Obvody s rozprostřenými parametry

Rozměr: px
Začít zobrazení ze stránky:

Download "Obvody s rozprostřenými parametry"

Transkript

1 Obvody s rozprostřenými parametry EO2 Přednáška 12 Pave Máša - Vedení s rozprostřenými parametry

2 ÚVODEM Každá kroucená dvojinka UTP patch kabeu je samostaným vedením s rozprostřenými parametry Impedance vedení je 100 Ω Obdobná kroucená dvojinka pro USB má 90 Ω Obvodem s rozprostřenými parametry zde není paměť samotná, ae sběrnice vodiče, spojující řadič paměťový modu s řadičem a dáe procesorem; impedance vodičů je 50 Ω Koaxiání kabe vede dvojvodičového vedení ve vzduchu (staré teefonní, 300 Ω pochý teevizní kabe k anténě) patří k nejstarším (patentován r. 1880) typům kabeů vedení s rozprostřenými parametry Vnová impedance je 75 Ω Nás zde zajímají terminační rezistory FSB využívající GTL se poprvé objevia u Pentia 2 U DDR2 byy terminační rezistory integrovány na čipu - Vedení s rozprostřenými parametry

3 PRIMÁRNÍ PARAMETRY VEDENÍ Teče i vodičem eektrický proud, pak se koem vodiče vytváří magnetické poe, konstantou úměrnosti je zde indukčnost Koem eektrického náboje je eektrické poe kapacita Největší známou rychostí ve vesmíru je rychost světa c = ms 1 ve voném prostoru Eektřina se postupně šíří jako eektromagnetické poe, obkopující vodiče Eektrický odpor a nenuová vodivost mezi vodiči způsobuje ztráty Pro předmět EO2 informativní V případě páru vodičů závisí veikost indukčnosti a kapacity na jejich geometrickém uspořádání a rozměrech: Koaxiání kabe: Dvojvodičové vedení: r r 2 L = ¹ r 1 2¼ n r 2 C = 2¼" r 1 n r 2 r 1 a À r r L = ¹ ¼ n a r C = ¼" Protože rychost šíření eektromagnetické vny je konečná, vna nevidí eektrické vedení jako ceek, ae pouze jeho (nekonečně maou) část popis vedení je nutné rozděit na nekonečně mnoho nekonečně maých úseků, popsaných parametry dl, dc, dr, dg Primární parametry vedení uvádíme na jednotku déky: n a r C = C [Fm 1 ], L = L [Hm 1 ], R = R [Ðm 1 ], G = G [Sm 1 ] - Vedení s rozprostřenými parametry

4 ZÁKLADNÍ ROVNICE HOMOGENNÍHO VEDENÍ U i R i dr dldc dg dr dl dc dg R s i(x; t) dr zdroj Mode vedení s rozprostřenými parametry Spotřebič (zátěž) Zákadní eement vedení dl i(x +dx; t) u(x; t) dc dg u(x +dx; t) dx dc = C dx = C dx dr = R dx = R dx Eement popíšeme s pomocí Kirchhofových zákonů obvodovými rovnicemi pro zobrazenou smyčku a pro zobrazený uze dl = L dg = G dx = L dx dx = G dx - Vedení s rozprostřenými parametry

5 Smyčka: u(x; t)+r dxi(x +dx; t)+l i(x +dx; t)+u(x +dx; t) =0 u(x +dx; t) u(x; t) = Ri(x +dx; t)+l i(x +dx; t) im ::: = Ri + L@i 1. zákadní diferenciání rovnice homogenního vedení i(x; t)+g dxu(x +dx; t)+c u(x +dx; t)+i(x +dx; t) =0 i(x +dx; t) i(x; t) = Gu(x +dx; t)+c u(x +dx; t) im = Gu + 2. zákadní diferenciání rovnice homogenního vedení - Vedení s rozprostřenými parametry

6 1. = Ri + L@i 2. = Gu + @x 2 2 = u +(LG + RC)@u 2 + RG 2 2 = i +(LG + RC)@i 2 + RG i = R@i + L@ = + u = G@u + 2 t Dáe se budeme zabývat bezeztrátovým vedením, kde R = 0, G = 0 - Vedení s rozprostřenými parametry

