT GTG AA GAT TT TTT TG CTG CA GCT GT GTG AA GTT TG TAC CT TTT C pis1 intron Lykke-Andersen, 2003) pis1 exon 4 ORF AT AA GAA GA ACG AC AAC GT CCA AT TGT GA CAA CG AAC CA GGA GG ATC GA CGC CT TTT TG TTG AA ACA AT TTC CG GAA CA GAC CT TTA AA TCT TT TGT TA GAT TT CCA AG ATT AC TAC TT TCG TC AAT AT AGT AA AAG AA CAC TT CTA AA AAA AC GAC GT CGA CA CAC TT CAA AC ATG GA AAA G GCTGTTGCAa 1653 pis1 intron L F F L L L Q L T L L L G P P no splicing pis1 DEL pis1 EXON 4 pis1 intron C G K T T L L K A L S G N L E N N L K EXON 4 pis1 exon 4 ORF GCTGTTGCAa L T L L L G P P S C G K T T L L K A L S G N L E N N L K EXON 4 PDR exon 4 ORF L T L L L G P P S C G K T T L L K A L S G N L E N N L K PDR exon 4 ORF PDR_L1 PDR_L1
26 Predikce funkce genů in silico vyhledávání genů vyhledávání genů ab inicio programy pro predikci míst sestřihu (specificita přibližně 35%) GeneSplicer ( SplicePredictor ( NetGene2 ( programy pro predikci exonů iniciační: 4 typy exonů (podle polohy): iniciační vnitřní terminální a jednoduché programy kromě rozpoznávání míst sestřihu zohledňují i strukturu jednotlivých typů exonů Genescan ( GeneMark.hmm ( interní: MZEF (
27 Predikce funkce genů in silico vyhledávání genů BtsI AAATTTTAGATTTAAGTGGCGAATTTCGCAGCCAAACTATTATTTTACCACAGACATGCAGTGTTGAAATCTAAGGTAGTATGTGGATTTTTTTTTTGGCAGCAAAACGTAAAGTTAATTTATCTTTATATATATTAAAATGTAATTTATCTTTTTATACATATATATTTATACACATCATATCATAAGA 2660 TTTAAAATCTAAATTCACCGCTTAAAGCGTCGGTTTGATAATAAAATGGTGTCTGTACGTCACAACTTTAGATTCCATCATACACCTAAAAAAAAAACCGTCGTTTTGCATTTCAATTAAATAGAAATATATATAATTTTACATTAAATAGAAAAATATGTATATATAAATATGTGTAGTATAGTATTCT AseI CATACATACATAAATCTCTAAATATGTAAGGGGTGTCATCAGTTTTGCCTTCTGTTTATGGTTCACTCGATTTCACATTAATTATTCACTCAAATTCACAAAGGTTATTTCGTTTTCATTAGCGCCCTTTCTCTCGACTTTCTTGATGAATCTTTATTTCTTCTATGTGAAATCTAATTAAGACTATTTT GTATGTATGTATTTAGAGATTTATACATTCCCCACAGTAGTCAAAACGGAAGACAAATACCAAGTGAGCTAAAGTGTAATTAATAAGTGAGTTTAAGTGTTTCCAATAAAGCAAAAGTAATCGCGGGAAAGAGAGCTGAAAGAACTACTTAGAAATAAAGAAGATACACTTTAGATTAATTCTGATAAAA 2850 IIa exon 1 DraI BspHI BsmI HindIII CGTGTTATATTGATGTTTAAAAATGAAAATCTTTTGGTTTTTATGTTTAATCATTTTCATGAGTATTAAATGTAATAGATTTAAGTTAAAACTAATATCCGAATGCCTGAGATATTGTTTCCTAAAATGAGATGATTGTTTTTATTTATTACCATGATTTGTTTGTACTAAGCTTCCTTTCCCCTTTGCA 3040 GCACAATATAACTACAAATTTTTACTTTTAGAAAACCAAAAATACAAATTAGTAAAAGTACTCATAATTTACATTATCTAAATTCAATTTTGATTATAGGCTTACGGACTCTATAACAAAGGATTTTACTCTACTAACAAAAATAAATAATGGTACTAAACAAACATGATTCGAAGGAAAGGGGAAACGT PciI BpuEI BglII XbaI ATACATAGGATATAAATTCATACATGTTCCTAATTTTATTTTTGCACTTGAGTTTATGGTTTTCTTTGGTGGAAGATCTATATGTATCTATATCTATATTATTTTACTCTTTTCTTCGTCGTCATTTATAGTATATTATATATATGCACACACACACACACCTATATGTATAGCTCAATTCTAGATAAAA 3230 TATGTATCCTATATTTAAGTATGTACAAGGATTAAAATAAAAACGTGAACTCAAATACCAAAAGAAACCACCTTCTAGATATACATAGATATAGATATAATAAAATGAGAAAAGAAGCAGCAGTAAATATCATATAATATATATACGTGTGTGTGTGTGTGGATATACATATCGAGTTAAGATCTATTTT BpuEI BcgI' BcgI SnaBI TATATAGAAATGGATCTTGAGAATCATTTTTTTTGTATTCTTTTGTTATCAAAGGGTTTCGACTTTGCTCCGAGGAAGAAGATAATATGAAAAGAGCTTTTTAGGGTTTATCATTCTCCTTGACTTTGCAAAACGTGAAATGTAAGGCACTTTGATCGTTGTACTTTGTTGCTTTTTATACGTATCGCTT ATATATCTTTACCTAGAACTCTTAGTAAAAAAAACATAAGAAAACAATAGTTTCCCAAAGCTGAAACGAGGCTCCTTCTTCTATTATACTTTTCTCGAAAAATCCCAAATAGTAAGAGGAACTGAAACGTTTTGCACTTTACATTCCGTGAAACTAGCAACATGAAACAACGAAAAATATGCATAGCGAA 3420 exon 2 IIIa M K R A F. uorf b_low Xho67 HpaI EcoICRI SacI PvuI CCTACAATAAGTTAACAATGCTTCCTCGTAGAATTGCAAAACATTTGTGGACCGTGATTTACATGACTGAGCTCTTTTCAGTGGCTTCTTTGCAGCAGCTTCTTCCTTGGAGGACTAATCAAGACAGAAATCTGTTCCTCTAAAAACGATCGCCGTTCTAGGTAATCTTGCCATTCTTGACGAGTCTTGA