SPECIFIC UTILIZATION OF MICROSOFT VISUAL BASIC FOR APPLICATION WITH PRINCIPLES OF SYSTEM MODELING. Tomáš BAROT

Rozměr: px
Začít zobrazení ze stránky:

Download "SPECIFIC UTILIZATION OF MICROSOFT VISUAL BASIC FOR APPLICATION WITH PRINCIPLES OF SYSTEM MODELING. Tomáš BAROT"

Transkript

1 OTHER ARTICLES SPECIFIC UTILIZATION OF MICROSOFT VISUAL BASIC FOR APPLICATION WITH PRINCIPLES OF SYSTEM MODELING Tomáš BAROT Abstract: The article is focused on utilization of programming language Microsoft Visual Basic for Application for educational purposes. These software possibilities are not mentioned as innovation, but it is pointed out on their advantages for area of student education. It is introduced utilization of program tools of simulation and modeling of physical effects described as discrete systems. Mathematical calculations are presented in the eample which can be used and implemented by teachers. Inclusion of matematical computation in the Ecel formula allows to eamine modeled systems from the view of behavior. The support of education can be used as an inspiration of matematical and physical solution by informatics. Key words: Microsoft Visual Basic for Application, modeling, simulation, education, applied informatic, discrete systems. SPECIFICKÉ VYUŽITÍ MICROSOFT VISUAL BASIC FOR APPLICATION S PRINCIPY MODELOVÁNÍ SYSTÉMŮ Resumé: Článe je zaměřen na využití programovacího jazya Microsoft Visual Basic for Application pro výuové účely. Tyto softwarové možnosti nejsou uváděny jao novina, ale je pouázáno na jejich prospěch pro oblast vzdělávání studentů. Je představeno využití programových nástrojů při simulaci a modelování fyziálních jevů popsaných jao disrétní systémy. Matematicé výpočty jsou uvedeny na příladu, terý mohou vyučující využít a implementovat. Zahrnutí výpočtu do rozhraní vzorce Ecelu umožní studentům namodelované systémy zoumat z pohledu jejich chování. Uvedená podpora výuy může sloužit i jao inspirace matematicého a fyziálního řešení za pomocí informatiy. Klíčová slova: Microsoft Visual Basic for Application, modelování, simulace, vzdělávání, apliovaná informatia, disrétní systémy. 1 Úvod I dyž se student s diferenciálními rovnicemi setává poprvé až v baalářsém stupni vysoošolsého studia, může již na střední šole zísat obecné povědomí o tom, ja se jimi dá provést matematicý popis reálných systémů. Konrétně by bylo vhodné přirovnat práci s nimi v analogii s předpisem pro výpočet funční hodnoty funce jedné reálné proměnné. V tomto případě je relačně dáno vztahem přiřazení jedné závislé proměnné jedné nezávislé proměnné. Z tohoto přirovnání by mohlo být studentům lépe patrné, že systém funguje na podobné myšlence, dy je funci na vstupu systému přiřazena výstupní funce. Vyjádření této transformace diferenciální rovnicí se vša dozví až při univerzitním vzdělání. Pro obecné povědomí jim vša může být přínosná informace, že je vstupem celý funční průběh veličiny a na výstupu systému je vrácen opět časový signál ve formě odezvy. Se vstupními daty lze poté eperimentovat na simulačních modelech, např. v Microsoft Ecelu, dy studenti zoumají různé odezvy systému fyziální podstaty. I dyž netuší ja je transformace vstupů na výstupy onrétně řešena, uvědomí si, že se nesestává pouze z jedné relace, a to jeden onrétní vstup - jeden onrétní výstup, ale libovolný vstup - onrétní výstup pro daný jedinečný systém. Zobecnění uvedeného principu by bylo samozřejmě více rozměrové modelování systému s matematicým popisem ve tvaru soustavy diferenciálních rovnic. Z dosavadního pojednání je patrné, že pro tvorbu simulačních modelů popsaných diferenciální rovnicí bude nutný její převod na disrétní formu, tedy diferenční rovnici, aby bylo možné numericé řešení předpisu výstupního signálu. Systém bude následně pracovat již se vzory vstupní a výstupní posloupnosti, de jejich transformačním vztahem bude disrétní popis. Pro práci s modelem systému bude potřeba určit vztah pro určení posloupnosti výstupní veličiny. Při odvození vztahu bude uvažován 84

