STANOVENÍ STRUKTURY LÁTEK

Rozměr: px
Začít zobrazení ze stránky:

Download "STANOVENÍ STRUKTURY LÁTEK"

Transkript

1 STANOVENÍ STRUKTURY LÁTEK

2

3 1nm (the wave) X-ray UV/VIS Infrared Microwave Radio Frequency (the transition) electronic Vibration Rotation Nuclear (spectrometer) X-ray UV/VIS Infrared/Raman NMR Fluorescence

4 Možnosti RTG souřadnice atomů, mezimolekulové interakce, 80 % struktur v databázi Elektronový mikroskop velké komplexy, elektronový obal, nízké rozlišení NMR torzní úhly, nepřímé stavení meziatomové vzdálenosti H-H pomocí rezonance, dynamická informace FRET meziatomové vzdálenosti

5 RTG strukturní analýza proč??? Elektromag. záření interaguje s objekty jejichž velikost je srovnatelní s vlnovou délkou λ Limit rozlišení RTG analýzy je λ/2 Používaná vlnová délka nm Vzdálenost atomů v krystalu nm Vzdálenosti mezi atomy: C C 1.54 Å C=C 1.23 Å C N 1.45 Å

6 RTG strukturní analýza Max von Laue, Walter Friedrich a Paul Knipping (1912) ozářili krystal modré skalice svazkem RTG a zjistili, že rozptýlená energie se od krystalu šíří pouze v určitých směrech, zatímco v jiných vyhasíná.

7 RTG strukturní analýza Nedestruktivní interakce RTG záření s krystalickými materiály. Jedna z nejdůležitějších metod pro určení struktury. V RTG difrakčním obrazci je zakódována informace o vnitřní struktuře (William L. Bragg)

8 RTG strukturní analýza NC za chemii (1962) výzkum struktury globulárních proteinů J.C. Kendrew a M.F. Perutz

9 RTG strukturní analýza NC za lékařství (1962) za určení molekulární struktury nukleových kyselin F.H.C. Crick, J.D. Watson a M.H.F. Wilkins Za sto let vývoje metody 12 NC Rosalind E. Franklin

10 RTG strukturní analýza - princip Až na defekty uvnitř krystalové mříže je krystal upořádán trojrozměrně periodicky (větší podjednotka ribozomu 64 tisíc atomů!) krystalová struktura (nepřesně krystalová mřížka) aproximace prostorová mřížka elementární buňka Elementární buňky jsou identické co do rozměrů tak hmotné náplně a jejich orientace v prostoru. Stanovení krystalové struktury znamená určení a upřesnění souřadnic a parametrů teplotních pohybů všech atomů v elementární buňce.

11 RTG strukturní analýza - princip 230 prostorových grup Základní buňka Záření se rozptyluje na elektronech tato interakce je příliš slabá pro detekci rozptylu na jedné molekule použití krystalů s triliony molekul v identické orientaci.

12 RTG strukturní analýza - princip Krystal ozářen monochromatickým RTG zářením Difrakční obraz Dopadající primární záření se pružně rozptyluje na elektronech měřeného krystalu (vznik sekundárního difraktovaného záření).

13 RTG strukturní analýza - princip Difrakce (reflexe) a interference Braggův zákon 2dsinθ = nλ Známe úhel a vlnovou délku určíme vzdálenost d mezi rovinami, které lze prokládat krystalovou strukturou

14 RTG strukturní analýza - princip Reflektující roviny v krystalu se rozlišují hodnotami Millerových indexů hkl Každý bod obsahuje informaci o všech atomech! Difrakční vzor obsahuje informace o velikosti buňky a symetrii. Ze systematického vyhasínání určíme prostorovou grupu. Strukturní informace je určena z intenzity bodů (přesná poloha atomů a teplotně-vibrační faktory). Pro obdržení dostatečného množství informací je pořízeno více snímků z rozdílných úhlů.

15 RTG strukturní analýza - princip Pozice atomů je určena výpočtem mapy distribuce elektronové hustoty. Maxima mapy (těžiště elektronových obalů těžkých atomů) dobře souhlasí s pozicemi jader izolovaných atomů. Pozice se upřesňují pomocí více měření.