GGATGTTATTCAATTGTTACGAAGGAGCATCTTAACGTTTTGTAAACACCTGGCACTAAATGTACTGACTCGAGAAAAGTCACCGAAGAAACGTCGTCGAAGAAGGAACCTCCTGATTAGTTCTGTCTTTAGACAAGGAGATTTTTGCTAGCGGCAAGATCCATTAGAACGGTAAGAACTGCTCAGAACT 3610 exon 3 PsiI BssSI AseI HindIII BmgBI MfeI TCTTTAGAATCAAATTTATAAGGGATCACGAGATACACGTATTAATTATTATTTTTTTTTTTTTTGCTTTTTGTGGTTATACAAGTTCACTCAAATGATGGTGAAAGTTACAAAGCTTGTGGCTTCACGTCCAATTGTGGTCTTTTGCGTCCTGGTAATTCTGCTTTCTTTCTTCTAAATTATACGATGA AGAAATCTTAGTTTAAATATTCCCTAGTGCTCTATGTGCATAATTAATAATAAAAAAAAAAAAAACGAAAAACACCAATATGTTCAAGTGAGTTTACTACCACTTTCAATGTTTCGAACACCGAAGTGCAGGTTAACACCAGAAAACGCAGGACCATTAAGACGAAAGAAAGAAGATTTAATATGCTACT 3800 exon 4 cki -182 Xckw M M V K V T K L V A S R P I V V F C V L BsmI BglII TTCTACATTTCTACTCATCTCGTTCTTGTTTTTCAAATGATATAATTATTGTGTGTATATCACCCATTCATGTATATTTATTGAAAAATATAGGCATTCCTGGTGGTTGTTTTCGAGTGCATTTGGATCTCAAATTGGCGAACAACAACGGAGAACCTAGTCAAAGAGGTCGCTTCATTTACCGAAGATC 3990 AAGATGTAAAGATGAGTAGAGCAAGAACAAAAAGTTTACTATATTAATAACACACATATAGTGGGTAAGTACATATAAATAACTTTTTATATCCGTAAGGACCACCAACAAAAGCTCACGTAAACCTAGAGTTTAACCGCTTGTTGTTGCCTCTTGGATCAGTTTCTCCAGCGAAGTAAATGGCTTCTAG A F L V V V F E C I W I S N W R T T T E N L V K E V A S F T E D exon 5 BspEI Fal I Fal I' NdeI PvuI Fal I Fal I' TCCGGACAAGTCTAGTTTCGGAGATTGAAAACATCGGAAAATTTACATATGCCAAGACAAACTTATCTACGATCGGTTTAGCGAGAGTTATAGATTCTTATATCACCAACAACGACACTGGTTTTACAGAGATTCAAACACAGGTTGTTAAAACTAATTACATAAATTCAATTATTCTTAGTTATTATCT 4180 AGGCCTGTTCAGATCAAAGCCTCTAACTTTTGTAGCCTTTTAAATGTATACGGTTCTGTTTGAATAGATGCTAGCCAAATCGCTCTCAATATCTAAGAATATAGTGGTTGTTGCTGTGACCAAAATGTCTCTAAGTTTGTGTCCAACAATTTTGATTAATGTATTTAAGTTAATAAGAATCAATAATAGA L R T S L V S E I E N I G K F T Y A K T N L S T I G L A R V I D S Y I T N N D T G F T E I Q T Q exon 5 Eco57I BsaI BsrDI TAGGATTAGTTTGAGTTATATAACATTAACTATAATTTTATGTTGTTGTTGTTGTTGTTATTATTGTTCTTCAGATCGCACCATTGTTGTTTGTAGCTTATTCAACGATCCTTCAAGTCTCACAAGTTTCGTACATCAGTAGGGACGGTCTCATGTTTTCTTACATTGCAGAATCAAACACAAGTGTCGC 4370 ATCCTAATCAAACTCAATATATTGTAATTGATATTAAAATACAACAACAACAACAACAATAATAACAAGAAGTCTAGCGTGGTAACAACAAACATCGAATAAGTTGCTAGGAAGTTCAGAGTGTTCAAAGCATGTAGTCATCCCTGCCAGAGTACAAAAGAATGTAACGTCTTAGTTTGTGTTCACAGCG Q I A P L L F V A Y S T I L Q V S Q V S Y I S R D G L M F S Y I A E S N T S V A exon 6 CKIp1UP EcoRI HpaI TGTTTTTGCCAATTCCTCGTCGAATTCAAGTCGTGGAGACTACACTTGGTACACTCAAACCGTGGATCAGTTAACTGGTCGTCTTAACGGGAACTCAACGAAATCTCAGTCGTTAGATGTAACCCATACAGATTGGTTCCAAGCAGCACAGAGTAATAACTACACTACAGCCTTTGTAGGAACGAGCTTG 4560 ACAAAAACGGTTAAGGAGCAGCTTAAGTTCAGCACCTCTGATGTGAACCATGTGAGTTTGGCACCTAGTCAATTGACCAGCAGAATTGCCCTTGAGTTGCTTTAGAGTCAGCAATCTACATTGGGTATGTCTAACCAAGGTTCGTCGTGTCTCATTATTGATGTGATGTCGGAAACATCCTTGCTCGAAC V F A N S S S N S S R G D Y T W Y T Q T V D Q L T G R L N G N S T K S Q S L D V T H T D W F Q A A Q S N N Y T T A F V G T S L exon 6 EarI BseRI BsrGI SapI PciI GGAGGAGAAGATAACGAGACTCTAATACAGAGCGTGGTTAGCTTGTACAGCAAGAAAGGTCTTGTTTCTTTAGGGTTTCCGGTTAAGACTTTAACCGAAGTTTTGAACAGTTTGAATCTACACGGCGAAGAGCTTTACATGTGGACAAAGGACGGGACGGTGCTTGTTCGTGAAGGTTCACTGAATGATT 4750 CCTCCTCTTCTATTGCTCTGAGATTATGTCTCGCACCAATCGAACATGTCGTTCTTTCCAGAACAAAGAAATCCCAAAGGCCAATTCTGAAATTGGCTTCAAAACTTGTCAAACTTAGATGTGCCGCTTCTCGAAATGTACACCTGTTTCCTGCCCTGCCACGAACAAGCACTTCCAAGTGACTTACTAA G G E D N E T L I Q S V V S L Y S K K G L V S L G F P V K T L T E V L N S L N L H G E E L Y M W T K D G T V L V R E G S L N D exon 6 SALK_ (L) (Q)SALK_ cki - BsaI BfrBI NsiI HindIII CTTTCTTCATCTCCAATGGCTCGATTTGCTTCGGTAGAGAATCGAACTCCCTCTGGTCTCAATGCATCCCTGAAAATTGCAGTTCCAGTGGCTACGAGGTGGAGATCAAAAGATTAAGATACCAAGCTTTTTGCTCTGTTATTGAAGTTTCGGGCGTTCCTCTGGTAAATACTGAAACATATTTCACTTT 4940 GAAAGAAGTAGAGGTTACCGAGCTAAACGAAGCCATCTCTTAGCTTGAGGGAGACCAGAGTTACGTAGGGACTTTTAACGTCAAGGTCACCGATGCTCCACCTCTAGTTTTCTAATTCTATGGTTCGAAAAACGAGACAATAACTTCAAAGCCCGCAAGGAGACCATTTATGACTTTGTATAAAGTGAAA S F F I S N G S I C F G R E S N S L W S Q C I P E N C S S S G Y E V E I K R L R Y Q A F C S V I E V S G V P L exon 6 cki -979 CKIp1DOW N