2 převod dle pramenů [1], [2]. Pro derivaci by mohla být použita aproimace, v odborných nihách často uváděná jao Eulerova, nýbrž pro velmi malé periody vzorování mohou nastat numericé problémy ohrožující stabilitu systému a je třeba uvažovat Delta-transformaci a popis systémů Delta-modely [3]. Odvození výstupní rovnice je provedeno ve stavové oblasti, dy je rovnice vnějšího popisu systému transformována na stavový popis. Jeden systém může mít obecně, z pohledu volby stavových proměnných, jiný stavový popis, ale přesto zcela odpovídající. Stavovým popisem se zabývají zdroje [1], [2], ale především bych doporučoval publiaci [4]. 2 Zísání výstupní rovnice disrétní verze systému na záladě znalosti jeho spojitého popisu Předpoládejme matematicý model systému ve tvaru lineární diferenciální rovnice. Systém uvažujme jednorozměrný, tedy s jedním vstupem a jedním výstupem. Podle pramene [5], je proveden převod diferenciální rovnice na stavový popis (1), (2). Použitá symbolia a význam veličin je podobný v rámci zavedeného systému značení napříč zdroji [1] až [7], i dyž se mohou v drobných ohledech lišit. ( = A. ( + B. (1) y( = C. ( + D. (2) Dále je nutné provést převod spojitého stavového popisu (1), (2) na disrétní (3), (4) při simulačním čase (5) s periodou vzorování T. A. T A.( T-t ) (( + 1) = e. (. + e. B. t ). dt (3) y(. = C. (. + D.. (4) t (5) + =. T, ÎZ Disrétní stavový popis je výhodný i pro mnohorozměrné modely. Stačilo by přeznačit salární vyjádření veličin na vetory. Transformace soustavy diferenčních rovnic na stavový popis by byla o něco náročnější, ale lze použít algoritmus pro disrétní mnohorozměrné systémy uvedený ve zdroji [2]. Zde bude laden zřetel pouze na jednorozměrné systémy, dy stavový popis (3), (4) můžeme přepsat do přehlednější formy (6), (7). Vztahy pro určení nových matic jsou patrné z analogie rovnic (3), (4) a (6), (7). Výstupní matice a matice převodu zůstávají nepozměněny a jsou pouze přeznačeny. ( + 1) = F. ( + G. (6) y( = H. ( + L. (7) T ò Analyticé řešení převodu spojitého stavového popisu na disrétní může být zjednodušen použitím programového prostředí MATLAB. Posloupnost příazů spstavovy= ss (A,B,C,D);T=1;disrStavovy=c2d(spStavovy, nám pro zadané spojité matice vypíše jejich disrétní varianty ve smyslu rovnic (6) a (7). Závěrečný výpočet výstupu systému je již řešením stavových rovnic, a to pouhým dosazováním posloupností disrétních veličin reurentním způsobem (8), (9). Tím jsou stanoveny obecné numericé vztahy, teré lze jednoduše implementovat v libovolném programovacím jazyu s rozšířenou množinou algebraicých operací pro matice. å - 1 -r-1 = F () + F. G. u r= ( ( r) (8) 1 r 1 y( = H. F () + å H. F. G. r) + L. r= (9) 3 Přílad stanovení disrétní výstupní rovnice za účelem modelování systému Jao praticá apliace je uveden přílad onrétního určení výstupních rovnic typu (8), (9), lineárního spojitého dynamicého systému 2. řádu (1) a (11) s periodou vzorování,25 s. Spojitý stavový popis (15), (16) byl převeden v prostředí MATLAB na disrétní (17), (18) pomocí sady příazů (Obr.1). y ( +.25 y ( +.5y( =.6 (1) y ( ) =, y() = (11) 1( = y( (12) 2( = 1 ( = y ( (13) 2 ( =-.25 2( -.51 ( +.6 (14) é 1 ù é ù ( = ê. ( ú ê.6 ú (15) ë- - û ë û y ( = 1. ( +. t (16) [ ] [ ] ) Obr 1: Programový ód v prostředí MATLAB pro převod spojitého stavového popisu na disrétní é.98.24ù é.2ù ( + 1) = ê. ( ú ê.15 ú (17) ë- û ë û y ( = 1. ( +. (18) [ ] [ ] ) 85

3 Tvary matic v disrétním stavovém popisu jsou v této podobě patrné a jejich dosazením do rovnic (8), (9) obdržíme onečné rovnice, teré implementujeme. Pro určení onrétního výstupního signálu v oamžicích vzorování postačuje dosadit do rovnic, v jednotlivých iteracích jejich řešení, hodnoty vstupní posloupnosti a počáteční stavový vetor. Počáteční stav bude v našem příladu definován např. jao nulový vetor. 4 Možnosti implementace modelování systému V předládaném článu je apriorně doporučen Microsoft Ecel s integrovaným programovacím jazyem Microsoft Visual Basic for Application. Bližší znalosti byly čerpány ze statí zdrojů [8] až [1]. Pro numericé výpočty lze využít i lasicé programovací jazyy. Ve vlastním řešení by muselo být navrženo uživatelsé simulační rozhraní a další práce s daty by závisely na vytvořených možnostech. Proto je jednodušší uzavření výpočtů do vzorce a posytnutí prostoru studentům ve prospěch rozvoje jejich reativity při modelování. Použitím Ecelu se vyhneme ompliovanějším vlastním řešením např. v jazyu C++. Studenti budou využívat pro práci s modelem rozhraní ve formě vzorce Ecelu, de za zna = napíší název funce např. modelnadrze. Jao parametr funce uvedou rozsah buně s uloženými hodnotami vstupního signálu. Zadávaný vzorec nebude v tomto případě lasicý, ale maticový. Je potřeba na listu vybrat souvislou oblast buně o stejné veliosti shodné s rozsahem vstupních dat. Nad vyznačenou oblastí je nutné stisnout lávesu = a zadat název příslušné funce např. modelsystemu. Do vybrané oblasti budou vypsány spočítané hodnoty po stisnutí ombinace láves Ctrl, Shift, Enter. Tento postup je v Ecelu zažit zejména pro maticové vzorce. Uživatel si proto postup s modelováním systému snadno osvojí. Globálním využitím simulací by bylo univerzální pojetí modelování i se zadáním parametrů modelu a periody vzorování, což je další možný přístup řešení. Jednalo by se navíc o algoritmizaci teoreticých postupů převodu diferenciální rovnice na stavový popis a určení jeho disrétní verze podle zdrojů [1], [3] až [7]. Při používání vzorců je patrná modularita řešení. Poud vyučující naprogramuje více vzorců, lze ta používat celou sadu funcí deoliv v rámci sešitu Ecelu. Není cooliv vázáno na zvláštní spouštění maer přes tlačíta. Výstupní data mohou být dále snadno vizualizována pomocí grafů nebo může být proveden jejich eport. Studenti nemusí oplývat zušenostmi z programování, což jim umožní jednoduše s modely pracovat. Znalosti programování v Microsoft Visual Basic for Application jsou potřebné v záladní formě pouze u vyučujícího. Dále je uveden programový ód implementace numericé práce s modelem (1), jenž může být vyučujícím inspirací. ' sada potrebnych maticovych funci Function scmt(matice1, matice2) ' soucet matic Dim soucet() As Double ReDim soucet(ubound(matice1, 1), UBound(matice1, 2)) For i = 1 To UBound(matice1, 1) Step 1 For j = 1 To UBound(matice1, 2) Step 1 soucet(i, j) = matice1(i, j) + matice2(i, j) scmt = soucet Function Mt(cislo, matice) ' vynasobeni matice cislem For i = 1 To UBound(matice, 1) Step 1 For j = 1 To UBound(matice, 2) Step 1 matice(i, j) = cislo * matice(i, j) Mt = matice Function nasmt(matice1, matice2) ' nasobeni matic Dim soucin() As Double ReDim soucin(ubound(matice1, 1), UBound(matice2, 2)) For i = 1 To UBound(soucin, 1) Step 1 For j = 1 To UBound(soucin, 2) Step 1 mezi = For = 1 To UBound(matice1, 2) Step 1 mezi = mezi + (matice1(i, * matice2(, j)) soucin(i, j) = mezi nasmt = soucin 86

4 Function ummt(matice, n) ' umocneni matice celym cislem Dim vyslede() As Double ReDim vyslede(ubound(matice, 1), UBound(matice, 2)) vyslede = matice If n > 1 Then For i = 2 To n Step 1 vyslede = nasmt(vyslede, matice) ummt = vyslede ' modelovani onretniho systemu Function modelsystemu As Range) As Variant Dim y As Variant Dim pom() As Double y = u.value 'vytvoreni pole '(z pohledu dimenzi) Dim F(2, 2) As Double ' stavove matice Dim G(2, 1) As Double Dim H(1, 2) As Double Dim L(1, 1) As Double Dim Stav(2, 1) As Double F(1, 1) =.98 F(1, 2) =.24 F(2, 1) = -.12 F(2, 2) =.93 G(1, 1) =.2 G(2, 1) =.15 H(1, 1) = 1 H(1, 2) = For i = 1 To u.count 'realizace vystupni 'rovnice If i = 1 Then Stav(1, 1) = 'pocatecni stav Stav(2, 1) = pom = nasmt(nasmt(h, F), Stav) y(i, 1) = pom(1, 1) If i = 2 Then pom = scmt(nasmt(nasmt(nasmt(h, F), F), Stav), Mt(1, 1), nasmt(h, G))) y(i, 1) = pom(1, 1) If i > 2 Then suma = For R = 1 To (i - 1) pom = Mt(1, 1), nasmt(nasmt(h, ummt(f, i - R - 1)), G)) suma = suma + pom(1, 1) pom = nasmt(nasmt(h, ummt(f, i)), Stav) y(i, 1) = pom(1, 1) + suma modelsystemu = y 'navratove hodnoty Uvedení funcí pro práci s maticemi je čistě z ompleního důvodu, aby byla vyučujícím usnadněna celová implementace řešení. Při opírování uvedeného ódu je nutné si dát pozor na rozdělení příazů do více řádů, jenž zde bylo provedeno za účelem zrácení tetového rozsahu ódu. V programovacím prostředí je tedy nutné sloučení tato rozdělených řádů. Na schématu (Obr.2) je znázorněn způsob práce s vytvořeným rozhraním pro studenty. Obr 2: Postup výpočtu výstupního signálu onrétního namodelovaného systému ve stylu vyhodnocení maticových vzorců v Ecelu 5 Ověření platnosti navrhovaného přístupu řešení modelování Implementované řešení bylo verifiováno s výsledy spočítanými v nástroji MATLAB. V Ecelu byla na vstup systému (1) zadána onstantní funce s hodnotou 1. Výstupní veličina určená v Ecelu byla srovnána s funcí Step v softwaru MATLAB. Shodnost dosažených výsledů je patrná z grafů (Obr.3), (Obr.4). Čímž byla potvrzena správnost vytvořeného řešení. 87

5 7 Poděování Článe byl usutečněn za finanční podpory IGA Univerzity Tomáše Bati ve Zlíně, Faulty apliované informatiy číslo IGA/FAI/2124. Obr 3: Reace modelu na jednotovou onstantní funci v Microsoft Ecelu Obr 4: Reace modelu na jednotový so v prostředí MATLAB 6 Závěr Příspěve pouazuje na specificé výhody Microsoft Ecelu pro výuové účely. Je předložen postup řešení numericých modelů a jeho apliací, a to ve formě vytvoření vzorců v prostředí Ecel, jenž vrátí výstupní disrétní posloupnost hodnot v reaci na zadaný vzorovaný vstupní signál. Apriorním přínosem je posytnutí výuové podpory studentům. Při práci s modelem zísají romě analýzy chování procesu též povědomí o možnostech simulace fyziálních jevů. Může jim být též naznačen princip transformace vstupních funcí na výstupní. Vyučující sice musí model sám naprogramovat, ale je mu zde posytnut návod jeho provedení. Množinu přínosů pro proces výuy omplementuje i inspirace samotné práce učitele studentům. Nebudou již vidět informatiu a fyziu odděleně, ale pochopí, že za pomoci aparátu matematiy je možné namodelovat záležitosti reálné prae a informatia je pouze nástrojem, jenž vše apliuje, ale s otevřenými možnostmi pro další potenciální bádání. 8 Literatura [1] ŠTECHA, J. Teorie dynamicých systémů. 1. vyd. Praha: Česé Vysoé Učení Technicé v Praze, s. [2] STREJC, V. Stavová teorie lineárního disrétního řízení. 1. vyd. Praha: Naladatelství Česoslovensé aademie věd, s. [3] SYSEL, M., BOBÁL, V. Moderní metody řízení delta-modely. Automa. 21, Praha, Roční 2, Číslo 12, s. 17. ISSN [4] BALÁTĚ, J. Automaticé řízení. 1.vyd. Praha: Naladatelství BEN- technicá literatura, s. ISBN [5] PROKOP, R., MATUŠŮ, R., PROKOPOVÁ, Z. Teorie automaticého řízení - lineární spojité dynamicé systémy. 1.vyd. Zlín: UTB ve Zlíně, Faulta apliované informatiy, s. ISBN [6] VAŠEK, V. Teorie automaticého řízení II. 1. vyd. Brno: Retorát Vysoého učení technicého v Brně, s. ISBN X. [7] KUČERA, V. Analysis and Design of Discrete Linear Control Systems. 1.vyd. Praha: Naladatelství Česoslovensé aademie věd, s. ISBN [8] FORSTOVÁ, L. VBA Ecel v příladech. 1.vyd. Kralice na Hané: Computer Media, s. ISBN [9] KRÁL, M. Ecel VBA: výuový urz. 1.vyd. Brno: Computer Press, s. ISBN [1] BREDEN, M. Ecel 27 VBA: velá niha řešení. 1.vyd. Brno: Computer Press, s. ISBN Ing. Tomáš Barot Ústav řízení procesů Univerzita Tomáše Bati ve Zlíně Faulta apliované informatiy nám. T. G. Masarya , Zlín, ČR Tel: barot@fai.utb.cz Www pracoviště: 88

Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru

Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru 1 Portál pre odborné publikovanie ISSN 1338-0087 Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru Barot Tomáš Elektrotechnika

Více

Vyšetření stability mnohorozměrových diskrétních systémů v souvislosti s GPC prediktivním řízením

Vyšetření stability mnohorozměrových diskrétních systémů v souvislosti s GPC prediktivním řízením 1 Portál pre odborné publikovanie ISSN 1338-0087 Vyšetření stability mnohorozměrových diskrétních systémů v souvislosti s GPC prediktivním řízením Barot Tomáš Elektrotechnika 08.08.2012 Většina odborné

Více

Pavel Seidl 1, Ivan Taufer 2

Pavel Seidl 1, Ivan Taufer 2 UMĚLÉ NEURONOVÉ SÍTĚ JAKO PROSTŘEDEK PRO MODELOVÁNÍ DYNAMICKÉHO CHOVÁNÍ HYDRAULICKO-PNEUMATICKÉ SOUSTAVY USING OF ARTIFICIAL NEURAL NETWORK FOR THE IDENTIFICATION OF DYNAMIC PROPERTIES OF HYDRAULIC-PNEUMATIC

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

20 - Číslicové a diskrétní řízení

20 - Číslicové a diskrétní řízení 20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2018 18-4-18 Automaticé řízení - Kybernetia a robotia Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou

Více

OPTIMALIZACE PARAMETRŮ PID REGULÁTORU POMOCÍ GA TOOLBOXU

OPTIMALIZACE PARAMETRŮ PID REGULÁTORU POMOCÍ GA TOOLBOXU OPTMALZACE PARAMETRŮ PD REGULÁTORU POMOCÍ GA TOOLBOXU Radomil Matouše, Stanislav Lang Department of Applied Computer Science Faculty of Mechanical Engineering, Brno University of Technology Abstrat Tento

Více

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ Radim Pišan, František Gazdoš Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně Nad stráněmi 45, 760 05 Zlín Abstrakt V článku je představena knihovna

Více

Hodnocení přesnosti výsledků z metody FMECA

Hodnocení přesnosti výsledků z metody FMECA Hodnocení přesnosti výsledů z metody FMECA Josef Chudoba 1. Úvod Metoda FMECA je semivantitativní metoda, pomocí teré se identifiují poruchy s významnými důsledy ovlivňující funci systému. Závažnost následů

Více

Modelování a simulace regulátorů a čidel

Modelování a simulace regulátorů a čidel Modeloání a simulace regulátorů a čidel. Modeloání a simulace PI regulátoru Přenos PI regulátoru je yjádřen následujícím ztahem F( p) = ( + p ) p V Simulinu je tento blo obsažen nihoně prů. Bohužel použití

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

20 - Číslicové a diskrétní řízení

20 - Číslicové a diskrétní řízení 20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2013 22-4-14 Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou rezistorů/apacitorů v analogové řídicím

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 02 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Náhodné veličiny Záladní definice Nechť je dán pravděpodobnostní prostor

Více

a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R

a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R ) ČÍSELNÉ A FUNKČNÍ ŘADY (5b) a) formulujte Leibnitzovo ritérium včetně absolutní onvergence b) apliujte toto ritérium na řadu a) formulujte podílové ritérium b) posuďte onvergenci řad c) oli členů této

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

4. Přednáška: Kvazi-Newtonovské metody:

4. Přednáška: Kvazi-Newtonovské metody: 4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou

Více

Úvod do Kalmanova filtru

Úvod do Kalmanova filtru Kalmanův filtr = odhadovač stavu systému Úvod do Kalmanova filtru KF dává dohromady model systému a měření. Model systému použije tomu, aby odhadl, ja bude stav vypadat a poté stav porovná se sutečným

Více

Soustavy se spínanými kapacitory - SC. 1. Základní princip:

Soustavy se spínanými kapacitory - SC. 1. Základní princip: Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

(iv) D - vybíráme 2 koule a ty mají různou barvu.

(iv) D - vybíráme 2 koule a ty mají různou barvu. 2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P

Více

Základy algoritmizace

Základy algoritmizace Algoritmus Toto je sice na první pohled pravdivá, ale při bližším prozkoumání nepřesná definice. Například některé matematické postupy by této definici vyhovovaly, ale nejsou algoritmy. Přesné znění definice

Více

F6180 Úvod do nelineární dynamiky. F6150 Pokročilé numerické metody FX003 Plánování a vyhodnocování experimentu. F7780 Nelineární vlny a solitony

F6180 Úvod do nelineární dynamiky. F6150 Pokročilé numerické metody FX003 Plánování a vyhodnocování experimentu. F7780 Nelineární vlny a solitony Moderní metody modelování ve fyzice jaro 2015 přednáša: D. Hemzal cvičení: F. Münz F1400 Programování F5330 Záladní numericé metody F7270 Matematicé metody zpracování měření F6180 Úvod do nelineární dynamiy

Více

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem restart. To oceníme při opakovaném použití dokumentu. Úloha 1 - Koupě nového televizoru SPOTŘEBITELSKÝ ÚVĚR Chceme si oupit nový televizor v hodnotě 000,-Kč. Bana nám půjčí, přičemž její úroová sazba činí 11%. Předpoládejme, že si půjčujeme na jeden ro a

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

FUZZY ANALÝZA SLOŽITÝCH NEURČIÝCH SOUSTAV - II

FUZZY ANALÝZA SLOŽITÝCH NEURČIÝCH SOUSTAV - II FUZZY ANALÝZA SLOŽITÝCH NEURČIÝCH SOUSTAV - II FUZZY ANALYSIS OF COMPLEX VAGUE SYSTEMS - II Miroslav Poorný Moravsá vysoá šola Olomouc, o.p.s., Ústav informatiy, miroslav.poorny@mvso.cz Abstrat:. Příspěve

Více

zpracování signálů - Fourierova transformace, FFT Frekvenční

zpracování signálů - Fourierova transformace, FFT Frekvenční Digitální zpracování signálů - Fourierova transformace, FF Frevenční analýza 3. přednáša Jean Baptiste Joseph Fourier (768-830) Zálady experimentální mechaniy Frevenční analýza Proč se frevenční analýza

Více

Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.2 ZS 2010/2011. reg Ing. Václav Rada, CSc.

Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.2 ZS 2010/2011. reg Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 10.2 reg-2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření Teorie

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Měření indukčností cívek

Měření indukčností cívek 7..00 Ṫeorie eletromagneticého pole Měření indučností cíve.......... Petr Česá, studijní supina 05 Letní semestr 000/00 . Měření indučností cíve Měření vlastní a vzájemné indučnosti válcových cíve ZAÁNÍ

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná

Více

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005 Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

Název: Chemická rovnováha II

Název: Chemická rovnováha II Název: Chemicá rovnováha II Autor: Mgr. Štěpán Miča Název šoly: Gymnázium Jana Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, fyzia Roční: 6. Tématicý cele: Chemicá rovnováha (fyziální

Více

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series B The Jan Perner Transport Faculty 5 (1999) ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE Jiří

Více

Modelování polohových servomechanismů v prostředí Matlab / Simulink

Modelování polohových servomechanismů v prostředí Matlab / Simulink Modelování polohových servomechanismů v prostředí Matlab / Simulink Lachman Martin, Mendřický Radomír Elektrické pohony a servomechanismy 27.11.2013 Struktura programu MATLAB-SIMULINK 27.11.2013 2 SIMULINK

Více

4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá.

4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá. Přílad 1. Řešte v R rovnici x 4x + x 4 0. Výslede vypočtěte s přesností alespoň 0,07. 1) Reálné ořeny rovnice budou ležet v intervalu ( 5,5), protože největší z oeficientů polynomu bez ohledu na znaméno

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistia Přílady a otázy Petr Hebá a Hana Salsá GAUDEAMUS 2011 Autoři: prof. Ing. Petr Hebá, CSc. Autoři: prof. RNDr. Hana Salsá, CSc. Recenzenti: doc. RNDr. Tatiana Gavalcová, CSc.

Více

SIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU

SIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU SIMULACE SYSTÉMŮ S ROZPROSTŘENÝMI PARAMETRY V SIMULINKU M. Anderle, P. Augusta 2, O. Holub Katedra řídicí techniky, Fakulta elektrotechnická, České vysoké učení technické v Praze 2 Ústav teorie informace

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

Vyhněte se katastrofám pomocí výpočetní matematiky

Vyhněte se katastrofám pomocí výpočetní matematiky Vyhněte se katastrofám pomocí výpočetní matematiky Stefan Ratschan Ústav informatiky Akademie věd ČR Stefan Ratschan Vyhněte se katastrofám 1 / 29 x. x 2 = 2 Kvíz x. x 2 = 2 x. x 2 7 p q x. x 2 + px +

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL Jiří Kulička 1 Anotace: Článek se zabývá odvozením, algoritmizací a popisem konstrukce

Více

Selected article from Tento dokument byl publikován ve sborníku

Selected article from Tento dokument byl publikován ve sborníku Selected article from Tento dokument byl publikován ve sborníku Nové metody a postupy v oblasti přístrojové techniky, automatického řízení a informatiky 2018 New Methods and Practices in the Instrumentation,

Více

Dynamika populací s oddělenými generacemi

Dynamika populací s oddělenými generacemi Dynamia populací s oddělenými generacemi Tento text chce představit nejjednodušší disrétní deterministicé dynamicé modely populací. Deterministicé nebudeme uvažovat náhodné vlivy na populace působící nebo

Více

ANALÝZA A OPTIMALIZACE VÝROBNÍCH PROCESŮ MALOSÉRIOVÉ SLOŽITÉ VÝROBY V NOVÝCH VÝROBNÍCH PROSTORECH NA ZÁKLADĚ DISKRÉTNÍ SIMULACE

ANALÝZA A OPTIMALIZACE VÝROBNÍCH PROCESŮ MALOSÉRIOVÉ SLOŽITÉ VÝROBY V NOVÝCH VÝROBNÍCH PROSTORECH NA ZÁKLADĚ DISKRÉTNÍ SIMULACE ANALÝZA A OPTIMALIZACE VÝROBNÍCH PROCESŮ MALOSÉRIOVÉ SLOŽITÉ VÝROBY V NOVÝCH VÝROBNÍCH PROSTORECH NA ZÁKLADĚ DISKRÉTNÍ SIMULACE Doc. Václav Votava, CSc. (a), Ing. Zdeněk Ulrych, Ph.D. (b), Ing. Milan Edl,

Více

POROVNÁNÍ NĚKTERÝCH SW PRO ZOBRAZENÍ GRAFU FUNKCE DVOU PROMĚNNÝCH

POROVNÁNÍ NĚKTERÝCH SW PRO ZOBRAZENÍ GRAFU FUNKCE DVOU PROMĚNNÝCH POROVNÁNÍ NĚKTERÝCH SW PRO ZOBRAZENÍ GRAFU FUNKCE DVOU PROMĚNNÝCH Martin Fajkus Univerzita Tomáše Bati ve Zlíně, Fakulta aplikované informatiky, Ústav matematiky, Nad Stráněmi 4511, 760 05 Zlín, Česká

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D.

Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D. Úvod do modelování a simulace systémů Ing. Michal Dorda, Ph.D. 1 Základní pojmy Systém systémem rozumíme množinu prvků (příznaků) a vazeb (relací) mezi nimi, která jako celek má určité vlastnosti. Množinu

Více

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce

Více

Elektronické obvody analýza a simulace

Elektronické obvody analýza a simulace Elektronické obvody analýza a simulace Jiří Hospodka katedra Teorie obvodů, 804/B3 ČVUT FEL 4. října 2006 Jiří Hospodka (ČVUT FEL) Elektronické obvody analýza a simulace 4. října 2006 1 / 7 Charakteristika

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ Markéta Mazálková Katedra komunikačních a informačních systémů Fakulta vojenských technologií,

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Měření dat Filtrace dat, Kalmanův filtr

Měření dat Filtrace dat, Kalmanův filtr Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah

Více

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra.

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra. @091 7. Reciproá funce Reciproou funci znáte ze záladní šoly pod označením nepřímá úměra. Definice: Reciproá funce je dána předpisem ( 0 je reálné číslo) f : y R \ {0} A) Definiční obor funce: Je třeba

Více

8. Posloupnosti, vektory a matice

8. Posloupnosti, vektory a matice . jsou užitečné matematické nástroje. V Mathcadu je často používáme například k rychlému zápisu velkého počtu vztahů s proměnnými parametry, ke zpracování naměřených hodnot, k výpočtům lineárních soustav

Více

pracovní verze pren 13474 "Glass in Building", v níž je uveden postup výpočtu

pracovní verze pren 13474 Glass in Building, v níž je uveden postup výpočtu POROVNÁNÍ ANALYTICKÉHO A NUMERICKÉHO VÝPOČTU NOSNÉ KONSTRUKCE ZE SKLA Horčičová I., Netušil M., Eliášová M. Česé vysoé učení technicé v Praze, faulta stavební Anotace Slo se v moderní architetuře stále

Více

ÚVOD (2) kde M je vstupní číslo, f h je frekvence hodinového signálu a N je počet bitů akumulátoru.

ÚVOD (2) kde M je vstupní číslo, f h je frekvence hodinového signálu a N je počet bitů akumulátoru. Kmitočtový syntezátor s novým typem směšovače M. Štor Katedra apliované eletroniy a teleomuniací, Faulta eletrotechnicá, ZČU v Plzni, Univerzitní 6, 30614 Plzeň E-mail: stor@ae.zcu.cz Anotace: V článu

Více

15 - Stavové metody. Michael Šebek Automatické řízení

15 - Stavové metody. Michael Šebek Automatické řízení 15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek

Více

MATEMATIKA. O paradoxech spojených s losováním koulí

MATEMATIKA. O paradoxech spojených s losováním koulí MATEMATIKA O paradoxeh spojenýh s losováním oulí PAVEL TLUSTÝ IRENEUSZ KRECH Eonomiá faulta JU, Česé Budějovie Uniwersytet Pedagogizny, Kraów Matematia popisuje a zoumá různé situae reálného světa. Je

Více

Počítačové kognitivní technologie ve výuce geometrie

Počítačové kognitivní technologie ve výuce geometrie Počítačové kognitivní technologie ve výuce geometrie Jiří Vaníček Univerzita Karlova v Praze - Pedagogická fakulta 2009 Počítačové kognitivní technologie ve výuce geometrie Abstrakt Kniha se zabývá využíváním

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Česé vysoé učení technicé v Praze Faulta biomedicínsého inženýrství Úloha KA03/č. 3: Měření routícího momentu Ing. Patri Kutíle, Ph.D., Ing. Adam Žiža (utile@bmi.cvut.cz, ziza@bmi.cvut.cz) Poděování: Tato

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

Využití neuronové sítě pro identifikaci realného systému

Využití neuronové sítě pro identifikaci realného systému 1 Portál pre odborné publikovanie ISSN 1338-0087 Využití neuronové sítě pro identifikaci realného systému Pišan Radim Elektrotechnika 20.06.2011 Identifikace systémů je proces, kdy z naměřených dat můžeme

Více

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve

Více

Uživatelem řízená navigace v univerzitním informačním systému

Uživatelem řízená navigace v univerzitním informačním systému Hana Netrefová 1 Uživatelem řízená navigace v univerzitním informačním systému Hana Netrefová Abstrakt S vývojem počítačově orientovaných informačních systémů je stále větší důraz kladen na jejich uživatelskou

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo

Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo TEORETICKÁ MECHANIKA INTEGRÁLNÍ PRINCIPY MECHANIKY Záladní pojmy z mechaniy Mechanicý systém: jaáoli soustava částic nebo těles teré se rozhodneme popisovat (eletron atom Zeměoule planetární systém ).

Více

Rozšíření modelů technologických procesů

Rozšíření modelů technologických procesů Rozšíření modelů technologických procesů Pavel Sousedík Vedoucí: František Gazdoš, Ing. PhD. 2009 ABSTRAKT V práci je představena knihovna modelů reálných procesů. Tyto modely jsou vytvářeny v programovém

Více

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

SYSTÉM PRO AUTOMATICKÉ OVĚŘOVÁNÍ ZNALOSTÍ

SYSTÉM PRO AUTOMATICKÉ OVĚŘOVÁNÍ ZNALOSTÍ SYSTÉM PRO AUTOMATICKÉ OVĚŘOVÁNÍ ZNALOSTÍ PŘIBYL VLADIMÍR Fakulta managementu, Vysoká škola ekonomická v Praze, Jarošovská 1117/II, 377 01 Jindřichův Hradec priby-vl@fm.vse.cz Abstrakt: Příspěvek se zabývá

Více

Využití expertního systému při odhadu vlastností výrobků

Využití expertního systému při odhadu vlastností výrobků Vužití epertního sstému při odhadu vlastností výrobů ibor Žá Abstrat. Článe se zabývá možností ja vužít fuzz epertní sstém pro popis vlastností výrobu. Důvodem tohoto přístupu je možnost vužití vágních

Více

MATLABLINK - VZDÁLENÉ OVLÁDÁNÍ A MONITOROVÁNÍ TECHNOLOGICKÝCH PROCESŮ

MATLABLINK - VZDÁLENÉ OVLÁDÁNÍ A MONITOROVÁNÍ TECHNOLOGICKÝCH PROCESŮ MATLABLINK - VZDÁLENÉ OVLÁDÁNÍ A MONITOROVÁNÍ TECHNOLOGICKÝCH PROCESŮ M. Sysel, I. Pomykacz Univerzita Tomáše Bati ve Zlíně, Fakulta aplikované informatiky Nad Stráněmi 4511, 760 05 Zlín, Česká republika

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 Obsah Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 KAPITOLA 1 Úvod 11 Dostupná rozšíření Matlabu 13 Alternativa zdarma GNU Octave 13 KAPITOLA 2 Popis prostředí

Více

Středoškolská technika SCI-Lab

Středoškolská technika SCI-Lab Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT SCI-Lab Kamil Mudruňka Gymnázium Dašická 1083 Dašická 1083, Pardubice O projektu SCI-Lab je program napsaný v jazyce

Více

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu

Více

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59

Více

Systé my, procesy a signály I - sbírka příkladů

Systé my, procesy a signály I - sbírka příkladů Systé my, procesy a signály I - sbíra příladů Ř EŠEÉPŘ ÍKLADY r 6 Urč ete amplitudu, opaovací periodu, opaovací mitoč et a počáteč ní fázi disrétních harmonicých signálů a) s( ) = cos π, b) s ( ) 6 = π

Více

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Návrh vysokofrekvenčních linkových transformátorů

Návrh vysokofrekvenčních linkových transformátorů inové transformátory inové transformátory Při požadavu na transformaci impedancí v široém frevenčním pásmu, dy nelze obsáhnout požadovanou oblast mitočtů ani široopásmovými obvody, je třeba použít široopásmových

Více

Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí

Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí 1 Obsah přednášy 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacing 5. Boosting 6. Shrnutí 2 Meta learning = Ensemble methods Cíl použít predici ombinaci více různých modelů Meta learning (meta

Více

POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD.

POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD. POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ Ing. V. Glombíková, PhD. SIMULACE nástroj pro studium chování objektů reálného světa SYSTÉM určitým způsobem uspořádána množina komponent a relací mezi nimi. zjednodušený,

Více

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA PROGRAM MAXIMA KORDEK, David, (CZ) Abstrakt. Co je to Open Source Software? Příklady některých nejpoužívanějších software tohoto typu. Výhody a nevýhody Open Source Software. Jak získat program Maxima.

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

VISUAL BASIC. Přehled témat

VISUAL BASIC. Přehled témat VISUAL BASIC Přehled témat 1 ÚVOD DO PROGRAMOVÁNÍ Co je to program? Kuchařský předpis, scénář k filmu,... Program posloupnost instrukcí Běh programu: postupné plnění instrukcí zpracovávání vstupních dat

Více

Static and dynamic regression analysis in system identification Statická a dynamická regresní analýza v identifikaci systémů

Static and dynamic regression analysis in system identification Statická a dynamická regresní analýza v identifikaci systémů XXIX. ASR '2004 Seminar, Instruments and Control, Ostrava, April 30, 2004 207 Static and dynamic regression analysis in system identification Staticá a dynamicá regresní analýza v identifiaci systémů MORÁVKA,

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více