Typy nelinearit. jen v tahu (jen v tlaku), pružnost, plasticita, lomová mechanika,... ), geometrická nelinearita velká posunutí, pootočení.
|
|
- Marcela Tomanová
- před 3 lety
- Počet zobrazení:
Transkript
1 Typy nelinearit konstrukční nelinearita např. jednostranné vazby nebo prvky působící jen v tahu (jen v tlaku), fyzikální nelinearita vlastnosti materiálu nejsou lineární pružné (nelineární pružnost, plasticita, lomová mechanika,... ), geometrická nelinearita velká posunutí, pootočení. 1
2 Konstrukční nelinearita F F jednostranné vazby vazba působí jen v určitých situacích (např. v tlaku), využívá se mj. řešení kontaktních úloh (ve spojení s Winklerovým nebo jiným modelem podloží), vyžaduje iterační řešení. 2
3 Příklad deska na podloží (1) 1. Výpočet desky na výřezu poloprostoru 2. Zjištění ekvivalentního C pro Winklerův model 3. Další práce s deskou na Winklerově podloží 3
4 Příklad deska na podloží (2) ufem CS: CART Time: 1 24 ETyps: 1 RSets: 1 Mats : 2 KPs : 40 GEnts: Nodes: Elems: Disps: 684 Loads: 0 ActET: 1 ActRS: 1 ActM : 2 Divs : z y x
5 Příklad deska na podloží (3) 5
6 Příklad deska na podloží (4) 6
7 Příklad deska na podloží (5) 7
8 Příklad deska na podloží (6) 8
9 Příklad deska na podloží (7) D model 2D model Halfspace Deformation Iteration 9
10 Fyzikální nelinearita F Nelineární pružnost Neplatí Hookeův zákon Nejsou nevratné deformace Pružnoplastické chování Vznikají nevratné deformace Viskoelasticita, viskoplasticita,... Křehké porušení Vědní obor Lomová mechanika Náhlé porušení materiálu F F u u u 10
11 Fyzikální zdůvodnění plasticity (1) Změny v krystalické mřížce Schmidtův zákon : τ τ τ max (1) Dosažení napětí τ max vede ke změnám v krystalické mřížce Deformace krystalické mřížky pružná deformace Změny krystalické mřížky nepružná deformace (platická) τ 11
12 Fyzikální zdůvodnění plasticity (2) Zkosení γ v důsledku smykových napětí τ γ τ 12
13 Fyzikální zdůvodnění plasticity (3) Problémy Orientace krystalů v běžných stavebních látkách: Obecná orientace (obvykle není jeden zřejmý hlavní systém) Makroskopická anizotropie ( velmi mnoho kluzných rovin ) V praktických úlohách (stavební mechanika) nelze Schmidtův zákon přímo použít Využití jednodušších modelů na makroskopické úrovní (tuhoplastický aj.) τ τ 13
14 Modely pro plasticitu v 1D Představa: soustava různě zapojených jednoduchých prvků (jako v elektřině): Pružina (s pružnou deformací ε e ) Ideálně plastický článek (s plastickou deformací ε e ) ε e o ε p 14
15 Tuhoplastický model (1) o Ideálně tuhoplastický model (bez zpevnění): Tresca, Saint-Vénant Při napětí menším než o je deformace nulová Při napětí právě rovném o je deformace plastická (narůstá bez další změny napětí) f y = o ε p ε 15
16 Tuhoplastický model (2) Přírůstek poměrné deformace ε = ε Pro < o... ε = 0 Pro = o... ε 0 Pro > o... nemůže nastat ε o p Zápis v podobně funkce: o 0, ε 0, ( o ) 0 (2) f y = o Zřejmě směr ε a musí být shodný: ε = λ sgn(), λ 0 (3) ε kde λ... plastický násobitel. 16
17 Tuhoplastický model (3) Pojmy: Funkce plasticity: f() = o Podmínka plastické přípustnosti: f() 0 Zákon plastického přetváření: ε = λ sgn(), λ 0 Podmínka komplementarity: λ f() = 0 Podmínka komplementarity zajišt uje, že případy f() < 0 (tuhé chování) a λ > 0 (plastické chování) nemohou nastat současně. 17
18 Ideálně pružnoplastický model (1) Ideálně pružnoplastický model (bez zpevnění) Seriové zapojejí pružného článku a tuhého článku Pružný článek Hookeův zákon: ε e o ε p f = E ε (4) Při napětí menším než o je deformace pružná Při napětí právě rovném o je deformace plastická (narůstá bez další změny napětí) F u plastic elastic 18