28 Predikce funkce genů in silico vyhledávání genů Funkční význam sestřihu v nepřekládaných oblastech - důležitá regulační součást genů Translační represe prostřednictvím krátkých ORF v 5 UTR Identifikováno např. u kukuřice (Wang and Wessler, 1998, viz doporučená lit.) M K R A F. ATGaaaagagcttttTAG ATGatggtgaaagttaca. M K R A F. ATGaaaagagcttttTAG M M V K V T ATGatggtgaaagttaca. V případě CKI1 pokus prokázat tento způsob regulace genové exprese pomocí transgenních linií nesoucích uida pod kontrolou dvou verzí promotoru, zatím nepotvrzeno
29 Predikce funkce genů in silico vyhledávání genů vyhledávání genů ab inicio programy pro genové modelování zohledňují také další parametry, např. návaznost ORF Genescan ( velice dobrý pro predikci exonů v kódujích oblastech (testováno na genu PDR9, identifikoval všech 23 (!) exonů GeneMark.hmm (
30 Predikce funkce genů in silico vyhledávání genů BtsI AAATTTTAGATTTAAGTGGCGAATTTCGCAGCCAAACTATTATTTTACCACAGACATGCAGTGTTGAAATCTAAGGTAGTATGTGGATTTTTTTTTTGGCAGCAAAACGTAAAGTTAATTTATCTTTATATATATTAAAATGTAATTTATCTTTTTATACATATATATTTATACACATCATATCATAAGA 2660 TTTAAAATCTAAATTCACCGCTTAAAGCGTCGGTTTGATAATAAAATGGTGTCTGTACGTCACAACTTTAGATTCCATCATACACCTAAAAAAAAAACCGTCGTTTTGCATTTCAATTAAATAGAAATATATATAATTTTACATTAAATAGAAAAATATGTATATATAAATATGTGTAGTATAGTATTCT AseI CATACATACATAAATCTCTAAATATGTAAGGGGTGTCATCAGTTTTGCCTTCTGTTTATGGTTCACTCGATTTCACATTAATTATTCACTCAAATTCACAAAGGTTATTTCGTTTTCATTAGCGCCCTTTCTCTCGACTTTCTTGATGAATCTTTATTTCTTCTATGTGAAATCTAATTAAGACTATTTT GTATGTATGTATTTAGAGATTTATACATTCCCCACAGTAGTCAAAACGGAAGACAAATACCAAGTGAGCTAAAGTGTAATTAATAAGTGAGTTTAAGTGTTTCCAATAAAGCAAAAGTAATCGCGGGAAAGAGAGCTGAAAGAACTACTTAGAAATAAAGAAGATACACTTTAGATTAATTCTGATAAAA 2850 IIa exon 1 DraI BspHI BsmI HindIII CGTGTTATATTGATGTTTAAAAATGAAAATCTTTTGGTTTTTATGTTTAATCATTTTCATGAGTATTAAATGTAATAGATTTAAGTTAAAACTAATATCCGAATGCCTGAGATATTGTTTCCTAAAATGAGATGATTGTTTTTATTTATTACCATGATTTGTTTGTACTAAGCTTCCTTTCCCCTTTGCA 3040 GCACAATATAACTACAAATTTTTACTTTTAGAAAACCAAAAATACAAATTAGTAAAAGTACTCATAATTTACATTATCTAAATTCAATTTTGATTATAGGCTTACGGACTCTATAACAAAGGATTTTACTCTACTAACAAAAATAAATAATGGTACTAAACAAACATGATTCGAAGGAAAGGGGAAACGT PciI BpuEI BglII XbaI ATACATAGGATATAAATTCATACATGTTCCTAATTTTATTTTTGCACTTGAGTTTATGGTTTTCTTTGGTGGAAGATCTATATGTATCTATATCTATATTATTTTACTCTTTTCTTCGTCGTCATTTATAGTATATTATATATATGCACACACACACACACCTATATGTATAGCTCAATTCTAGATAAAA 3230 TATGTATCCTATATTTAAGTATGTACAAGGATTAAAATAAAAACGTGAACTCAAATACCAAAAGAAACCACCTTCTAGATATACATAGATATAGATATAATAAAATGAGAAAAGAAGCAGCAGTAAATATCATATAATATATATACGTGTGTGTGTGTGTGGATATACATATCGAGTTAAGATCTATTTT BpuEI BcgI' BcgI SnaBI TATATAGAAATGGATCTTGAGAATCATTTTTTTTGTATTCTTTTGTTATCAAAGGGTTTCGACTTTGCTCCGAGGAAGAAGATAATATGAAAAGAGCTTTTTAGGGTTTATCATTCTCCTTGACTTTGCAAAACGTGAAATGTAAGGCACTTTGATCGTTGTACTTTGTTGCTTTTTATACGTATCGCTT ATATATCTTTACCTAGAACTCTTAGTAAAAAAAACATAAGAAAACAATAGTTTCCCAAAGCTGAAACGAGGCTCCTTCTTCTATTATACTTTTCTCGAAAAATCCCAAATAGTAAGAGGAACTGAAACGTTTTGCACTTTACATTCCGTGAAACTAGCAACATGAAACAACGAAAAATATGCATAGCGAA 3420 exon 2 IIIa M K R A F. uorf b_low Xho67 HpaI EcoICRI SacI PvuI