16 RTG strukturní analýza - nevýhody Výchozí materiál monokrystal nebo polykrystalický materiál (práškový - u malých molekul) RTG podává statickou informaci Krystalová struktura je prostorově zprůměrovaná do jedné elementární buňky a časově do délky trvání difrakčního experimentu přicházíme o informace o defektech reálné kryst. struktury (lze řešit pomocí metody difrakčního kontrastu). Lze, ale sledovat měnící se strukturu látky během chemické reakce in situ (časově rozlišená RTG krystalografie)

17 RTG strukturní analýza Dosažený stupeň rozlišení závisí na kvalitě monokrystalu. Počet difrakcí nutných k řešení souvisí se složitostí měřeného krystalu (od několika desítek u krystalu kovů až po několik milionů u krystalu virů). Doba sběru dat od hodin po několik dnů. Měření se provádí za chlazení (většinou dusíkem) K (potlačení teplotně-vibračních pohybů a ochrana před radiačním poškozením)

18 RTG strukturní analýza elektronová hustota K výpočtu jsou potřeba i údaje o fázových úhlech difraktovaných paprsků (nejsou dostupné z experimentu) Úvodní neznalost fází fázový problém Hodnoty fází lze extrahovat ze souboru naměřených intenzit tzv. přímými metodami - aplikací vztahů založených na nerovnostech, statistice a počtu pravděpodobnosti na základě vztahů se vybere nejvíce pravděpodobné fázování reflexí a to se použije pro výpočet mapy elektronové hustoty a určení pozic atomů

19 Amplitudy a fáze jsou zakódované přímo v paprscích záření rozptýlených atomy krystalu Amplituda s rovná druhé odmocnině intenzity rozptýleného záření (změřeno difrakčním experimentem) Fáze rozptýlené vlny nemůže být změřena přímo (fázový problém)

20 Fázový problém Přímá metoda pro malé systémy, založeny na systematických souvislostech mezi určitými reflexemi Metoda molekulárního nahrazení - na základě podobnosti s již určenou strukturou, vzrůstající popularita se vzrůstajícím počtem struktur Metoda těžkých atomů - experimentálně pomocí anomálního rozptylu těžkých atomů (Hg, Fe, Pb, I, Se ) obsažených ve zkoumané molekule (například MAD multiple wavelength anomalous dispersion použitím vícečetné nebo jednoduché anomální difrakce MIR Multiple isomorphous replacement použitím vícečetného isomorfního nahrazení ) Upřesnění proteinové struktury se provádí výpočetně a manuálně s využitím speciálních programů (SOLVE, SHELL-X, Phaser)

21 Proteinová krystalografie Nutnost vysoké koncentrace Údaje o primární struktuře z nukleotidových sekvencí kódujících nukleových kyselin Kvartérní struktura elektronová mikroskopie Sekundární a kvarterní struktura RTG analýza až s rozlišením 1 Å

22 Vstupní struktura

23 Vstupní struktura Původní organismus přirozená forma včetně všech modifikací malé množství, drahé, nemožnost izotopového značení, etické problémy, složitá izolace Syntéza proteinu v mikroorganismech (E. coli, P. pastoris) levné, velký výtěžek proteinu, snadné uniformní izotopové značení možné problémy s modifikacemi postranních řetězců Chemická syntéza velké možnosti izotopového značení, rychlé, vhodné pro toxické proteiny drahé, menší výtěžky, omezení maximální velikosti, problémy se správným sbalením proteinu In-vitro translace vhodné pro toxické proteiny, možnost selektivního izotopového značení drahé, posttranslační modifikace

24 Proteinová krystalografie - krystalizace Hledání vhodných podmínek (koncentrace proteinu a srážedla, teplota, ph, čistota vzorku proteinu, použitá metodika ) Zavádění robotizace a automatizace Difrakční kvalita je často nedostatečná a proměnlivá Nutnost velkého množství krystalů

25 Difrakční experiment Velikost základní buňky desítky až stovky Å Nízká úroveň uspořádanosti Nutnost použít silný zdroj záření (rotační anoda nebo zdroj synchrotronového záření) omezení radiačního poškození proteinových monokrystalů použitím nízké teploty ( K)

26 RTG strukturní analýza - rozlišení 5Å 3Å 2Å - helixy jsou obtížně viditelné (jen obecné vlastnosti molekuly) - peptidový řetezec, postranní řetězce pouze jeli známa sekvence - konformace postranních řetězců