7 ŘEŠENÍ VLNOVÉ ROVNICE PRO BEZEZTRÁTOVÉ VEDENÍ Vnové rovnice pro bezeztrátové 2 2 = u 2 2 = i 2 d Aembertovo řešení: (popisuje též např. kmitání struny) řešením rovnice musí být funkce argumentu x vt Pro předmět EO2 informativní Zavedeme pomocné proměnné Apikujeme řetězové pravido: Potom má vnová rovnice tvar:» = x vt, = x @ @ μ u 2 + μ + v@u = v =0 Viz např.: Pokud: v = r 1 LC - Vedení s rozprostřenými parametry

8 Uvedená parciání deferenciání rovnice má řešení: u(x; t) =f(»)+g( ) =u p (x vt)+u z (x + vt) 2 2 [u p(x vt)+u z (x + vt)] = u 00 p(x vt)+u 00 z(x + 2 u h i 2 2 [u p(x vt)+u z (x + vt)] = v 2 u 00 p(x vt)+u 00 z(x + vt) u 00 p (x vt)+u00 z (x + vt) =LCv2 h u 00 p (x vt)+u00 z (x + vt) i Význam: u p (x vt) u z (x + vt) v v = p 1 = p 1 = LC ¹" p r ³m a vna nap et ³ -pohybujeseodpo c atku ke konci zp etn a vna nap et ³ - pohybuje se od konce k po c atku rychost s ³ ren ³ vny nap et ³ c p ¹r " r - Vedení s rozprostřenými parametry

9 Do 2. zákadní rovnice dosadíme za napětí PROUD @x = [u p(x vt)+u z (x + vt)] = vcu 0 p(x vt)+vcu 0 z(x + vt) Integrací pode x dostaneme: i(x; t) =i p (x vt)+i z (x +vt) =vc [u p (x vt) u z (x + vt)] = G 0 u(x; t) kde G 0 = vc má význam vodivosti Vnový odpor: R 0 = i(0; 0) r L C R 0 je ae vastností eektromagnetického poe, které obkopuje vodiče, je závisá geometrií a vastnostmi prostředí V žádném případě nemá vastnosti skutečného odporu jmenovitě průchodem proudu nevzniká tepo!!! V čase t = 0 zdroj vidí kabe jako obyčejný odpor o veikosti R 0 U i R i R 0 u(0; 0) u(0; 0) = U i R 0 R i + R 0 - Vedení s rozprostřenými parametry

10 ŠÍŘENÍ NAPĚTÍ /PROUDU VEDENÍM u p (x vt) i p (x vt) = R 0 u z (x + vt) i z (x + vt) = R 0 vna proudu má opačnou orientaci - Vedení s rozprostřenými parametry

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole.

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole. 1) Eektrostaticke poe, Cooumbuv zákon, Permitivita kazde dve teesa nabite eektrickym nabojem Q na sebe pusobi vzajemnou siou. Ta je vysise pomoci Couombovyho zákona: F = 1 4 Q Q 1 2 r r 2 0 kde první cast

Více

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou

Více

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

PSK1-15. Metalické vedení. Úvod

PSK1-15. Metalické vedení. Úvod PSK1-15 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední

Více

3 Z volného prostoru na vedení

3 Z volného prostoru na vedení volného prostoru na vedení 3 volného prostoru na vedení předchozí kapitole jsme se zabývali šířením elektromagnetických vln ve volném prostoru. lna se šířila od svého zdroje (vysílací antény) do okolí.

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Jev elektromagnetické indukce

Jev elektromagnetické indukce Jev eektromagnetické indukce V minuých kapitoách jsme si jistě uvědomii, že pojmy kid a pohyb, které byy vemi významné u mechanických dějů, při zkoumání eektrických a magnetických jevů nabyy přímo zásadní

Více

Kmitání struny. Jelikožpředpokládáme,ževýchylkystrunyjsoumalé,budeplatitcosϕ 1,2 1,takže můžeme psát. F 2 F 1 = F 2 u x 2 x.