CCTACAATAAGTTAACAATGCTTCCTCGTAGAATTGCAAAACATTTGTGGACCGTGATTTACATGACTGAGCTCTTTTCAGTGGCTTCTTTGCAGCAGCTTCTTCCTTGGAGGACTAATCAAGACAGAAATCTGTTCCTCTAAAAACGATCGCCGTTCTAGGTAATCTTGCCATTCTTGACGAGTCTTGA GGATGTTATTCAATTGTTACGAAGGAGCATCTTAACGTTTTGTAAACACCTGGCACTAAATGTACTGACTCGAGAAAAGTCACCGAAGAAACGTCGTCGAAGAAGGAACCTCCTGATTAGTTCTGTCTTTAGACAAGGAGATTTTTGCTAGCGGCAAGATCCATTAGAACGGTAAGAACTGCTCAGAACT 3610 exon 3 PsiI BssSI AseI HindIII BmgBI MfeI TCTTTAGAATCAAATTTATAAGGGATCACGAGATACACGTATTAATTATTATTTTTTTTTTTTTTGCTTTTTGTGGTTATACAAGTTCACTCAAATGATGGTGAAAGTTACAAAGCTTGTGGCTTCACGTCCAATTGTGGTCTTTTGCGTCCTGGTAATTCTGCTTTCTTTCTTCTAAATTATACGATGA AGAAATCTTAGTTTAAATATTCCCTAGTGCTCTATGTGCATAATTAATAATAAAAAAAAAAAAAACGAAAAACACCAATATGTTCAAGTGAGTTTACTACCACTTTCAATGTTTCGAACACCGAAGTGCAGGTTAACACCAGAAAACGCAGGACCATTAAGACGAAAGAAAGAAGATTTAATATGCTACT 3800 exon 4 cki -182 Xckw M M V K V T K L V A S R P I V V F C V L BsmI BglII TTCTACATTTCTACTCATCTCGTTCTTGTTTTTCAAATGATATAATTATTGTGTGTATATCACCCATTCATGTATATTTATTGAAAAATATAGGCATTCCTGGTGGTTGTTTTCGAGTGCATTTGGATCTCAAATTGGCGAACAACAACGGAGAACCTAGTCAAAGAGGTCGCTTCATTTACCGAAGATC 3990 AAGATGTAAAGATGAGTAGAGCAAGAACAAAAAGTTTACTATATTAATAACACACATATAGTGGGTAAGTACATATAAATAACTTTTTATATCCGTAAGGACCACCAACAAAAGCTCACGTAAACCTAGAGTTTAACCGCTTGTTGTTGCCTCTTGGATCAGTTTCTCCAGCGAAGTAAATGGCTTCTAG A F L V V V F E C I W I S N W R T T T E N L V K E V A S F T E D exon 5 BspEI Fal I Fal I' NdeI PvuI Fal I Fal I' TCCGGACAAGTCTAGTTTCGGAGATTGAAAACATCGGAAAATTTACATATGCCAAGACAAACTTATCTACGATCGGTTTAGCGAGAGTTATAGATTCTTATATCACCAACAACGACACTGGTTTTACAGAGATTCAAACACAGGTTGTTAAAACTAATTACATAAATTCAATTATTCTTAGTTATTATCT 4180 AGGCCTGTTCAGATCAAAGCCTCTAACTTTTGTAGCCTTTTAAATGTATACGGTTCTGTTTGAATAGATGCTAGCCAAATCGCTCTCAATATCTAAGAATATAGTGGTTGTTGCTGTGACCAAAATGTCTCTAAGTTTGTGTCCAACAATTTTGATTAATGTATTTAAGTTAATAAGAATCAATAATAGA L R T S L V S E I E N I G K F T Y A K T N L S T I G L A R V I D S Y I T N N D T G F T E I Q T Q exon 5 Eco57I BsaI BsrDI TAGGATTAGTTTGAGTTATATAACATTAACTATAATTTTATGTTGTTGTTGTTGTTGTTATTATTGTTCTTCAGATCGCACCATTGTTGTTTGTAGCTTATTCAACGATCCTTCAAGTCTCACAAGTTTCGTACATCAGTAGGGACGGTCTCATGTTTTCTTACATTGCAGAATCAAACACAAGTGTCGC 4370 ATCCTAATCAAACTCAATATATTGTAATTGATATTAAAATACAACAACAACAACAACAATAATAACAAGAAGTCTAGCGTGGTAACAACAAACATCGAATAAGTTGCTAGGAAGTTCAGAGTGTTCAAAGCATGTAGTCATCCCTGCCAGAGTACAAAAGAATGTAACGTCTTAGTTTGTGTTCACAGCG Q I A P L L F V A Y S T I L Q V S Q V S Y I S R D G L M F S Y I A E S N T S V A exon 6 CKIp1UP EcoRI HpaI TGTTTTTGCCAATTCCTCGTCGAATTCAAGTCGTGGAGACTACACTTGGTACACTCAAACCGTGGATCAGTTAACTGGTCGTCTTAACGGGAACTCAACGAAATCTCAGTCGTTAGATGTAACCCATACAGATTGGTTCCAAGCAGCACAGAGTAATAACTACACTACAGCCTTTGTAGGAACGAGCTTG 4560 ACAAAAACGGTTAAGGAGCAGCTTAAGTTCAGCACCTCTGATGTGAACCATGTGAGTTTGGCACCTAGTCAATTGACCAGCAGAATTGCCCTTGAGTTGCTTTAGAGTCAGCAATCTACATTGGGTATGTCTAACCAAGGTTCGTCGTGTCTCATTATTGATGTGATGTCGGAAACATCCTTGCTCGAAC V F A N S S S N S S R G D Y T W Y T Q T V D Q L T G R L N G N S T K S Q S L D V T H T D W F Q A A Q S N N Y T T A F V G T S L exon 6 EarI BseRI BsrGI SapI PciI GGAGGAGAAGATAACGAGACTCTAATACAGAGCGTGGTTAGCTTGTACAGCAAGAAAGGTCTTGTTTCTTTAGGGTTTCCGGTTAAGACTTTAACCGAAGTTTTGAACAGTTTGAATCTACACGGCGAAGAGCTTTACATGTGGACAAAGGACGGGACGGTGCTTGTTCGTGAAGGTTCACTGAATGATT 4750 CCTCCTCTTCTATTGCTCTGAGATTATGTCTCGCACCAATCGAACATGTCGTTCTTTCCAGAACAAAGAAATCCCAAAGGCCAATTCTGAAATTGGCTTCAAAACTTGTCAAACTTAGATGTGCCGCTTCTCGAAATGTACACCTGTTTCCTGCCCTGCCACGAACAAGCACTTCCAAGTGACTTACTAA G G E D N E T L I Q S V V S L Y S K K G L V S L G F P V K T L T E V L N S L N L H G E E L Y M W T K D G T V L V R E G S L N D exon 6 SALK_ (L) (Q)SALK_ cki - BsaI BfrBI NsiI HindIII CTTTCTTCATCTCCAATGGCTCGATTTGCTTCGGTAGAGAATCGAACTCCCTCTGGTCTCAATGCATCCCTGAAAATTGCAGTTCCAGTGGCTACGAGGTGGAGATCAAAAGATTAAGATACCAAGCTTTTTGCTCTGTTATTGAAGTTTCGGGCGTTCCTCTGGTAAATACTGAAACATATTTCACTTT 4940 GAAAGAAGTAGAGGTTACCGAGCTAAACGAAGCCATCTCTTAGCTTGAGGGAGACCAGAGTTACGTAGGGACTTTTAACGTCAAGGTCACCGATGCTCCACCTCTAGTTTTCTAATTCTATGGTTCGAAAAACGAGACAATAACTTCAAAGCCCGCAAGGAGACCATTTATGACTTTGTATAAAGTGAAA S F F I S N G S I C F G R E S N S L W S Q C I P E N C S S S G Y E V E I K R L R Y Q A F C S V I E V S G V P L exon 6 cki -979 CKIp1DOW N