19 Ideálně pružnoplastický model (2) Celková poměrná deformace Pokud L o... původní délka, L = L e + L p... délka po úplném odlehčení. Celková poměrná deformace Pružná část Plastická část ε = L L o L o = L L o 1 (5) ε e = L L e L e = L L e 1 (6) ε p = L L p L p = L L p 1 (7) Tedy celková poměrná deformace pružnoplastického materiálu: ε = L L o L o = L L p L p Lo 1 = (1 + ε e)(1 + ε p ) 1 = ε e + ε p + ε e ε p (8) 19
20 Ideálně pružnoplastický model (3) Pojmy: Poměrná deformace: ε = ε e + ε p (člen ε e ε p zanedbáme) Funkce plasticity: f() = o Podmínka plastické přípustnosti: f() 0 Zákon plastického přetváření: ε = λ sgn(), λ 0 Podmínka komplementarity: λ f() = 0 20
21 Tuhoplastický model s lineárním kinematickým zpevněním (1) Paralelní zapojení tuhého a pružného článku Při napětí menším než o je deformace nulová Při napětí větším nebo rovném o je deformace pružno plastická: H o Celkové napětí: ε = ε p (9) ε p = o + H ε p (10) H H... modul zpevnění, plastický modul Zpětné napětí (ve zpevnění): b = H ε p (11) f y = o H 21 ε
22 Tuhoplastický model s lineárním kinematickým zpevněním (2) H Zpětné napětí (zákon plastického zpevnění): o b = H ε p Zákon plastického přetváření: ε p = λ sgn( b ) (12) Kinematické zpevnění: zpětné napětí ovlivňuje hodnotu napětí nutného k pokračování plastické deformace ( posouvá okamžitou mez kluzu) f y = o ε H p H ε 22
23 Tuhoplastický model s lineárním kinematickým zpevněním (3) Pojmy: Funkce plasticity: f() = o Modul zpevnění: H Okamžitá mez kluzu: pl = o + H ε p Podmínka plastické přípustnosti: f() 0 Zákon plastického přetváření: ε = λ sgn( b ), λ 0 Podmínka komplementarity: λ f() = 0 23
24 Pružnoplastický model s lineárním kinematickým zpevněním (1) Paralelní zapojení tuhého a pružného článku (H) Seriové připojení pružného článku (E) Při napětí menším než o je deformace pružná Při napětí větším nebo rovném o je deformace pružno plastická Funkce plasticity: E ε e H o ε p f(, b ) = b o, (13) f y = o H kde b = H ε Zákon plastického přetváření: ε p = λ sgn( b ) (14) E ε 24
25 Pružnoplastický model s lineárním kinematickým zpevněním (2) Pojmy: Poměrná deformace: ε = ε e + ε p (člen ε e ε p zanedbáme) Okamžitá mez kluzu: pl = o + H ε p, a b = H ε p Funkce plasticity: f() = b o Podmínka plastické přípustnosti: f() 0 Zákon plastického přetváření: ε = λ sgn( b ), λ 0 Podmínka komplementarity: λ f() = 0 25
26 Pružnoplastický model s izotropním zpevněním (1) Seriové připojení pružného článku (E) článku s izotropním zpevněním (odpor proti plastické deformaci postupně vzrůstá) Izotropní zpevnění: při zatěžování vzrůstá okamžitá mez kluzu v tahu i v tlaku Při napětí menším než o je deformace pružná Při napětí větším nebo rovném o je deformace pružno plastická f y = o E E ε e H H, ε p o ε 26
27 Pružnoplastický model s izotropním zpevněním (2) Kumulovaná plastická deformace κ: dκ = dε p (15) E H, o κ = d ε p (16) Celková hodnota κ: t κ = ε p dt (17) 0 Okamžitá hodnota meze kluzu: f y = o ε e H ε p Y = o + H κ (18) Funkce plasticity: f(, Y ) = = Y (19) E ε 27
28 Pružnoplastický model s izotropním zpevněním (3) Pojmy: Poměrná deformace: ε = ε e + ε p (člen ε e ε p zanedbáme) Okamžitá mez kluzu: Y = o + H κ Funkce plasticity: f(, Y ) = = Y Podmínka plastické přípustnosti: f(, Y ) 0 Zákon plastického přetváření: ε = λ sgn(), λ 0 Podmínka komplementarity: λ f() = 0 Kumulovaná plastická deformace: κ = ε p Zpevnění: Y = o + H κ 28
29 Víceosá napjatost Pružnoplastický model s izotropním zpevněním: Poměrná deformace: ε = ε e + ε p Pružné chování: = D e ε Funkce plasticity: f(, ) Podmínka plastické přípustnosti: f() 0 Zákon plastického přetváření: ε = λ sgn(), λ 0 Podmínka komplementarity: λ f() = 0 Kumulovaná plastická deformace: κ = ε p 29