Kmitání struny. Jelikožpředpokládáme,ževýchylkystrunyjsoumalé,budeplatitcosϕ 1,2 1,takže můžeme psát. F 2 F 1 = F 2 u x 2 x. Kmitání struny 1 Odvození vnové rovnice Vnovou rovnici pro(příčné) vny šířící se na struně odvodíme za předpokadu, že výchykastruny u(x, t)vrovině,vnížstrunakmitá,jemaá,cožnámumožníprovésthned někoik zjednodušení.

Více

1.7 Magnetické pole stacionárního proudu

1.7 Magnetické pole stacionárního proudu 1.7 Magnetické poe stacionárního proudu Pohybující se e. náboje (e. proud) vytvářejí magnetické poe. Naopak poe působí siou na pohybující se e. náboje. 1.7.1 E. proud, Ohmův zákon v diferenciáním tvaru

Více

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 6. Vedení 1 Homogenní vedení vedení se ztrátami R/2 L/2 L/2 R/2 C G bezeztrátové vedení L/2 L/2 C 2 Model

Více

Obvodové prvky a jejich

Obvodové prvky a jejich Obvodové prvky a jejich parametry Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Elektrický obvod Uspořádaný systém elektrických prvků a vodičů sloužící

Více

Základní pasivní a aktivní obvodové prvky

Základní pasivní a aktivní obvodové prvky OBSAH Strana 1 / 21 Přednáška č. 2: Základní pasivní a aktivní obvodové prvky Obsah 1 Klasifikace obvodových prvků 2 2 Rezistor o odporu R 4 3 Induktor o indukčnosti L 8 5 Nezávislý zdroj napětí u 16 6

Více

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1. Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu

Více

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

ZÁKLADY ELEKTROTECHNIKY pro OPT

ZÁKLADY ELEKTROTECHNIKY pro OPT ZÁKLADY ELEKTROTECHNIKY pro OPT Přednáška Rozsah předmětu: 24+24 z, zk 1 Literatura: [1] Uhlíř a kol.: Elektrické obvody a elektronika, FS ČVUT, 2007 [2] Pokorný a kol.: Elektrotechnika I., TF ČZU, 2003

Více

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ

Více

Osciloskopy a další technika pro elektronickou výrobu a vývoj. Ing. Otto Vodvářka ROHDE & SCHWARZ - Praha, s.r.o.

Osciloskopy a další technika pro elektronickou výrobu a vývoj. Ing. Otto Vodvářka ROHDE & SCHWARZ - Praha, s.r.o. Oscioskopy a daší technika pro eektronickou výrobu a vývoj Ing. Otto Vodvářka ROHDE & SCHWARZ - Praha, s.r.o. Kdo jsme Největší výrobce eektronické měřicí techniky Evropě Zaujímá přední místo v technoogii

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE JAROMÍR KUBEN PAVLÍNA RAČKOVÁ

PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE JAROMÍR KUBEN PAVLÍNA RAČKOVÁ PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE JAROMÍR KUBEN PAVLÍNA RAČKOVÁ Brno 2014 Verze 12. června 2014 Obsah 1 Parciání diferenciání rovnice 1 1.1 Úvod...................................... 1 1.2 Lineární parciání

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky ZÁKLADY FYZIKY II. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky ZÁKLADY FYZIKY II. Pro obory DMML, TŘD a AID prezenčního studia DFJP UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ katedra fyziky ZÁKLADY FYZIKY II Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr Jan Z a j í c, CSc, 005 4 MAGNETICKÉ JEVY 4 NESTACIONÁRNÍ ELEKTROMAGNETICKÉ

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

Zakončení viskózním tlumičem. Charakteristická impedance.

Zakončení viskózním tlumičem. Charakteristická impedance. Kapitola 1 Odraz vln 1.1 Korektní zakončení struny Zakončení viskózním tlumičem. Charakteristická impedance. V mnoha praktických situacích požadujeme, aby prostředím postupovaly signály pouze jedním směrem,

Více

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky 1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Základní vztahy v elektrických

Základní vztahy v elektrických Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

Identifikátor materiálu: VY_32_INOVACE_356

Identifikátor materiálu: VY_32_INOVACE_356 Identifikátor materiálu: VY_32_INOVACE_356 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.