31 Predikce funkce genů in silico vyhledávání genů vyhledávání genů podle homologií porovnávání s EST databázemi BLASTN ( porovnávání s proteinovými databázemi BLASTX ( Genewise ( o porovnávají proteinovou sekvenci s genomovou DNA (po zpětném překladu), je nutná znalost aminokyselinové sekvence porovnávání s homologními genomovými sekvencemi z příbuzných druhů VISTA/AVID (
32 Základy genomiky II. Postupy přímé a reverzní genetiky rozdíly v myšlenkových přístupech k identifikaci genů a jejich funkcí Predikce funkce genů in silico struktura genů a jejich vyhledávání genomová kolinearita a genová homologie
33 Predikce funkce genů in silico vyhledávání genů genomová kolinearita a genová homologie genomy příbuzných druhů se přes značné odlišnosti vyznačují podobnostmi v uspořádání i sekvencích, možnost využití při identifikaci genů u příbuzných organizmů pomocí vyhledávání v databázích obecné schéma postupu při využívání geonomové kolinearity (také komparativní genomika ) při experimentální identifikaci genů příbuzných organizmů: mapování malých genomů s využitím nízkokopiových DNA markerů (např. RFLP) využití těchto markerů k identifikaci orthologních genů (genů se stejnou nebo podobnou funkcí) příbuzného organizmu malý genom (např. rýže, 466 Mbp) může sloužit jako vodítko, kdy jsou identifikovány molekulární nízkokopiové markery (např. RFLP) ve vazbě s genem zájmu a tyto oblasti jsou pak použity jako sonda při vyhledávání v BAC knihovnách při identifikaci orthologních oblastí velkých genomů (např. ječmene nebo pšenice, 5000, resp Mbp)
34 Predikce funkce genů in silico vyhledávání genů-genomová kolinearita Feuillet and Keller, 2002
35 Predikce funkce genů in silico vyhledávání genů genomová kolinearita a genová homologie genomy příbuzných druhů se přes značné odlišnosti vyznačují podobnostmi v uspořádání i sekvencích, možnost využití při identifikaci genů u příbuzných organizmů pomocí vyhledávání v databázích obecné schéma postupu při využívání geonomové kolinearity (také komparativní genomika ) při experimentální identifikaci genů příbuzných organizmů: mapování malých genomů s využitím nízkokopiových DNA markerů (např. RFLP) vvyužití těchto markerů k identifikaci orthologních genů (genů se stejnou nebo podobnou funkcí) příbuzného organizmu malý genom (např. rýže, 466 Mbp, tis. genů) může sloužit jako vodítko, kdy jsou identifikovány molekulární nízkokopiové markery (např. RFLP) ve vazbě s genem zájmu a tyto oblasti jsou pak použity jako sonda při vyhledávání v BAC knihovnách při identifikaci orthologních oblastí velkých genomů (např. ječmene nebo pšenice, 5000, resp Mbp) zejména využitelné u trav (např. využití příbuznosti u ječmene, pšenice, rýže a kukuřice) malé geonomové přestavby (dalece, duplikace, inverze a translokace menší než několik cm) jsou pak detekovány podrobnou sekvenční komparativní analýzou během evoluce dochází u příbuzných druhů k odchylkám především v nekódujících oblastech (invaze retrotranspozonů atd.)