30 Varianty teorie plasticity (1) Teorie plastických deformací: popisuje vztahy mezi konečnými hodnotami složek vektorů napětí a deformace: = D EP ε řešení nezávisí na zatěžovací dráze ε 30
31 Varianty teorie plasticity (2) Teorie plastického tečení: popisuje vztahy mezi přírůstky (rychlostmi) napětí a deformace: = D ep ε výsledky řešení závisí na zatěžovací dráze řešení je možno provést jako posloupnost přírůstkových kroků ε 31
32 Teorie plastického tečení (1) Hledané veličiny přírůstky (rychlosti): napětí: = { x, y, z, τ yz, τ yz, τ xy } T poměrných deformací: ε = { ε x, ε y, ε z, γ yz, γ yz, γ xy } T posunů: u = { u, v, ẇ} 32
33 Teorie plastického tečení (2) Předpoklady: znalost napětí a poměrných deformací ε na začátku zatěžování pole jednotlivých studovaných veličin vyhovují všem okrajovým podmínkám úlohy 33
34 Pružnoplastická matice tuhosti materiálu (1) Fyzikální (konstitutivní) rovnice: = D ep ε Rozklad přírůstku deformace na pružnou a plastickou část: ε = ε e + ε p Podmínka plasticity (slouží k popisu přechodu z pružného do plastického stavu): f(, k) = 0 34
35 Pružnoplastická matice tuhosti materiálu (2) Podmínka konzistence materiálu v plastickém stavu: { } f T { } f T df = {d} + {dk} = 0 k Celková změna plastického potenciálu je rovna 0. 35
36 Pružnoplastická matice tuhosti materiálu (3) Rychlost plastické deformace (zákon plastického přetváření): { } f ε p = dλ Vektor přírůstků (rychlostí) napětí: ( = d = D e ( ε ε p ) = D e ε dλ { }) f 36
37 Pružnoplastická matice tuhosti materiálu (4) Ekvivalentní plastická deformace: dε p = ε pt ε p = dλ { f } T { } f Z podmínky konzistence: { } f T { } f T { } f D e dε dλ D e { f + dλ f } T { } f ε p = 0 37
38 Pružnoplastická matice t. m. (5) Vyjádření parametru dλ: dλ = { } f T De ε { } f T { } { } f De + f f T { } f ε p ( { }) Dosazení do vztahu pro přírůstky napětí = D e ε dλ f : = D e ε { } f T De ε { } f T { } { } f De + f f T { } f ε p { df d } 38
39 Pružnoplastická matice t. m. (6) Získaný vztah pro je možné upravit do tvaru: = D ep ε, kde pružnoplastická matice tuhosti materiálu D ep je: D ep = D e { } { D f f T e } De { f { } f T { } De f f ε p } T { } f 39
40 Podmínka plasticity a porušení 1. Počáteční podmínka plasticity 2. Následná podmínka plasticity 3 2 F 1 3. Podmínka porušení 1 u
41 Zpevnění (1) F 1 u 2 41
42 Zpevnění (2) 2 Kinematické následné podmínky plasticity mění polohu tvar a velikost se nemění Izotropní velikost se proporcionálně zvětšuje následné podmínky plasticity nemění polohu Kombinované nejvíce odpovídá skutečným látkám
43 Zpevnění (3) Kombinované zpevnění
44 Další podrobnosti Jirásek, M., Zeman, J.: Přetváření a porušování materiálů, ČVUT v Praze, 2006, 2010 Servít a kol.: Teorie pružnosti a plasticity I., SNTL, Praha, 1981 (celostátní učebnice) 44
45 TÉMA: Podmínky plasticity pro stavební materiály Rankinova Trescova von Misesova Mohrova Coulombova Chen Chenova 45
46 Podmínka plasticity a porušení 1. Počáteční podmínka plasticity 2. Následná podmínka plasticity 3 2 F 1 3. Podmínka porušení 1 u
47 Podmínky plasticity (1) Teorie maximálních normálových napětí (Rankine): 2 md 1 mt 1 mt = 0 mt md 1 2 md = 0 md mt 47
48 Podmínky plasticity (2) Teorie maximálních smykových napětí (Tresca): 2 τ max = τ m = 0 mt 1 3 mt = 0 (τ m = mt 2 ) mt mt 1 md = mt mt 48
49 Podmínky plasticity (3) Podmínka měrné energie změny tvaru (von Mises) (von Mises, Huber, Hencky): 2 von Mises ( 1 2 ) 2 + ( 2 2 ) 2 + ( 1 3 ) 2 = 2 2 mt mt md = mt Poznámka: von Misesovo napětí : ( 1 2 ) 2 + ( 2 2 ) 2 + ( 1 3 ) 2 2 mt mt Tresca mt 1 49