Více

Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast

Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast zdrojů pro harmonický časový průběh veličin Laplaceův

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji

Více

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole. Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

U R U I. Ohmův zákon V A. ohm

U R U I. Ohmův zákon V A. ohm Ohmův zákon Ohmův zákon Spojíme li vodivě svorky zdroje o napětí U, začne vodičem procházet proud I. Napětí tedy vyvolalo elektrický proud Proud je pak přímo úměrný napětí (Ohmův zákon): I U R R V A U

Více

anténa x støedovlnná rozhlasová

anténa x støedovlnná rozhlasová Vážení zákazníci, dovoujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má soužit výhradnì pro osobní potøebu potenciáního kupujícího (aby

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

Zapnutí a vypnutí proudu spínačem S.

Zapnutí a vypnutí proudu spínačem S. ELEKTROMAGNETICKÁ INDUKCE Dva Faradayovy pokusy odpovídají na otázku zda může vzniknout elektrický proud vlivem magnetického pole Pohyb tyčového magnetu k (od) vodivé smyčce s měřidlem, nebo smyčkou k

Více

Elektromagnetismus 163

Elektromagnetismus 163 Elektromagnetismus 163 I I H= 2πr Magnetické pole v blízkosti vodi e s proudem x r H Relativní permeabilita Materiály paramagnetické feromagnetické (nap. elezo, nikl, kobalt) diamagnetické Ve vzduchu je

Více

Řešení elektronických obvodů Autor: Josef Sedlák

Řešení elektronických obvodů Autor: Josef Sedlák Řešení elektronických obvodů Autor: Josef Sedlák 1. Zdroje elektrické energie a) Zdroje z hlediska průběhu zatěžovací charakteristiky b) Charakter zdroje c) Přenos výkonu ze zdroje do zátěže 2. Řešení

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS EEKTŘINA A MAGNETIZMUS XII Střídavé obvody Obsah STŘÍDAÉ OBODY ZDOJE STŘÍDAÉHO NAPĚTÍ JEDNODUHÉ STŘÍDAÉ OBODY EZISTO JAKO ZÁTĚŽ 3 ÍKA JAKO ZÁTĚŽ 5 3 KONDENZÁTO JAKO ZÁTĚŽ 6 3 SÉIOÝ OBOD 7 3 IMPEDANE 3

Více

Odrušení plošných spoj Vlastnosti plošných spoj Odpor Kapacitu Induk nost mikropáskového vedení Vlivem vzájemné induk nosti a kapacity eslechy

Odrušení plošných spoj Vlastnosti plošných spoj Odpor Kapacitu Induk nost mikropáskového vedení Vlivem vzájemné induk nosti a kapacity eslechy Odrušení plošných spojů Ing. Jiří Vlček Tento text je určen pro výuku praxe na SPŠE. Doplňuje moji publikaci Základy elektrotechniky Elektrotechnologii. Vlastnosti plošných spojů Odpor R = ρ l/s = ρ l/t

Více

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole

Více

Hlavní body - elektromagnetismus

Hlavní body - elektromagnetismus Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektrotechniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektrotechniky 1 Elektrotechnika:

Více

OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 poslední úprava 25. června 2004

OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 poslední úprava 25. června 2004 OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 posední úprava 25. června 2004 1. ía současně působící na eektrický náboj v eektrickém a magnetickém poi (Lorentzova sía) [ ] F m = Q E

Více

Řešení elektrických sítí pomocí Kirchhoffových zákonů

Řešení elektrických sítí pomocí Kirchhoffových zákonů 4.2.8 Řešení elektrických sítí pomocí Kirchhoffových zákonů Předpoklady: 427 Pedagogická poznámka: Hodina obsahuje čtyři obvody. Fyzikálně mezi nimi není velký rozdíl, druhé dva jsou však podstatně obtížnější

Více

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu. v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_12

Více

9.7. Vybrané aplikace

9.7. Vybrané aplikace Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor). Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY

Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY Garant: Škvor Z. Vyučující: Pankrác V., Škvor Z. Typ předmětu: Povinný předmět programu (P) Zodpovědná katedra: 13117 - Katedra elektromagnetického

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový

Více

Nezávislý zdroj napětí

Nezávislý zdroj napětí Nezávislý zdroj napětí Ideální zdroj: Udržuje na svých svorkách napětí s daným časovým průběhem Je schopen dodat libovolný proud, i nekonečně velký, tak, aby v závislosti na zátěži zachoval na svých svorkách

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1. Základní informace o této fyzikální veličině Symbol vlastní indukčnosti je L, základní jednotka henry, symbol

Více

PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah

PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah PŘEDNÁŠKA 2 - OBSAH Přednáška 2 - Obsah i 1 Bipolární diferenciální stupeň 1 1.1 Dif. stupeň s nesymetrickým výstupem (R zátěž) napěťový zisk... 4 1.1.1 Parametr CMRR pro nesymetrický dif. stupeň (R zátěž)...