27 Krystalové kontakty Mezi atomy jsou velké kanály naplněné rozpouštědlem Kontakty molekul v rámci krystalu mohou a nemusí mít vliv na strukturu záleží na pozici kontaktu

28 Teplotní B-faktor Popisuje lokání nepřesnost v elektronové hustotě Vysoký B-faktor více nepřesná pozice atomu Ideální B < Ų Důvody vysokých hodnot B-faktoru: 1. Termální pohyb atomů 2. Rozdílná konformace postranních řetězců 3. Neuspořádanost proteinu

29 Kontrola struktury Free R value (Brünger 1992) Test set of reflection is omitted in the modelling and refinement process (5-10 %). Ramachandranův graf WHATIF MOLPROBITY

30 Nukleární magnetická rezonance Nukleární nukleární spin a nukleární magnetický moment Magnetická jádro v magnetické poli precesní pohyb jader a Larmorova frekvence, Zeemanův jev a Boltzmanova distribuce Rezonance rezonance jader v magnetickém poli

31

32 Vlastnosti jader Nukleární spin vlastní moment hybnosti jádra daného izotopu (orbitální + spinový moment nukleonu) pouze jádra s nenulovým spin mohou absorbovat/emitovat elektromagnetické záření (1) hmotnostní číslo M liché poločíselný spin (2) hmotn. číslo M sudé + počet protonů A sudý nulový spin 16 nulový magn. moment - nepoužitelné v NMR (např. O ) (3) hmot.číslo M sudé + počet protonů A lichý celočíselný spin Skoro každý prvek má nějaký stabilní isotop s nenulovým spinem. (Výjimky: Ar, Tc, Ce, Pm) W 0 (MHz) Nucleus 15 N 13 C 31 P 19 F 1 H 3 H

33 Nukleární magnetická rezonance 1 H 13 C vysoké přirozené zastoupení vysoká citlivost (1.00) malá disperse chemických posunů (cca. 15 ppm) velká disperse chemických posunů (cca. 210 ppm) nízké přirozené zastoupení (1.11 %) nízká citlivost ( ); po 100% isotopovém obohacení N střední disperse chemických posunů (cca. 30 ppm) nízké přirozené zastoupení (0.37 %) nízká citlivost ( ); po 100% isotopovém obohacení H speciální účely

34 Nukleární magnetická rezonance měření ve fyziologickém prostředí, možnost úpravy fyzikálněchemických vlastností prostředí sledování průběhu biochemických dějů vysoce selektivní odezva na úrovni atomů Omezení: velikost molekuly: do 10 kda ( 10 kg mol 1 ) [< 70 AA] lze řešit přímo kombinací COSY, TOCSY a NOESY experimentů do 20 kda [< 180 AA] nutné 100% isotopové obohacení 13 C a 15 N do ~100 kda 100% isotopové obohacení 13 C, 15 N a částečné nebo úplné obohacení 2 H (odstranění 1 H jako hlavního zdroje rychlé relaxace 13 C) větší proteiny přístupný pouze hrubý náhled na celkovou strukturu, sekundární struktura koncentrace vzorku alespoň 0,2 mm dlouhodobá stabilita vzorku několik týdnů

35 Nukleární magnetická rezonance - vzorek koncentrace proteinu alespoň 0,2 0,5 mmol l 1 (obecně více = lépe) filtrace přes membrány s mikropóry (protein zadržen) nebo lyofilizace a opětovné rozpuštění úprava ph pufrem (ph typicky 4 8) vyšší ph by způsobilo rychlou výměnu amidických vodíků s molekulami vody a ztrátu signálů přidání redukčních činidel (R SH) zabránění oxidace cysteinů a následného vysrážení vzorku přidání 5 10 % D 2 O referenční jádro pro spektrometr (lock)

36 Potlačení signálu vody jako rozpouštědlo se používá H 2 O, ne D 2 O fyziologické prostředí při použití D 2 O by došlo k výměně amidických vodíků za deuterium tím pádem je nutné potlačit dominantní signál H 2 O její signál je x intensivnější než signály měřené látky

37 Jednodimensionální 1 H NMR spektrum proteinu obsahuje superposice spekter jednotlivých aminokyselin v daném proteinu k sekvenčnímu propojení a přiřazení signálů se používají všechna jádra: 1 H, 13 C a 15 N