50 Podmínky plasticity (4) Mohrova Coulombova podmínka: 2 1 mt md 3 mt = 0 md mt mt md 1 md mt 50
51 Podmínky plasticity (4) Chen Chenova podmínka: 2 Tvar podmínky pro oblast tlak tlak ( 1 < 0 a 2 < 0, 3 < 0): f ybc f yc f yt f yt 1 J 2 + A yc 3 I 1 τ 2 yc = 0 Tvar pro ostatní oblasti: J I2 1 + A yt 3 I 1 τ 2 yt = 0 f yc f ybc 51
52 Chen Chenova podmínka plasticity (1) 2 Klasické podmínky plasticity (von Mises, Tresca) pro beton nevyhovují Experimentální výzkum betonových vzorků ve stavu rovinné napjatosti (prof. Kupfer, Německo) Řada aproximací experimentálně zjištěných dat (Kupfer, Chen a Chen, Willam a Warnke,... ) Chen a Chen: Aproximace Kupferových dat pomocí kuželoseček Funkce navržena jako podmínka plasticity i podmínka porušení betonu mt mt mt 2 mt
53 Chen Chenova podmínka pl. (2) 2 Tvar podmínky pro oblast tlak tlak ( 1 < 0 a 2 < 0, 3 < 0): f ybc f yc f yt f yt 1 J 2 + A yc 3 I 1 τ 2 yc = 0 Tvar pro ostatní oblasti: kde: J I2 1 + A yt 3 I 1 τ 2 yt = 0 f yc f ybc I 1 = J 2 = 1 2 ( ) 53
54 Chen Chenova podmínka pl. (3) Vyjádření konstant A yx, τ yx pomocí úměrnosti materiálu: A yc = f 2 ybc f 2 yc 2f ybc f yc τ 2 yc = f ybcf yc (2f yc f ybc ) 3(2f ybc f yc ) f ybc f yc 2 f yt f yt 1 A yt = f yc f yt 2 τ 2 ut = f ycf yt 6 f yc f ybc 54
55 Chen Chenova podmínka porušení (3) Podmínka porušení materiálu může být definována stejným postupem pomocí mezí pevnosti materiálu: J 2 + A uc 3 I 1 τ 2 uc = 0 J I2 1 + A ut 3 I 1 τ 2 ut = 0 A uc = f 2 ubc f 2 uc 2f ubc f uc τ 2 yc = f ubcf yc (2f uc f ubc ) 3(2f ubc f uc ) A ut = f uc f ut 2 τ 2 ut = f ucf ut 6 55
56 Chen Chenova podmínka porušení (4) Mezilehlé podmínky (pro stavy ležící mezi podmínkou plasticity a podmínkou porušení): A c = α c τc 2 + β c A t = α t τt 2 + β t u y α c = A uc A yc τ 2 uc τ 2 yc β c = A ycτ 2 uc A yc τ 2 yc τ 2 uc τ 2 yc α t = A ut A yt τ 2 ut τ 2 yt β t = A ytτ 2 ut A ytτ 2 yt τ 2 ut τ 2 yt 56
57 Příbuzné podmínky Kupferova podmínka porušení: definována pro 2D napjatost používá data ze standardizovaných zkoušek (válcová pevnost betonu) Podmínka Willama Warnkeho: definována pro 3D tvarově a vstupními daty velmi podobná Chen Chenově p.: f = 1 I J = 0, 3z c 5 r(θ) c kde θ = 1 3 cos 1 ( J 3 J 3/2 3 ). 57
58 Willam Warnke: implementace v programu ANSYS Stránky výrobce: Použití jen pro 3D konečný prvek SOLID65 ω se použije pro zlepšení konvergence, je-li KEYOPT(7)=1 Veličina Zkratka Doporučení Smykové spolupůsobení otevřené trhliny φ (0.4) Smykové spolupůsobení uzavřené trhliny φ a 0..1(0.7), φ 2 2 φ 1 Pevnost v jednoosém tahu Pevnost v jednoosém tlaku Pevnost v dvojosém tlaku f bc f bc = 1.2 f c Hydrostatický tlak h a h a = 3f c Pevnost v dvojosém tahu odpovídající h a f 1 f 1 = 1.45 f c Pevnost v jednoosém tlaku odpovídající h a f 2 f 2 = f c Násobitel smykové pevn. v porušeném bet. ω ω = 0.6 f t f c 58
59 Willam Warnke: implementace v programu ANSYS příklad dat 59
60 Příklad konečněprvkový model oblouku 60
61 Příklad plastické oblasti na oblouku 61
62 Příklad pracovní diagram (závislost F w) 140 "arc18chen.rtrack" using 3:5 "arc18smc.rtrack" using 3: Relative load Relative displacement 62
63 Parameter zpevnění ilustrace (1) Vztah mezi přírůsky napětí a deformace: = D ep ε, Pružnoplastická matice tuhosti materiálu: D ep = D e Parametr zpevnění ψ: { } { D f f T e } De { f { } f T { } De f f ε p ψ = f ε p } T { } f 63
64 Parameter zpevnění (2) Parametr zpevnění (funkce) ψ: ψ = f ε p Přepis například do tvaru: ve zkráceném tvaru: ψ = { f } { } T ε p, (20) ψ = Q H. (21) H vyjadřuje derivaci funkce závislosti napětí na ekvivalentní plastické deformaci. H je možno získat ze zkoušek příslušného materiálu. 64