Více

Elektromagnetické kmitání

Elektromagnetické kmitání Elektromagnetické kmitání Elektromagnetické kmity pozorujeme v paralelním LC obvodu. L C Sepneme-li spínač, kondenzátor se začne vybíjet přes cívku, která se chová jako rezistor. C L Proud roste, napětí

Více

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými

Více

4.2.8 Odpor kovového vodiče, Ohmův zákon

4.2.8 Odpor kovového vodiče, Ohmův zákon 4.2.8 Odpor kovového vodiče, Ohmův zákon Předpoklady: 4207 Některé výsledky minulé hodiny. Odpor 180 Ω VA charakteristika odporu 180 ohmů napětí [V] 0 1,71 3,42 5,38 7,17 8,93 10,71 proud [A] 0,000 0,008

Více

2 Odvození pomocí rovnováhy sil

2 Odvození pomocí rovnováhy sil Řetězovka Abstrakt: Ukážeme si, že řetěz pověšený mezi dvěma body v homogenním gravitačním poli se prohne ve tvaru grafu funkce hyperbolický kosinus. Odvození provedeme dvojím způsobem: pomocí rovnováhy

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

1.5 Operační zesilovače I.

1.5 Operační zesilovače I. .5 Operační zesilovače I..5. Úkol:. Změřte napěťové zesílení operačního zesilovače v neinvertujícím zapojení 2. Změřte napěťové zesílení operačního zesilovače v invertujícím zapojení 3. Ověřte vlastnosti

Více

Téma 4 Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem)

Téma 4 Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem) Pružnost a pasticita, 2.ročník bakaářského studia Téma 4 ormáové napětí a přetvoření prutu namáhaného tahem (prostým takem) Zákadní vztahy a předpokady řešení apětí a přetvoření osově namáhaného prutu

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B

Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:P.Šedivý(1,2,4,6,7)aM.Jarešová(3,5) 1. a) Má-li být vlákno stále napnuto, nesmí být amplituda kmitů větší než prodloužení vláknavrovnovážnépoloze.zdeplatí

Více

I. STEJNOSMĚ RNÉ OBVODY

I. STEJNOSMĚ RNÉ OBVODY Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů

Více

"vinutý program" (tlumivky, odrušovací kondenzátory a filtry), ale i odporové trimry jsou

vinutý program (tlumivky, odrušovací kondenzátory a filtry), ale i odporové trimry jsou Společnost HARLINGEN převzala počátkem roku 2004 část výroby společnosti TESLA Lanškroun, a.s.. Jde o technologii přesných tenkovrstvých rezistorů a tenkovrstvých hybridních integrovaných obvodů, jejichž

Více

Obr. 9.1: Elektrické pole ve vodiči je nulové

Obr. 9.1: Elektrické pole ve vodiči je nulové Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.

Více

Elektrotechnika - test

Elektrotechnika - test Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Elektrotechnika

Více

1. Obecná struktura pohonu s napěťovým střídačem

1. Obecná struktura pohonu s napěťovým střídačem 1. Obecná struktura pohonu s napěťovým střídačem Topologicky můžeme pohonný systém s asynchronním motorem, který je napájen z napěťového střídače, rozdělit podle funkce a účelu do následujících částí:

Více

Řešení elektrických sítí pomocí Kirchhoffových zákonů

Řešení elektrických sítí pomocí Kirchhoffových zákonů 4.2.19 Řešení elektrických sítí pomocí Kirchhoffových zákonů Předpoklady: 4218 Pedagogická poznámka: Hodina obsahuje čtyři obvody. Fyzikálně mezi nimi není velký rozdíl, druhé dva jsou však podstatně obtížnější