36 Genomová kolinearita Genomová kolinearita HOX genů u živočichů Transkripční faktory řídící organizaci těla v anterio-posteriorní ose Pozice genů v genomu odpovídá i prostorové expresi během vývoje Frobius et al
37 Základy genomiky II. Postupy přímé a reverzní genetiky rozdíly v myšlenkových přístupech k identifikaci genů a jejich funkcí Predikce funkce genů in silico struktura genů a jejich vyhledávání genomová kolinearita a genová homologie Experimentální identifikace genů příprava genově obohacených knihoven pomocí technologie metylačního filtrování
38 Experimentální identifikace genů příprava genově obohacených knihoven pomocí technologie metylačního filtrování geny jsou (větsinou!) hypometylované, kdežto nekódující oblasti jsou metylované využití bakteriálního RM systému, který rozpoznává metylovanou DNA pomocí rest. enzymů McrA a McrBC McrBC rozpoznává v DNA metylovaný cytozin, který předchází purin (G nebo A) pro štěpení je nutná vzdálenost těchto míst z bp schéma postupu při přípravě BAC genomových knihoven pomocí metylačního filtrování: příprava genomové DNA bez příměsí organelární DNA (chloroplasty a mitochondrie) fragmentace DNA (1-4 kbp) a ligace adaptorů příprava BAC knihovny v mcrbc+ kmeni E. coli selekce pozitivních klonů omezené využití: obohacení o kódující DNA o pouze cca 5-10 %
39 Základy genomiky II. Postupy přímé a reverzní genetiky rozdíly v myšlenkových přístupech k identifikaci genů a jejich funkcí Predikce funkce genů in silico struktura genů a jejich vyhledávání genomová kolinearita a genová homologie Experimentální identifikace genů příprava genově obohacených knihoven pomocí technologie metylačního filtrování EST knihovny
40 Experimentální identifikace genů příprava EST knihoven izolace mrna RT PCR ligace linkerů a syntéza druhého řetězce cdna klonování do vhodného bakteriálního vektoru transformace do bakterií a izolace DNA (amplifikace DNA) sekvenace s použitím primerů specifických pro použitý plasmid cctacgattatacccccaa AAAAAAAAAA TTTTTTTTTT AAAAAAAAAA TTTTTTTTTT AAAAAAAAAA TTTTTTTTTT AAAAAAAAAA TTTTTTTTTT ggatgctaatatgggggttatacaagtgtt AAAAAAAAAA TTTTTTTTTTT uložení výsledků sekvenace do veřejné databáze
41 Základy genomiky II. shrnutí Postupy přímé a reverzní genetiky rozdíly v myšlenkových přístupech k identifikaci genů a jejich funkcí Predikce funkce genů in silico struktura genů a jejich vyhledávání genomová kolinearita a genová homologie Experimentální identifikace genů příprava genově obohacených knihoven pomocí technologie metylačního filtrování EST knihovny
42 Základy genomiky II. diskuse
Základy proteomiky 2011
Základy proteomiky 2011 Proč právě proteomika? Jan Hejátko Základy proteomiky 2011 Schéma přednášek ze Základů proteomiky 2011 Proč právě proteomika? (Jan Hejátko) Exprese a purifikace rekombinantních
Autoindex nad DNA sekvencemi
Autoindex nd DNA sekvenemi do. Ing. Jn Holub, Ph.D. ktedr teoretiké informtiky Fkult informčníh tehnologií České vysoké učení tehniké v Prze ENBIK 2014 10. 6. 2014 ENBIK 2014, 10. 5. 2014 J. Holub: Autoindex
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Molekulární genetika IV zimní semestr 6. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika IV zimní semestr 6. výukový týden (5.11. 9.11.2007) Nondisjunkce u Downova syndromu 2 Tři rodokmeny rodin s dětmi postiženými
Základy proteomiky. Proč právě proteomika? Jan Hejátko
Základy proteomiky Proč právě proteomika? Jan Hejátko Základy proteomiky zdrojová literatura Zdrojová literatura k první přednášce: Monografie a učebnice Plant Functional Genomics, ed. Erich Grotewold,
Základy genomiky. I. Úvod do bioinformatiky. Jan Hejátko
Základy genomiky I. Úvod do bioinformatiky Jan Hejátko Masarykova univerzita, Oddělení funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin Základy genomiky I. Zdrojová literatura ke
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Využití rep-pcr v bakteriální taxonomii
Využití rep-pcr v bakteriální taxonomii Pavel Švec Česká sbírka mikroorganismů Přírodovědecká fakulta MU rep-pcr založeny na shlukové analýze PCR produktů získaných s primery komplementárními k rozptýleným
ACTIVATION OF DEHYDRIN GENES OF GERMINATE PLANTS OF BARLEY TO DROUGHT AND COLD AKTIVACE DEHYDRINOVÝCH GENŮ KLÍČNÍCH ROSTLIN JEČMENE SUCHEM A CHLADEM
ACTIVATION OF DEHYDRIN GENES OF GERMINATE PLANTS OF BARLEY TO DROUGHT AND COLD AKTIVACE DEHYDRINOVÝCH GENŮ KLÍČNÍCH ROSTLIN JEČMENE SUCHEM A CHLADEM Dokoupilová Z., Holková L., Chloupek O. Ústav pěstování
Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.
Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové
Polymerázová řetězová reakce
Polymerázová řetězová reakce doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2013 Obsah přednášky 1) Co je to PCR, princip, jednotlivé kroky 2) Technické provedení PCR 3) Fyzikální
Populační genetika. ) a. Populační genetika. Castle-Hardy-Weinbergova zákonitost. Platí v panmiktické populaci za předpokladu omezujících podmínek
Poulační genetika Poulační genetika ORGANISMUS Součást výše organizované soustavy oulace POPULACE Soubor jedinců jednoho druhu Genotyově heterogenní V určitém čase má řirozeně vymezený rostor Velký očet
Molekulárn. rní genetika
Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno
Retinoblastom Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno Retinoblastom (RBL) zhoubný nádor oka, pocházející z primitivních
Havarijní plán PřF UP