65 Parameter zpevnění (3) Aproximace H Rambergovou Osgoodovou funkcí H vyjadřuje derivaci funkce závislosti napětí na ekvivalentní plastické deformaci derivace aproximace této závislosti (lze použít jakoukoli vhodnou funkci). Aproximace Rambergovou Osgoodovou funkcí: ε = ( ) n + k, (22) E o E o kde k a n jsou vhodně určené parametry a E o je počáteční modul pružnosti. Křivka popsaná rovnicí (22) je parabola n-tého stupně. 65
66 Parameter zpevnění (4) Rozklad poměrné deformace ε na složku pružnou ε e a plastickou ε p : ε = ε e + ε p. (23) Pružná složka deformace z rovnice (22) ε = E o + k ( Eo ) n : ε e = E o. (24) Tedy vztah pro plastickou deformaci: ε p = k ( E o ) n. (25) 66
67 Parameter zpevnění (5) Při označení H = ε p = Φ (ε p ), (26) je možné psát ε p = k ( E o ) n = Φ 1 () (27) a ze vztahu pro derivaci inverzní funkce plyne: H = Φ = 1 Φ 1 = E o k n ( E o ) 1 n. (28) 67
68 Parameter zpevnění (6) Pro určení parametrů k, n v rovnici H = Φ = 1 Φ 1 potřebná znalost dvou bodů křivky A [ε a, a ] a B [ε b, b ]. = E o k n ( Eo ) 1 n je Dosazením jejich souřadnic do (22), tj. ε = E o + k ( Eo ) n vyplyne: n = ln ( ) E o ε a a E o ε b b k = ( a E o ln ( ), (29) a b ) 1 n ( ) Eo ε a 1. (30) a 68
69 Parameter zpevnění (7) Příklad aproximace Rambergovou Osgoodovou funkcí 8e+06 7e+06 6e+06 equivalent stress [Pa] 5e+06 4e+06 3e+06 2e+06 1e+06 Ramberg-Osgood inelastic elastic equivalent strain [-] Bod poměrná deformace [ ] napětí [M P a]
70 Příklad konečněprvkový model oblouku 70
71 Příklad plastické oblasti na oblouku 71
72 Příklad pracovní diagram (závislost F w) 140 "arc18chen.rtrack" using 3:5 "arc18smc.rtrack" using 3: Relative load Relative displacement 72
73 Příklad zjednodušený model betonu (1) Rankinova podmínka porušení (f t 1 f cr ) Po porušení nulová pevnost (E dam << E orig ) Velmi přibližný model závisí na síti konečných prvků apod. 73
74 Příklad model betonu (2) ufem CS: CART Time: e e e e e e e e e e e e e e e e e+00 y x z hraz
75 Příklad model betonu (3) 1.3 m q 3.0 m 0.4 m 0.4 m 75
76 Pr ı klad model betonu (4) ufem CS: CART Time: 1 y z bubak x
77 Příklad model betonu (5) 77
78
79 Příklad model betonu (6) 0.4 Vertical displacement Relative Load [-] Displacement [m] 78
Nejpoužívanější podmínky plasticity
Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
Nejpoužívanější podmínky plasticity
Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova
Přetváření a porušování materiálů
Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní
Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Prostorové konstrukce. neznámé parametry: u, v w. (prvky se středostranovými uzly)
Konečné prvk pro řešení 3D úloh Prostorové konstrukce neznámé parametr: u, v w volba různého počtu uzlů a neznámých v uzlech možnost zakřivených hran prvků (prvk se středostranovými uzl) Opakování: Geometrické
Porušení hornin. J. Pruška MH 7. přednáška 1
Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost
Kontraktantní/dilatantní
Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku
MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
Téma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku
1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
PRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti
1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
Inkrementální teorie plasticity - shrnutí
Inkrementální teorie plasticity - shrnutí Aditivní zákon = e p. Hookeův zákon pro elastickou složku deformace =C: e. Podmínka plasticity f = f Y =0. Pravidlo zpevnění p e d =g, p,,d, d p,..., dy =h, p,y,