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω

Více

F7 MOMENT SETRVAČNOSTI

F7 MOMENT SETRVAČNOSTI F7 MOMENT ETRVAČNOTI Evropský sociání fond Praha & EU: Investujeme do vaší budoucnosti F7 MOMENT ETRVAČNOTI V této části si spočteme některé jednoduché příkady na rotační pohyby a seznámíme se s někoika

Více

Elektřina a magnetismus úlohy na porozumění

Elektřina a magnetismus úlohy na porozumění Elektřina a magnetismus úlohy na porozumění 1) Prázdná nenabitá plechovka je umístěna na izolační podložce. V jednu chvíli je do místa A na vnějším povrchu plechovky přivedeno malé množství náboje. Budeme-li

Více

2 Tokové chování polymerních tavenin reologické modely

2 Tokové chování polymerních tavenin reologické modely 2 Tokové chování polymerních tavenin reologické modely 2.1 Reologie jako vědní obor Polymerní materiály jsou obvykle zpracovávány v roztaveném stavu, proto se budeme v prvé řadě zabývat jejich tokovým

Více

Kirchhoffovy zákony. Kirchhoffovy zákony

Kirchhoffovy zákony. Kirchhoffovy zákony Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon

Více

Zkouškové otázky z A7B31ELI

Zkouškové otázky z A7B31ELI Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se

Více

USTÁLE Ý SS. STAV V LI EÁR ÍCH OBVODECH

USTÁLE Ý SS. STAV V LI EÁR ÍCH OBVODECH USTÁLE Ý SS. STAV V LI EÁR ÍCH OBVODECH Odporový dělič napětí - nezatížený Příklad 1 Odporový dělič napětí - zatížený I 1 I 2 I p Příklad 2 1 Příklad 3 Odporový dělič proudu Příklad 4 2 Věty o náhradních

Více

ITO. Semestrální projekt. Fakulta Informačních Technologií

ITO. Semestrální projekt. Fakulta Informačních Technologií ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. IX Název: Charakteristiky termistoru Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 17.10.2013 Odevzdal

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112 Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška

Více

6 Potenciály s δ funkcemi II

6 Potenciály s δ funkcemi II 6 Potenciály s δ funkcemi II 6.1 Periodická δ funkce (Diracův hřeben) Částice o hmotnosti M se pohybuje v jednorozměrné mřížce popsané periodickým potenciálem V(x) = c δ(x na), (6.1.1) n= kde a je vzdálenost

Více

Zadání úlohy: Schéma zapojení: Střední průmyslová škola elektroniky a informatiky, Ostrava, příspěvková organizace. Třída/Skupina: / Měřeno dne:

Zadání úlohy: Schéma zapojení: Střední průmyslová škola elektroniky a informatiky, Ostrava, příspěvková organizace. Třída/Skupina: / Měřeno dne: Číslo úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Název úlohy: Zobrazení hysterézní smyčky feromagnetika pomocí osciloskopu Spolupracovali ve skupině.. Zadání úlohy: Proveďte zobrazení hysterezní

Více

7 Kvantová částice v centrálně symetrickém potenciálu.

7 Kvantová částice v centrálně symetrickém potenciálu. 7 Kvantová částice v centráně symetrickém potenciáu. Představte si, že hodíte kámen do vody a chcete popsat vny, které vzniknou. Protože hadina je D, můžete vny popsat funkcí f x, y. Ae pokud jste chytří,

Více

Stavba hmoty. Název školy. Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm

Stavba hmoty. Název školy. Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Stavba hmoty Popis podstaty elektrických jevů, vyplývajících ze stavby hmoty Stavba hmoty VY_32_INOVACE_04_01_01 Materiál slouží k podpoře výuky předmětu v 1. ročníku oboru Elektronické zpracování informací.

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

4.2.7 Odpor kovového vodiče, Ohmův zákon

4.2.7 Odpor kovového vodiče, Ohmův zákon 4.2.7 Odpor kovového vodiče, Ohmův zákon Předpoklady: 4201, 4205, 4206 Př. 1: Změř závislost proudu procházejícího rezistorem na napětí (VA charakteristiku). Měření proveď pro dva různé rezistory. Hodnotu

Více

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj

Více

2.6. Vedení pro střídavý proud

2.6. Vedení pro střídavý proud 2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých

Více