Havarijní plán PřF UP v němž se nakládá s geneticky modifikovanými organismy (GMO), zpracovaný podle 20, odst. 4 zákona č. 78/2004 Sb. pro pracoviště kateder Buněčné biologie a genetiky a Oddělení molekulární
USING OF AUTOMATED DNA SEQUENCING FOR PORCINE CANDIDATE GENES POLYMORFISMS DETECTION
USING OF AUTOMATED DNA SEQUENCING FOR PORCINE CANDIDATE GENES POLYMORFISMS DETECTION VYUŽITÍ AUTOMATICKÉHO SEKVENOVÁNÍ DNA PRO DETEKCI POLYMORFISMŮ KANDIDÁTNÍCH GENŮ U PRASAT Vykoukalová Z., Knoll A.,
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Poziční klonování Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s metodou pozičního klonování genů
Schéma průběhu transkripce
Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Mutageneze vznik chyby na DNA mutagen (chemická látka / záření)
Genotoxicita - úvod Genotoxicita: toxická látka ovlivňuje genetický materiál buňky (nukleové kyseliny) Při působení vyšších koncentrací genotoxických látek dochází k přímému úhynu buněk Nižší koncentrace
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen
Detekce Leidenské mutace
Detekce Leidenské mutace MOLEKULÁRNÍ BIOLOGIE 3. Restrikční štěpení, elektroforéza + interpretace výsledků Restrikční endonukleasy(restriktasy) bakteriální enzymy štěpící cizorodou dsdna na kratší úseky
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Sekvenování genomů Ing. Hana Šimková, CSc. Cíl přednášky - seznámení se strategiemi celogenomového sekvenování,
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
Počítačové vyhledávání genů a funkčních oblastí na DNA
Počítačové vyhledávání genů a funkčních oblastí na DNA Hodnota genomových sekvencí záleží na kvalitě anotace Anotace Charakterizace genomových vlastností s použitím výpočetních a experimentálních metod
Molekulární genetika (Molekulární základy dědičnosti)
Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
thaliana. balky. 1. Genetická analýza a identifikace počtu genů 2. Určení DNA markerů v genetické vazbě s genem
Praktikum z genetiky rostlin JS 2014 Genetická analýza a genetické markery 1. Genetická analýza a identifikace počtu genů odolnosti k padlí u ječmene. 2. Určení DNA markerů v genetické vazbě s genem odolnosti
Lucie Kárná, Michal Křížek, Pavel Křížek
genetika Genetický kód z pohledu matematiky Lucie Kárná, Michal Křížek, Pavel Křížek RNDr. Lucie Kárná, Ph.D. (*1969) vystudovala obor matematická analýza na Matematickofyzikální fakultě UK a v současnosti
Molekulární genetika II zimní semestr 4. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika II zimní semestr 4. výukový týden (27.10. 31.10.2008) prenatální DNA diagnostika presymptomatická Potvrzení diagnózy Diagnostika
ZPŮSOB DETOXIKACE SULFIDICKÉHO YPERITU ÚČINKEM HALOGENALKANDEHALOGENÁZ
Patentová přihláška CZ 2005 352 ZPŮSOB DETOXIKACE SULFIDICKÉHO YPERITU ÚČINKEM HALOGENALKANDEHALOGENÁZ Číslo přihlášky: CZ 2005 352 A1 Datum předložení: 3. června 2005 Abstrakt: Způsob detoxikace sulfidického
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
Amplifikační metody v molekulární diagnostice mikroorganismů. doc. RNDr. Milan Bartoš, Ph.D.
Amplifikační metody v molekulární diagnostice mikroorganismů doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2012 Doporučená literatura 1) Persing et al. (1993): Diagnostic Molecular
Petr Müller Masarykův onkologický ústav. Genová terapie
Genová terapie Petr Müller Masarykův onkologický ústav Genová terapie =terapie využívající vpravení exogenní DNA do buněk či tkání organismu za účelem opravy fenotypu (deficience či mutace genu, vrozené
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 5. Metody molekulární biologie II DNA footprinting hledání interakcí DNA s proteiny Polymerázová řetězová reakce (Polymerase chain reaction PCR) Malé
Molekulární genetika, mutace. Mendelismus
Molekulární genetika, mutace 1) Napište komplementární řetězec k uvedenému řetězci DNA: 5 CGTACGGTTCGATGCACTGTACTGC 3. 2) Napište sekvenci vlákna mrna vzniklé transkripcí molekuly DNA, pokud templátem
MUTAGENEZE in vitro. postupy kterými se mění primární struktura DNA, především za účelem fenotypové změny
MUTAGENEZE in vitro postupy kterými se mění primární struktura DNA, především za účelem fenotypové změny Mutace gen transkripce translace mutace normalní protein normální fenotyp mutovaný gen abnormální
Univerzita Palackého v Olomouci. Diplomová práce
Univerzita Palackého v Olomouci Diplomová práce Olomouc 2010 Bc. Barbora Klocová Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra buněčné biologie a genetiky Mapování genů kvantitativních
základní znaky živých systémů (definice života výčtem jeho vlastností) složitá organizace a řád regulace a udržování vnitřní homeostázy získávání a
definice života živý organismus je přirozeně se vyskytující sám sebe reprodukující systém, který vykonává řízené manipulace s hmotou, energií a informací základní znaky živých systémů (definice života
Molekulární genetika
Molekulární genetika Upozornění: ukončení semestru ZÁPOČTOVÝ TEST a) Dědičnost krevně skupinových systémů (AB0, MN, Rh) b) Přepis úseku DNA do sekvence aminokyselin c) Populační genetika výpočet frekvence
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Na rozdíl od genomiky se funkční genomika zaměřuje na dynamické procesy, jako je transkripce, translace, interakce protein - protein.
FUNKČNÍ GENOMIKA Co to je: Oblast molekulární biologie která se snaží o zpřístupnění a využití ohromného množství dat z genomových projektů. Snaží se popsat geny, a proteiny, jejich funkce a interakce.
REPREZENTACE A ZPRACOVÁNÍ GENOMICKÝCH SIGNÁLŮ REPRESENTATION AND PROCESSING OF GENOMIC SIGNALS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
Využití restriktáz ke studiu genomu mikroorganismů
Využití restriktáz ke studiu genomu mikroorganismů doc. RNDr. Milan Bartoš, Ph.D. bartos.milan@atlas.cz Přírodovědecká fakulta MU, 2017 Obsah přednášky 1) Definice restrikčních endonukleáz, jejich přirozená
MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)
MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční
Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo
Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací
NGS analýza dat. kroužek, Alena Musilová
NGS analýza dat kroužek, 16.12.2016 Alena Musilová Typy NGS experimentů Název Materiál Cílí na..? Cíl experimentu? amplikon DNA malý počet vybraných genů hledání variant exom DNA všechny geny hledání
Bioinformatika. Jiří Vondrášek Ústav organické chemie a biochemie Jan Pačes Ústav molekulární genetiky
Bioinformatika pro PrfUK 2006 Jiří Vondrášek Ústav organické chemie a biochemie vondrasek@uochb.cas.cz Jan Pačes Ústav molekulární genetiky hpaces@img.cas.cz http://bio.img.cas.cz/prfuk2006 syllabus Úterý,
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Replikace, transkripce a translace
Replikace, transkripce a translace Pravděpodobnost zařazení chybné báze cca 1:10 4, reálně 1:10 10 ; Proč? Výběr komplementární base je zásadní pro správnost mezigeneračního předávání genetické informace
MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ. Agronomická fakulta BAKALÁŘSKÁ PRÁCE
MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ Agronomická fakulta BAKALÁŘSKÁ PRÁCE BRNO 2006 Petra PŘICHYSTALOVÁ MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ Agronomická fakulta Ústav morfologie,
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
Mutace jako změna genetické informace a zdroj genetické variability
Obecná genetika Mutace jako změna genetické informace a zdroj genetické variability Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
ANALYSIS OF SERPINE1 GENE VARIABILITY IN PIGS
ANALYSIS OF SERPINE1 GENE VARIABILITY IN PIGS Weisz F., Knoll A. Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University of Agriculture and Forestry in Brno, Zemedelska
Predikce genů a anotace sekvence DNA
Predikce genů a anotace sekvence DNA Základní informace Následující text je součástí učebních textů předmětu Analýza sekvencí DNA a je určen hlavně pro studenty Matematické biologie. Může být ovšem přínosný
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
velké fragmenty střední fragmenty malé fragmenty
velké fragmenty střední fragmenty malé fragmenty Southern 1975 Northern Western denaturace DNA hybridizace primerů (annealing) (mají délku kolem 20 bází) syntéza nové DNA termostabilní polymerázou vstup
Virtuální svět genetiky 1. Translace
(překlad) je druhým krokem exprese genetické informace a ukončuje dráhu DNA > RNA > protein. probíhá mimo jádro, v cytoplazmě na ribozómech. Výchozími látkami pro translaci je 21 standardních aminokyselin,
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy
Transpozony - mobilní genetické elementy
Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné
Definice genového inženýrství
Definice genového inženýrství Genové inženýrství se zabývá vytvářením pozměněných či nových genů nebo přípravou nových ( nepřirozených ) kombinací genů a jejich zaváděním do genomu organizmů s cílem rekonstruovat
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
GENOTOXICITA LÉČIV. Klára A. Mocová. VŠCHT Praha Fakulta technologie ochrany prostředí Ústav chemie ochrany prostředí
GENOTOXICITA LÉČIV Klára A. Mocová VŠCHT Praha Fakulta technologie ochrany prostředí Ústav chemie ochrany prostředí Centralizovaný rozvojový projekt MŠMT č. C29: Integrovaný systém vzdělávání v oblasti
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA po jednom cyklu Kmeny E. coli K a K(P1) + mají vzájemně odlišnou hostitelskou specifitu (K a P1) = obsahují odlišné RM-systémy Experimentální důkaz přítomnosti a působení
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Výzkumné centrum genomiky a proteomiky. Ústav experimentální medicíny AV ČR, v.v.i.
Výzkumné centrum genomiky a proteomiky Ústav experimentální medicíny AV ČR, v.v.i. Systém pro sekvenování Systém pro čipovou analýzu Systém pro proteinovou analýzu Automatický sběrač buněk Systém pro sekvenování
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické cytogenetické a fyzické molekulární mapy Ing. Hana Šimková, CSc. Cíl přednášky
Arabidopsis thaliana huseníček rolní
Arabidopsis thaliana huseníček rolní Arabidopsis thaliana huseníček rolní - čeleď: Brassicaceae (Brukvovité) - rozšíření: kosmopolitní, od nížin až do hor, zejména na výslunných stráních - poprvé popsána
Výuka genetiky na Přírodovědecké fakultě UK v Praze
Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Genetické mapování. v přírodních populacích i v laboratoři
Genetické mapování v přírodních populacích i v laboratoři Funkční genetika Cílem je propojit konkrétní mutace/geny s fenotypem Vzniklý v laboratoři pomocí mutageneze či vyskytující se v přírodě. Forward
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
O původu života na Zemi Václav Pačes
O původu života na Zemi Václav Pačes Ústav molekulární genetiky Akademie věd ČR centrální dogma replikace transkripce DNA RNA protein reverzní transkripce translace informace funkce Exon 1 Intron (413
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Struktura a organizace genomů
CG020 Genomika Přednáška 8 Struktura a organizace genomů Markéta Pernisová Funkční genomika a proteomika rostlin, Mendelovo centrum genomiky a proteomiky rostlin, Středoevropský technologický institut
Genetické markery. Marker (genetický marker) = signální gen, signální linie. morfologické bílkovinné (izoenzymy) DNA
Genetické markery Marker (genetický marker) = signální gen, signální linie morfologické bílkovinné (izoenzymy) DNA 1. založené na hybridizaci DNA 2. založené na polymerázové řetězové reakci amplifikace
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Úvod do studia genomiky Ing. Hana Šimková, CSc. Cíl přednášky - seznámení studentů s náplní vědního oboru
Příprava rekombinantních molekul pro diagnostické účely
1 Příprava rekombinantních molekul pro diagnostické účely doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 2 Obsah přednášky 1) Pojem rekombinantní DNA 2) Historické milníky
+ Vektor. Produkce rekombinantních proteinů. Teoretický úvod. Gen. Rekombinantní DNA. Hostitelská buňka. Aplikovaná bioinformatika, Jaro 2013
Gen + Vektor + Rekombinantní DNA Hostitelská buňka Produkce rekombinantních proteinů Teoretický úvod Aplikovaná bioinformatika, Jaro 2013 Práce s proteiny Zisk proteinů Protein je správně sbalený, aktivní,
Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny
Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU
MODERNÍ BIOFYZIKÁLNÍ METODY:
MODERNÍ BIOFYZIKÁLNÍ METODY: POKROČILÉ PRAKTICKÉ VZDĚLÁVÁNÍ V EXPERIMENTÁLNÍ BIOLOGII Operační program Vzdělávání pro konkurenceschopnost Číslo projektu: CZ.1.07/2.3.00/09.0046 Praktický kurz pokročilých
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE)
MUTAGENEZE INDUKOVANÁ TRANSPOZONY (TRANSPOZONOVÁ MUTAGENEZE) Nejrozšířenější použití transpozonů je mutageneza za účelem lokalizace genů a jejich charakterizace. Výhody: 1. vyšší frekvence mutace než při
Struktura a analýza rostlinných genomů Jan Šafář
Struktura a analýza rostlinných genomů Jan Šafář Ústav experimentální botaniky AV ČR, v.v.i Centrum regionu Haná pro biotechnologický a zemědělský výzkum Proč rostliny? Proč genom? Norman E. Borlaug Zelená
MOBILNÍ GENETICKÉ ELEMENTY. Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
MOBILNÍ GENETICKÉ ELEMENTY Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. Demerec (1937) popsal nestabilní mutace u D. melanogaster B. McClintocková (1902-1992, Nobelova cena 1983) ukázala ve