38 Vícedimenzionální spektra rozlišení informací obsažených v 1D spektrech korelace chemických posunů 1H 13C 15N propojení spinových systémů jednotlivých aminokyselin pro dostatečnou citlivost experimentů je nutné použít izotopové obohacení

39 NMR ověření kvality proteinu Nesbalený protein Sbalený protein

40 NMR - přiřazení přiřazení NMR signálů jednotlivým atomům v molekule (nutnost znát sekvenci) 1. přiřazení hlavního řetězce (H N, N, H α, C α, CO) 2. přiřazení postranních řetězců (především 1 H a 13 C) Páteř pro přiřazení 1 H, 13 C a 15 N se používá soubor komplementárních třídimensionálních korelačních experimentů přenos magnetizace pomocí skalárních interakcí ( 1 J, 2 J)

41 NMR - Páteř

42

43

44 Postranní řetězce

45 Strukturní parametry NOE - meziatomová vzdálenost skalární interakční konstanta - dihedrální úhel chemický posun - chemické okolí residuální dipolární interakce - vzájemná orientace vazeb vodíkové vazby - detailní lokální struktura

46 Nukleární Overhauserův efekt (NOE) přímá dipól-dipólová interakce mezi atomy A a B vlivem křížové relaxace hlavní zdroj informace o struktuře proteinu. Cílem je nalézt co největší počet NOE interakcí a jednoznačně je přiřadit dvojicím konkrétních vodíkových atomů v molekule. Pravidelné prvky sekundární struktury tvoří charakteristické sítě NOE kontaktů. Z NOE se nepočítají přesné vzdálenosti vodíků, ale rozdělí se do pásem podle intenzity. Např. (1,8 2,5) Å; (1,8 3,5) Å; (1,8 5) Å.

47

48 Skalární interakce dihedrální úhly

49 Chemický posun

50

51 Vodíkové vazby

52 NMR shrnutí určení struktury Postranní řetězce COSY, NOESY, 3D-NMR Sekundární struktura chemické posuny (páteř) dipolární interakce J-interakce (torze) Terciální struktura NOE intenzity

53 Elektronový mikroskop Optický přístroj, kde fotony jsou nahrazeny elektrony a skleněné čočky elektromagnetickými čočkami Elektromagnetická čočka cívka co vytváří tvarované magnetické pole TEM (transmisní elektronový mikroskop) SEM (rastrovací elektronový mikroskop)

54

55 TEM (NC 1986, objev 1932 Ruska) Zobrazuje pomocí prošlých elektronů (transmisní elektrony projdou skrz vzorek a až pak jsou detekovány) Vysoké urychlovací napětí elektronů ( kv) Pro tenké vzorky (do 100 nm)

56 SEM Zobrazuje povrch vzorku pomocí sekundárních elektronů nebo zpětně odražených elektronů Urychlovací napětí elektronů ( kv) Rastrovací - elektronový svazek se pohybuje po vzorku řádek po řádku v jakémsi neviditelném rastru a výsledný obraz se vytváří postupným skenováním Snadná příprava vzorku Snadná interpretace

57 Kryo-elektronová tomografie 200kDa 400 MDa umožňuje zobrazení velkých struktur, jako jsou buňky a organely v téměř nativním stavu Zahrnuje šokové zmrazení Rozlišení Å

58 Kryo-elektronová mikroskopie používá pro jednotlivé částice především na bázi makromolekulárních komplexů, které byly izolovány a purifikovány (vyčištěny) biochemickou cestou.

59 FRET Fluorescence (Förster) resonance energy transfer rezonanční přenos energie z donoru v excitovaném stavu na akceptor (mezi dvěma chromofory) hybridizace DNA, konformační změny, interakce biomolekul, senzory.

60 Chemický posun

61 NOE

62 Skalární interakce

Krystalografie a strukturní analýza

Krystalografie a strukturní analýza Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl

Více

Neprobíhá-li v soustavě za daných vnějších podmínek žádný samovolný děj spojený s výměnou látek nebo energie, je soustava v rovnovážném stavu.

Neprobíhá-li v soustavě za daných vnějších podmínek žádný samovolný děj spojený s výměnou látek nebo energie, je soustava v rovnovážném stavu. Rovnovážné stavy Rovnovážné stavy Neprobíhá-li v soustavě za daných vnějších podmínek žádný samovolný děj spojený s výměnou látek nebo energie, je soustava v rovnovážném stavu. Fázová rovnováha je-li soustava

Více

NMR biomakromolekul RCSB PDB. Progr. NMR

NMR biomakromolekul RCSB PDB. Progr. NMR NMR biomakromolekul Typy biomakromolekul a možnosti studia pomocí NMR proteiny a peptidy rozmanité složení, omezení jen velikostí molekul nukleové kyseliny (RNA, DNA) a oligonukleotidy omezení malou rozmanitostí

Více

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Uplatnění NMR spektroskopie chemická struktura kovalentní struktura konformace, geometrie molekul dynamické procesy chemické a konformační

Více

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.

Více

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody molekulové spektroskopie NMR Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla

Více

Metody pro studium pevných látek

Metody pro studium pevných látek Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi

Více

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0 Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - instrumentace pulsní metody, pulsní sekvence relaxační

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Difrakce elektronů v krystalech, zobrazení atomů

Difrakce elektronů v krystalech, zobrazení atomů Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,

Více

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz

Více

Náboj a hmotnost elektronu

Náboj a hmotnost elektronu 1911 změřil náboj elektronu Pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty

Více

Náboj a hmotnost elektronu

Náboj a hmotnost elektronu 1911 určení náboje elektronu q pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty

Více

1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment

1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se

Více

Metody pro studium pevných látek

Metody pro studium pevných látek Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Teorie rentgenové difrakce

Teorie rentgenové difrakce Teorie rentgenové difrakce Vlna primárního záření na atomy v krystalu. Jádra atomů zůstanou vzhledem ke své velké hmotnosti v klidu, ale elektrony jsou rozkmitány se stejnou frekvencí jako má primární

Více

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční y x COSY 90 y chem. posuv J vazba 90 x : : inphase dublet, disperzní inphase dublet, disperzní antiphase dublet, absorpční antiphase dublet, absorpční diagonální pík krospík + - - + podmínky měření a zpracování

Více

2. Difrakce elektronů na krystalu

2. Difrakce elektronů na krystalu 2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení

Více

Chemie a fyzika pevných látek p2

Chemie a fyzika pevných látek p2 Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více

12.NMR spektrometrie při analýze roztoků

12.NMR spektrometrie při analýze roztoků Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 12.NMR spektrometrie při analýze roztoků Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com 12.NMR spektrometrie při analýze

Více

Chemie a fyzika pevných látek l

Chemie a fyzika pevných látek l Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Difrakce elektronů v krystalech a zobrazení atomů

Difrakce elektronů v krystalech a zobrazení atomů Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

RTG difraktometrie 1.

RTG difraktometrie 1. RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat

Více

Přednáška č. 3. Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů.

Přednáška č. 3. Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů. Přednáška č. 3 Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů. Strukturní krystalografie Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování

Více

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS

Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS Spektroskopické é techniky a mikroskopie Spektroskopie metody zahrnující interakce mezi světlem (fotony) a hmotou (elektrony a protony v atomech a molekulách Typy spektroskopických metod IR NMR Elektron-spinová

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum

Více

Přednáška 12. Neutronová difrakce a rozptyl neutronů. Martin Kormunda

Přednáška 12. Neutronová difrakce a rozptyl neutronů. Martin Kormunda Přednáška 12 Neutronová difrakce a rozptyl neutronů Neutronová difrakce princip je shodný s rentgenovou difrakcí platí Braggova rovnice nλ = 2d sin θ Rozptyl záření na atomomech u XRD záření interaguje

Více

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Co to je NMR? nedestruktivní spektroskopická metoda využívající magnetických vlastností atomových jader ke studiu struktury molekul metoda č.1 pro určování

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

METODY ANALÝZY POVRCHŮ

METODY ANALÝZY POVRCHŮ METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější

Více

Chemie a fyzika pevných látek p3

Chemie a fyzika pevných látek p3 Chemie a fyzika pevných látek p3 strukturní faktor, monokrystalové a práškové difrakční metody Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) LEKCE 8 Nukleární verhauserův efekt (NE) určení prostorové struktury molekul využití REY spektroskopie projevy NE a chemické výměny v jednom systému Nukleární verhauserův efekt (NE) důsledek dipolární

Více

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných

Více

Vybrané spektroskopické metody

Vybrané spektroskopické metody Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

Základy NMR 2D spektroskopie

Základy NMR 2D spektroskopie Základy NMR 2D spektroskopie Jaroslav Kříž Ústav makromolekulární chemie AV ČR v.v.i. puls 1D : d 1 Fourierova transformace časového rozvoje odezvy dá 1D spektrum 2D: d 1 d 1 d 1 d 0 d 0 + in 0 d 0 + 2in

Více

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 3b Využití D experimentů k přiřazení složitější molekuly ppm ppm 10 1.0 1.5 15.0 130.5 3.0 135 3.5 140 4.0 4.5 145 5.0 150 5.5 155 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0.5.0 1.5 1.0 ppm 160.6.4..0

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

Techniky mikroskopie povrchů

Techniky mikroskopie povrchů Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní

Více

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Proč elektronový mikroskop?

Proč elektronový mikroskop? Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční

Více

Elektronová mikroskopie II

Elektronová mikroskopie II Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet

NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od

Více

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 7 Interpretace 13 C MR spekter Využití 2D experimentů ppm 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm Zpracování, výpočet a databáze MR spekter

Více

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová

Více

Rentgenová difrakce a spektrometrie

Rentgenová difrakce a spektrometrie Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz

Více

Strukturní analýza. NMR spektroskopie

Strukturní analýza. NMR spektroskopie Strukturní analýza NMR spektroskopie RNDr. Zdeněk Tošner, Ph.D. lavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní

Více

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter LEKCE 1b Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR spekter Počet signálů ve

Více

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Využití magneticko-rezonanční tomografie v měřicí technice Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Osnova Podstata nukleární magnetické rezonance (MR) Historie vývoje MR Spektroskopie MRS Tomografie MRI

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

Elektronová Mikroskopie SEM

Elektronová Mikroskopie SEM Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne

Více

Dualismus vln a částic

Dualismus vln a částic Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz

Více

Analýza vrstev pomocí elektronové spektroskopie a podobných metod

Analýza vrstev pomocí elektronové spektroskopie a podobných metod 1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ

CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ Lukáš ZUZÁNEK Katedra strojírenské technologie, Fakulta strojní, TU v Liberci, Studentská 2, 461 17 Liberec 1, CZ,

Více

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Význam interakční konstanty, Karplusova rovnice konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Karplusova rovnice ve strukturní analýze J(H,H) = A + B cos f

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Mgr. Zdeněk Moravec, Ph.D. Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 5. Metody určování struktury proteinů Ivo Frébort 3D struktury Smysl určování 3D struktur Pochopení funkce proteinů, mechanismu enzymových reakcí, design nových

Více

NMR spektroskopie Instrumentální a strukturní analýza

NMR spektroskopie Instrumentální a strukturní analýza NMR spektroskopie Instrumentální a strukturní analýza prof. RNDr. Zdeněk Friedl, CSc. Použitá a doporučená literatura Solomons T.W.G., Fryhle C.B.: Organic Chemistry, 8th Ed., Wiley 2004. Günther H.: NMR

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více

10A1_IR spektroskopie

10A1_IR spektroskopie C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

NMR spektroskopie biologicky aktivních molekul

NMR spektroskopie biologicky aktivních molekul NMR spektroskopie biologicky aktivních molekul Jak vidí současné a budoucí uplatnění NMR spektroskopie profesor Richard Ernst. Medicine Biochemistry Nobel prize in chemistry 1991 Chemistry Physics J.W.

Více

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

FOTOAKUSTIKA. Vítězslav Otruba

FOTOAKUSTIKA. Vítězslav Otruba FOTOAKUSTIKA Vítězslav Otruba 2010 prof. Otruba 2 The spectrophone 1881 A.G. Bell návrh a Spektrofonu (spectrophone) pro účely posouzení absorpčního spektra subjektů v těch částech, které jsou neviditelné.

Více

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen

Více

Naše NMR spektrometry

Naše NMR spektrometry Naše NMR spektrometry Varian NMR System 300 MHz Varian INOVA 400 MHz Bruker Avance III 600 MHz NMR spektrometr magnet průřez supravodičem NMR spektrometr sonda Tvar spektra reálná část imaginární část

Více

Fluorescence (luminiscence)

Fluorescence (luminiscence) Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

Fluorescenční rezonanční přenos energie

Fluorescenční rezonanční přenos energie Fluorescenční rezonanční přenos energie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 Přenos excitační energie Přenos elektronové energie se uskutečňuje mechanismy zářivými nebo

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 1a Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více