Plastická deformace a pevnost
Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových
Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
Pružnost a plasticita CD03
Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
OOFEM: Implementace plasticitního materiálového modelu Cam-Clay. Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD.
OOFEM: Implementace plasticitního materiálového modelu Cam-Clay Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD. Teorie plasticity Pružnoplastické chování Princip: materiál se chová elasticky
Reologické modely technických materiálů při prostém tahu a tlaku
. lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu
Zjednodušený 3D model materiálu pro maltu
Problémy lomové mechaniky IV. Brno, červen 2004 Zjednodušený 3D model materiálu pro maltu Jiří Brožovský, Lenka Lausová 2, Vladimíra Michalcová 3 Abstrakt : V článku je diskutován návrh jednoduchého materiálového
Kritéria porušení laminy
Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
( ) Podmínka plasticity: σ σ 0. Podmínky plasticity. Podmínky plasticity. Podmínky plasticity. = σ = σ. f σ σ σ
Podmínka plasticit rovnice popisující všechn stav napětí, které vedou k plastickému přetváření materiálu. ednoosá napjatost charakteriovaná jedinou složkou normálového napětí. Podmínka plasticit: nebo
FAKULTA STAVEBNÍ. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Změny deformací a napjatosti materiálu v čase (dny, týdny, roky, desetiletí,...) Materiály: beton, dřevo
Časově závislé chování materiálu, díl I. Změny deformací a napjatosti materiálu v čase (dny, týdny, roky, desetiletí,...) Materiály: beton, dřevo Jevy: dotvarování, smršt ování apod. Teorie: viskoelasticita
Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace studijního oboru Geotechnika Reg. č. CZ.1.7/2.2./28.9 Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc.
Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky
Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících
Rozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená
6.1 Shrnutí základních poznatků
6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice
Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
Přednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Kap. 3 Makromechanika kompozitních materiálů
Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ
Úvod PLASTICITA DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ I. Návrh konstrukce z "mezního stavu Zahrnuje relativně malá plastická přetvoření často stejného řádu jako jsou souběžná elastická přetvoření. Analýza
7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:
Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá
Lokalizační vlastnosti modelů poškození. Martin Horák
České vysoké učení technické v Praze Fakulta stavební SVOČ Lokalizační vlastnosti modelů poškození Martin Horák Vedoucí práce: Prof. Ing. Milan Jirásek, DrSc. Studijní program: Stavební inženýrství Obor:
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
Napětí horninového masivu
Napětí horninového masivu Primární napjatost Sekundární napjatost Vliv na stabilitu podzemního díla Dále lze uvažovat: Bobtnání horniny Tlačivé projevy Teplotní změny Mechanika hornin - přednáška 5 1 Primární
Navrhování konstrukcí z korozivzdorných ocelí
Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník XI, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník XI, řada stavební článek č. 31 Oldřich SUCHARDA 1, Jiří BROŽOVSKÝ 2 PRUŽNOPLASTICKÉ MODELOVÁNÍ ŽELEZOBETONOVÉHO
2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.
obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které
Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze
Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice
Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta
Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
7. Základní formulace lineární PP
p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura
Pružnost a plasticita II DD6
Pružnost a plasticita II DD6 Lud ě k Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
ČVUT UPM 6/2013. Eliška Bartůňková
ČUT UPM 6/2013 Eliška Bartůňková Úvod 1. Motivace PMPD 1.1 Jednoosá napjatost Obsah 1.2 Zobecnění jednoosé napjatosti pro ohýbaný prut 2. Důkaz základní věty mezní analýzy pro diskrétní modely 3. Formulace
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]
Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.
Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti
ZÁKLADY MATEMATICKÉ TEORIE PRUŽNOSTI
ZÁKLADY MATEMATICKÉ TEORIE PRUŽNOSTI Jiří Brožovský, Alois Materna Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně
Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.
ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
Mechanika hornin. Přednáška 5. Napětí, deformace a numerické modelování horninového masivu
Mechanika hornin Přednáška 5 Napětí, deformace a numerické modelování horninového masivu Mechanika hornin - přednáška 5 1 Napětí v horninovém masivu Primární napjatost Sekundární napjatost Vliv na stabilitu
Jednoosá tahová zkouška betonářské oceli
Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright
Aktuální trendy v oblasti modelování
Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,
Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep
Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při
Nelineární úlohy při výpočtu konstrukcí s využitím MKP
Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,
Pružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
Vícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
1.1 Shrnutí základních poznatků
1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i
Přednáška 01 PRPE + PPA Organizace výuky
Přednáška 01 PRPE + PPA Organizace výuky Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny Út 8.30 9.45 St 14.00 15.45, B286, PRPE (Stav. Inženýrství) + PPA (Arch. a stavitelství) přednáška
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Přehled modelů cyklické plasticity v MKP programech
Přehled modelů cyklické plasticity v MKP programech Teorie plasticity Ing Josef Sedlák doc Ing Radim Halama, PhD 1 Shrnutí Aditivní pravidlo a Hookeův zákon, Podmínka plasticity Pravidlo zpevnění Pravidlo
Poruchy krystalové struktury
Tomáš Doktor K618 - Materiály 1 15. října 2013 Tomáš Doktor (18MRI1) Poruchy krystalové struktury 15. října 2013 1 / 30 Poruchy krystalové struktury nelze vytvořit ideální strukturu krystalu bez poruch
Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012
Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
Část 3: Analýza konstrukce. DIF SEK Část 3: Analýza konstrukce 0/ 43
DIF SEK Část 3: Analýza konstrukce DIF SEK Část 3: Analýza konstrukce 0/ 43 Požární odolnost řetěz událostí Θ zatížení 1: Vznik požáru ocelové čas sloupy 2: Tepelné zatížení 3: Mechanické zatížení R 4:
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky
Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního
Pružnost, pevnost, plasticita
Pružnost, pevnost, plasticita Pracovní verze výukového skripta. února 018 c Milan Jirásek, Vít Šmilauer, Jan Zeman České vysoké učení technické v Praze Fakulta stavební Katedra mechaniky Thákurova 7 166
Pružnost a pevnost. 6. přednáška 7. a 14. listopadu 2017
Pružnost a pevnost 6. přednáška 7. a 14. listopadu 17 Popis nepružnéo cování materiálu 1) epružné cování experimentální výsledky ) epružné cování jednoducé modely 3) Pružnoplastický oyb analýza průřezu
OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
Smyková pevnost zemin
Smyková pevnost zemin 30. března 2017 Vymezení pojmů Smyková pevnost zemin - maximální vnitřní únosnost zeminy proti působícímu smykovému napětí Efektivní úhel vnitřního tření - část smykové pevnosti zeminy
Jednoosá tahová zkouška betonářské oceli
Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)
ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně
ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně 1 Motivace: trhliny v betonu mikrostruktura Vyhojování trhlin konstrukce Pražec po
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze: