Cvičebnice stavební mechaniky

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Cvičebnice stavební mechaniky"

Transkript

1 Cvičebnice stavební mechaniky Ing. Karla Labudová. vydání Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky.

2 Obsah Síly působící v jednom paprsku 7. Dvě síly o společném působišti a stejném směru Dvě síly o společném působišti v téže přímce opačného smyslu Skládání více sil působících v téže přímce se společným působištěm různého smyslu Centrické síly 9. Dvě síly různých směrů o společném působišti (dvě centrické síly) Více sil o společném působišti různých směrů (více centrických sil) Obecná soustava sil v rovině Určení výslednice obecné soustavy sil v rovině Určení výslednice rovnoběžných sil v rovině Rovnováha soustavy rovnoběžných sil Rovnováha obecné soustavy sil v rovině Rozklad síly do dvou rovnoběžných směrů Těžiště ploch rovinných obrazců a statické veličiny průřezu 95 5 Statika tuhé desky Rovnováha tuhé desky Podepření tuhé desky Zatížení stavebních konstrukcí Výpočet reakcí staticky určitých nosníků Prostý nosník Prostý nosník s převislým koncem Konzola Šikmý nosník Lomený nosník Klíče k příkladům k procvičení 49

3

4 Předmluva Vážené žákyně, vážení žáci, cílem této cvičebnice je dát vám možnost procvičit si učivo, které jste již ve škole probrali, doma a to formou jednoduchých příkladů. V úvodu každé kapitoly je jen velmi stručně shrnuto to nejdůležitější z již probraného učiva. Najdete zde to, co pokládám za nutné stručně zopakovat či sjednotit (například značení veličin apod.) U každé kapitolky je uveden vzorový příklad, jak je dané téma možné řešit a za každou kapitolkou najdete sadu cvičení, které bych byla ráda, abyste si vyzkoušeli doma. V případě, že si s některým cvičením nebudete vědět rady, připojila jsem také klíč k řešení všech těchto cvičení, který najdete úplně vzadu této cvičebnice. Doufám, že vám tato cvičebnice pomůže poprat se s problémy, se kterými se možná potýkáte a otevře cestu k lepšímu chápání stavební mechaniky jako jednoho z oborů, bez kterého by se stavebnictví neobešlo. Stavební mechanika je nádherný vědní obor, poznejte to sami. Ing. Karla Labudová autorka cvičebnice 3

5

6 Statika v rovině V hodinách stavební mechaniky jste se dozvěděli základní informace o silách. Víte, jaké jsou druhy sil, jak se skládají, resp. rozkládají. Víte také, že statika používá k tomuto účel dva způsoby řešení početní (přesný a rychlý způsob) nebo grafický (pracnější jeho přesnost závisí na vaši pečlivosti ale názorný). Víte také, že síla je určena: působištěm - bodovým, plošným nebo prostorovým, směrem - ten je dán paprskem a smyslem velikostí - v jednotkách N nebo kn (např. 70 kn). a F = 50 kn paprsek smysl působiště 5

7

8 Síly působící v jednom paprsku V úvodu se domluvme, že síly budeme značit F s dolním indexem,, 3,..., i (např. F,, F 3,..., F i a jejich výslednici budeme značit R.. Dvě síly o společném působišti a stejném směru Při skládání dvou sil o společném působišti a stejném směru má výslednice těchto sil vždy stejný směr jako síly, jejichž je výslednicí, a její velikost je rovna součtu těchto sil. Příklad.. Určete výslednici dvou sil o společném působišti a stejném směru o velikosti F = 500 N a = 700 N. Zadání F = 500 N = 700 N a) početní řešení R = F + = = 00 N R = 00 N b) grafické řešení (vždy zvolte vhodné měřítko, v tomto případě cm = 00 N) F = 500 N = 700 N R = 00 N 7

9 Síly působící v jednom paprsku Příklady k procvičení..a F = 500 N a = 300 N F = 500 N = 300 N..B F = 00 N a = 800 N = 800 N F = 00 N..C F = 0 kn a = 30 kn F = 0 kn = 30 kn..d F = 40 kn a = 60 kn F = 40 kn = 60 kn..e F = 600 N a = 00 N F = 600 N = 00 N 8

10 . Dvě síly o společném působišti v téže přímce opačného smyslu. Dvě síly o společném působišti v téže přímce opačného smyslu Při skládání dvou sil o společném působišti, stejném paprsku, ale opačného smyslu má výslednice těchto sil vždy stejný paprsek jako obě síly. Smysl má shodný se silou, která je větší. Velikost výslednice je pak rovna také součtu těchto sil, ovšem pozor, zde je už nutné dohodnout pravidla pro kladná a záporná znaménka sil. Dohodněme se, že všechny síly, které mají směr ve smyslu kladné osy x (tj. I. a IV. kvadrant) budou mít kladné znaménko a naopak všechny síly ve smyslu záporné osy x (tj. II. a III. kvadrant) budou mít záporné znaménko. +y II. kvadrant - I. kvadrant + -x +x - III. kvadrant -y + IV. kvadrant Příklad.. Určete výslednici dvou sil o společném působišti, stejného paprsku, ale opačného smyslu o velikosti F = 300 N a = 500 N. Zadání = 500 N F = 300 N a) početní řešení R = F + = = 00 N 9

11 Síly působící v jednom paprsku R = 00 N b) grafické řešení ʹ = Rʹ R = 00 N = R = 500 N F = 300 N ʹ = Příklad.. Určete výslednici dvou sil o společném působišti, stejného paprsku, ale opačného smyslu o velikosti F = 700 N a = 400 N. Zadání: 30 F = 700 N = 400 N a) početní řešení R = F + = = 300 N 30 R = 300 N 0

12 . Dvě síly o společném působišti v téže přímce opačného smyslu b) grafické řešení = R F = 700 N ʹ = Rʹ 30 = 400 N R = 300 N Příklad..3 ʹ = Určete výslednici dvou sil o společném působišti, stejného paprsku, ale opačného smyslu o velikosti F = 50 kn a = 30 kn. F = 30 kn = 50 kn a) početní řešení R = F + = = 0 kn R = 0 kn

13 Síly působící v jednom paprsku b) grafické řešení ʹ = F = 30 kn = R R = 0 kn = 50 kn ʹ = Rʹ Příklady k procvičení..a F = 0 kn a = 50 kn = 0 kn 30 F = 50 kn..b F = 80 kn a = 90 kn F = 80 kn 0 = 90 kn

14 F = 700 N. Dvě síly o společném působišti v téže přímce opačného smyslu..c F = 600 N a = 00 N = 00 N F = 600 N..D F = 700 N a = 50 N 60 = 50 N..E F = 0 kn a = 70 kn F = 0 kn = 70 kn 00 3

15 Síly působící v jednom paprsku.3 Skládání více sil působících v téže přímce se společným působištěm různého smyslu Při skládání více sil ve stejném paprsku platí tytéž zásady jako u dvou sil ve stejném paprsku, ale různého smyslu. Je opět nutné dodržovat znaménkovou konvenci. V grafickém řešení opět využívám k získání výslednice tzv. složkové čáry, kterou jsme již lehce naznačili v minulé kapitole. Složkovou čáru sestrojíme tak, že vynášíme v určitém pořadí a zvoleném směru jednotlivé síly. Výslednice je pak spojnicí počátku a konce složkové čáry. Pokud je složková čára uzavřena, znamená to, že výslednice je rovna nule. Počátek síly se označuje jejím číselným indexem (,, 3,...), konce síly indexem s čarou (,, 3,...). Příklad.3. Určete výslednici sil působících v téže přímce, kde F = 0 kn, = 30 kn, F 3 = 50 kn a F 4 = 70 kn. F 4 = 70 kn F = 0 kn = 30 kn F 3 = 50 kn a) početní řešení 4 R = F i = F + + F 3 + F 4 i= R = = 30 kn R = 30 kn b) grafické řešení = R F = 0 kn ʹ = = 30 kn ʹ = 3 F 3 = 50 kn 3ʹ = 4 4ʹ = Rʹ R = 30 kn F 4 = 70 kn Příklad.3. Určete výslednici sil působících v téže přímce, kde F = 60 kn, = 30 kn, F 3 = 40 kn, F 4 = 80 kn a F 5 = 0 kn. 4

16 .3 Skládání více sil působících v téže přímce se společným působištěm různého smyslu F 3 = 40 kn = 30 kn 5 F 5 = 0 kn F = 60 kn F 4 = 80 kn a) početní řešení 5 R = F i = F + + F 3 + F 4 + F 5 i= R = = 80 kn 5 R = 80 kn b) grafické řešení 3ʹ = 4 = R F3 F 5 5 ʹ = 3 R = 80 kn F ʹ = F 4 4ʹ = 5 5ʹ = Rʹ 5

17 Síly působící v jednom paprsku Příklad.3.3 Určete výslednici sil působících v téže přímce, kde F = 0 kn, = 60 kn a F 3 = 40 kn. = 60 kn 30 F = 0 kn F 3 = 40 kn a) početní řešení 3 R = F i = F + + F 3 i= R = = 0 kn R = 0 kn b) graficky = R F 3 30 ʹ = 3 ʹ = F 3ʹ = Rʹ R = 0 kn 6

18 .3 Skládání více sil působících v téže přímce se společným působištěm různého smyslu Příklady k procvičení.3.a F = 0 kn, = 50 kn a F 3 = 30 kn F = 0 kn = 50 kn F3 = 30 kn.3.b F = 00 N, = 600 N, F 3 = 700 N a F 4 = 500 N F = 600 N F = 00 N 30 F4 = 500 N F3 = 700 N 7

19 = kn Síly působící v jednom paprsku.3.c F = 80 kn, = 00 kn, F 3 = 90 kn, F 4 = 0 kn a F 5 = 5 kn F 3 = 90 kn F 5 = 5 kn F 4 = 0 kn F = 80 kn = 00 kn.3.d F = 8 kn, = 34 kn, F 3 = 40 kn a F 4 = 9 kn F = 8 kn = 34 kn F 3 = 40 kn 35 F 4 = 9 kn.3.e F = 4 kn, = kn, F 3 = 56 kn, F 4 = 66 kn a F 5 = 4 kn F 3 = 56 kn F 5 = 4 kn F 4 = 66 kn F = 4 kn 60 8

20 Centrické síly. Dvě síly různých směrů o společném působišti (dvě centrické síly) Jestliže působí na těleso dvě síly různých směrů, pak se účinek těchto sil na tělese projeví výslednicí R, jejíž velikost a směr jsou určeny úhlopříčkou rovnoběžníku jehož strany tvoří síly F a. Dvě síly, jejíž výslednici zjišťujeme, jsou opět zadávány ve vztahu k jednotkové kružnici a to tak, že průsečík os x a y je společným působištěm těchto sil a úhly α a α, kterými jsou zadávány směry sil, jsou vždy úhly vztahující se od kladné osy x a jsou vedeny proti směru hodinových ručiček. Např. y F α α x Jako vždy i zde lze síly skládat základními dvěma způsoby početně nebo graficky. A) početní řešení A) pomocí Cosinové věty, kde velikost výslednice získáváme pomocí vztahu: R = + F cos(π ϕ), kde ϕ je menší z úhlů, které svírají síly mezi sebou a π rad = 80. 9

21 Centrické síly např. F φ F φ Toto řešení je rychlé a přesné, ale bez náčrtku nelze určit úhel výslednice. A) pomocí rozkladu sil na složky x a y a následného složení těchto dílčích složek do výslednice. Zde je nutné si uvědomit, že každou sílu si mohu rozložit na dvě její části. Praktické je využívat k tomuto rozkladu do os x a y. Například síla F : y F F y = sinα α F x = cosα x Zároveň platí, že výslednicí sil F x a F y je síla F (z rovnoběžníku sil). Tzn., že pokud známe složky F x a F y, můžeme zpětně určit sílu F. y y F F F y F y α x α x F x F x 0

22 . Dvě síly různých směrů o společném působišti (dvě centrické síly) Lze využít Pythagorovy věty i goniometrických funkcí: = Fx + Fy F = Fx + Fy tan α = F y F x B) grafické řešení B) rovnoběžník sil y F α α R R x α B) složková čára princip již známe z předchozí kapitoly. Je nutné striktně dodržovat nejen velikosti, ale i zadané směry sil.

23 Centrické síly y F α x α y α ʹ = F α R α R ʹ = Rʹ x = R Příklad.. Určete výslednici těchto sil: F = 700 N, α = 30, = 400 N, α = 5 y = 400 N F = 700 N α = 5 α = 30 x

24 . Dvě síly různých směrů o společném působišti (dvě centrické síly) Početní řešení: a) Cosinova věta R = + F cos(π ϕ) R = cos(80 95 ) = 775, 37 N y φ = 95 F 5 30 x b) rozkladem sil y F y y F 5 30 x x F x F x = F cos 30 = 700 cos 30 = 606, N F y = F sin 30 = 700 sin 30 = 350 N x = cos 55 = 400 cos 55 = 9, 43 N y = sin 55 = 400 sin 55 = 37, 66 N R x = F x + x = 606, 9, 43 = 376, 79 N R y = F y + y = , 66 = 677, 66 N 3

25 Centrické síly R = R x + R y = 376, , 66 = 775, 37 N tan α R = R y 677, 66 = =, 7985 R x 376, 79 α R = 60, 93 y R y = 677,66 N R = 775,37 N F α R = 60,93 x R x = 677,66 N 4

26 . Dvě síly různých směrů o společném působišti (dvě centrické síly) Grafické řešení a) rovnoběžník sil y R = 775,37 N F 5 α R = 60,93 30 x b) složkovou čarou ʹ = Rʹ R 5 F ʹ = α R 30 = R 5

27 Centrické síly Příklad.. F = 5 kn, α = 0, = 80 kn, α = 330 y F = 5 kn α = 0 x α = 330 = 80 kn Početní řešení: a) Cosinova věta R = + F cos(π ϕ) R = cos(80 40 ) = 6, 94 kn y φ = 40 F 0 x 330 6

28 . Dvě síly různých směrů o společném působišti (dvě centrické síly) b) rozkladem y F F y 0 F x x x 330 y F x = F cos 70 = 5 cos 70 = 8, 55 kn F y = F sin 70 = 5 sin 70 = 30, 49 kn x = cos 30 = 80 cos 30 = 69, 8 kn y = sin 30 = 80 sin 30 = 40 kn R x = F x + x = 8, , 8 = 60, 73 kn R y = F y + y = 3, = 6, 508 kn R = Rx + Ry = 60, 73 + ( 6, 508) = 6, 94 kn tan α R = R y 6, 508 = = 0, 78 R x 60, 73 α R = 5, 7

29 Centrické síly y F R x = 60,73 kn x R y = 6,508 kn R α R = 5, Grafické řešení: a) rovnoběžník sil y F 0 x 330 α R R = 6,94 kn 8

30 . Dvě síly různých směrů o společném působišti (dvě centrické síly) b) složkovou čarou ʹ = 330 F 0 = R R α R ʹ = Rʹ Příklady k procvičení..a F = 60 N, α = 40, = 580 N, α = 330 y F = 60 N α = 330 α = 40 x = 580 N 9

31 Centrické síly..b F = 450 N, α = 45, = 500 N, α = 30 y F = 60 N α = 330 α = 40 x = 580 N..C F = 500 N, α = 70, = 300 N, α = 0 y F = 60 N α = 330 α = 40 x = 580 N 30

32 . Více sil o společném působišti různých směrů (více centrických sil). Více sil o společném působišti různých směrů (více centrických sil) Pro určení výslednice takové soustavy sil lze použít stejná pravidla jako u dvou centrických sil. Lze použít obě grafické metody pro určení výslednice soustavy sil, ale z početních metod využíváme princip rozkladu sil, protože využití Cosinovy věty je příliš pracné. Pro početní řešení tedy platí, že vodorovná složka výslednice R x je součtem všech vodorovných složek jednotlivých sil F ix. Analogicky platí, že svislá složka výslednice R y je součtem všech svislých složek jednotlivých sil F iy. R x = R y = n F ix = F x + x + + F nx = F cos α + cos α + + F n cos α n i= n F iy = F y + y + + F ny = F sin α + sin α + + F n sin α n i= Přičemž respektujeme při dosazování zadané úhly od osy x, abychom správně určili výslednou orientaci složek R x a R y. Pro konečnou hodnotu výslednice se nic nemění, platí: R = R x + R y Také pro výsledný úhel, který svírá výslednice s osou x, lze opět využít goniometrické funkce, např. nebo tanα R = R y R x apod. sin α R = R y R U grafické metody pomocí rovnoběžníku sil pracujeme postupně. Nejprve uděláme výslednici sil F a a pomocí rovnoběžníku určíme jejich výslednici R. Potom určíme výslednici sil R a F 3 a dostaneme výslednici R 3. Dále najdeme výslednici síly R 3 a F 4. A tak pokračujeme dále. Poslední výslednici celé soustavy sil označíme R. U grafické metody pomocí složkové čáry platí vše, co jsme si již řekli. Znovu upozorňuji, že je nutné dodržovat přesně nejen velikost, ale i směr síly. 3

33 Centrické síly Příklad.. F = 300 N, α = 40, = 650 N, α = 0, F 3 = 70 N, α 3 = 00, F 4 = 60 N, α 4 = 30. Početní řešení: 4 R x = F ix = F cos α + cos α + F 3 cos α 3 + F 4 cos α 4 i= R x = 300 cos cos cos cos 30 R x = 96, 495 N 4 R y = F iy = F sin α + sin α + F 3 sin α 3 + F 4 sin α 4 i= R y = 300 sin sin sin sin 30 R y = 947, 38 N 3

34 . Více sil o společném působišti různých směrů (více centrických sil) y R y = 947,38 N R = 38,04 N α R = 45,95 R x = 96,495 N x R = R x + R y R = 96, , 38 = 38, 04 N tan α R = R y R x tan α R = 947, 38 96, 495 α R = 45, 95 =,

35 Centrické síly Grafické řešení: a) rovnoběžník sil y F 3 R,,3 R = 38,04 N 00 α R R, 30 F 40 0 x F 4 34

36 . Více sil o společném působišti různých směrů (více centrických sil) b) složková čára 30 3ʹ = 4 F 4 4ʹ = Rʹ F 3 00 R ʹ = 3 0 ʹ = α R F 40 = R 35

37 Centrické síly Příklad.. F = 5 kn, α = 30, = 6 kn, α = 00, F 3 = 8 kn, α 3 = 80 y F = 6 kn α = 00 F = 5 kn α = 30 x α 3 = 80 F3 = 8 kn Početní řešení: 3 R x = F ix = F cos α + cos α + F 3 cos α 3 i= R x = 5 cos cos cos 80 R x = 4, 677 kn 36

38 . Více sil o společném působišti různých směrů (více centrických sil) 3 R y = F iy = F sin α + sin α + F 3 sin α 3 i= R y = 5 sin sin sin 80 R y = 0, 53 kn R y = 0,53 kn y R = 4,707 kn α R = 6,465 x R x = 4,677 kn R = R x + R y R = 4, , 53 = 4, 707 kn tan α R = R y R x tan α R = 0, 53 = 0, 33 4, 677 α R = 6,

39 Centrické síly Grafické řešení: a) rovnoběžník sil y R, 00 F α R R = 4,707 kn x F 3 38

40 . Více sil o společném působišti různých směrů (více centrických sil) b) složková čára 80 ʹ = 3 00 ʹ = F 30 F 3 = R R = 4,707 kn 3ʹ = Rʹ α R = 6,465 39

41 Centrické síly Příklad..3 F = 50 N, α = 5, = 30 N, α = 80, F 3 = 740 N, α 3 = 40, F 4 = 70 N, α 4 = 90. y F3 = 740 N α 3 = 40 = 30 N α = 80 F = 50 N α = 5 x α 4 = 90 F4 = 70 N Početní řešení: 4 R x = F ix = F cos α + cos α + F 3 cos α 3 + F 4 cos α 4 i= R x = 50 cos cos cos cos 90 R x = 43, 63 N 40

42 . Více sil o společném působišti různých směrů (více centrických sil) 4 R y = F iy = F sin α + sin α + F 3 sin α 3 + F 4 sin α 4 i= R y = 50sin5 + 30sin sin sin90 R y = 9, 46 N y R α R = 78,75 R x = 43,63 N R y = 9,46 N x R = R = Rx + Ry ( 43, 63) + 9, 46 = 3, 7 N tan α R = R y R x tan α R = 9, 46 43, 63 α R = 78, 75 = 5, 09 4

43 Centrické síly Grafické řešení: a) rovnoběžník sil y R,,3 R = 9,46 N F 3 R, α R F 5 x 90 F 4 4

44 . Více sil o společném působišti různých směrů (více centrických sil) b) složková čára 90 3ʹ = 4 F 3 F 4 40 ʹ = 3 4ʹ = Rʹ R = 9,46 N 80 α R = 78,75 F 5 ʹ = = R 43

45 Centrické síly Příklady k procvičení..a F = 5 kn, α = 45, = 4 kn, α = 00, F 3 = 6 kn, α 3 = 0. y F = 4 kn α = 00 F = 5 kn α 3 = 0 α = 45 x F 3 = 6 kn..b F = 860 N, α = 5, = 430 N, α = 50 F 3 = 80 N, α 3 = 90, F = 380 N, α 4 = 95. α 3 = 90 y = 430 N α = 50 F = 860 N α = 5 x F 3 = 80 N α 4 = 95 F4 = 380 N 44

46 . Více sil o společném působišti různých směrů (více centrických sil)..c F = 0 kn, α = 00, = 7 kn, α = 40, F 3 = 9 kn, α 3 = 300, F 4 = kn, α 4 = 70, F 5 = 5 kn, α = 30. y F = 0 kn F 5 = 5 kn α = 00 α 5 = 30 α 4 = 70 α = 40 = 7 kn x F3 = 9 kn α 3 = 300 F 4 = kn 45

47

48 3 Obecná soustava sil v rovině 3. Určení výslednice obecné soustavy sil v rovině Opět máme na výběr dva způsoby řešení početně nebo graficky. Početní řešení U každé soustavy sil v rovině musíme mít na paměti platnost: a) podmínek rovnováhy n M i = i= { n n i= F i = 0 F ix = 0 n i= F iy = 0 i= n F i p i = 0 i= kde F... síla v obecné poloze, F x... vodorovná složka síly F (působící v ose x), F y... vodorovná složka síly F (působící v ose y), y F x x F y M... statický moment síly, p... rameno, na kterém se síla otáčí (nejkratší, tj. kolmá, vzdálenost od zvoleného momentového středu). b) Varignonovy věty, která říká: algebraický součet statických momentů všech sil obecné soustavy sil v rovině k libovolně zvolenému momentovému středu je roven statickému momentu výslednice této soustavy sil k témuž bodu 47

49 3 Obecná soustava sil v rovině + n M i = M R i= n F i p i = Rp R i= a zároveň platí R = n i= F i { R x = n i= F ix R y = n i= F iy kde M R... statický moment výslednice ke zvolenému momentovému středu, R... výslednice soustavy sil, p R... rameno, na kterém výslednice působí ke zvolenému momentovému středu, R x... vodorovná složka výslednice R a R y... vodorovná složka výslednice R. Grafické řešení Využíváme složkovou čáru, pomocí které sestrojujeme výslednicovou čáru (tvoří výslednicový obrazec). Mějme na paměti, že jak složková, tak výslednicová čára musí být vždy uzavřena! Zatímco pomocí výslednicové čáry určíme velikost a směr výslednice R. Postup:. Provedeme složkovou čáru, pak známe velikost a směr výslednice.. Zvolíme si pól (označíme O) mimo složkovou čáru. 3. Uděláme pólové paprsky, které označíme římskými čísly (I, II, III,...) 4. V soustavě sil si zvolíme bod na první síle F a z tohoto bodu vedeme rovnoběžku s pólovým paprskem I, kterou protáhneme, protože na této rovnoběžce se bude nacházet průsečík, kterým pak povedeme výslednici R. 5. Ze stejného bodu na síle F vedeme rovnoběžku s pólovým paprskem II, kterou protneme paprsek síly. 6. Z bodu, kde jsme protli paprsek síly vedeme rovnoběžku s pólovým paprskem III, až protneme paprsek síly F Tak pokračujeme postupně, dokud neprovedeme rovnoběžky se všemi pólovými paprsky. Princip je jednoduchý každý pólový paprsek musí protnout ty síly, podle kterých je označen daný vrchol složkové čáry. Např. pólový paprsek I spojuje pól O s vrcholem složkové čáry = R, pak musí protínat sílu F a výslednici R apod. 48

50 3. Určení výslednice obecné soustavy sil v rovině 8. V místě, kde je průsečík prvního a posledního pólového paprsku vedeme rovnoběžku s výslednicí složkové čáry a tím máme určenu polohu výslednice. Příklad 3.. Určete výslednice této soustavy sil F = 6 kn α = 40 α = 30 = 4 kn F 3 =3 kn jednotky: mm Početní řešení: Protože již víme, že každou sílu lze rozložit na vodorovnou a svislou složku, doporučuji takto postupovat, aby se nám lépe určovala ramena statických momentů, která budeme dále ve výpočtu potřebovat. Stejně tak je vhodné vyznačit na nosníku, kde se soustava sil nachází, zvolený momentový střed, ke kterému budeme počítat. Budeme ho označovat malými písmeny, např. a. p p F a 40 F x = F cos40 F y = F sin y = sin x = cos30 F F x = 6 cos 40 = 4, 596 kn F y = 6 sin 40 = 3, 857 kn x = 4 cos 30 = 3, 464 kn y = 4 sin 30 = kn 49

51 3 Obecná soustava sil v rovině Varignonova věta n R x = F ix = F x x + F 3x i= R x = 4, 596 3, = 4, 3 kn n R y = F iy = F y y + F 3y i= R y = 3, 857 = 5, 857 kn R = Rx + Ry = 4, 3 + ( 5, 857) = 7, 7 kn tan α R = R y 5, 857 = =, 47 R x 4, 3 α R = 54, 8 + momenty, které se kolem zvoleného momentového středu a, točí po směru hodinových ručiček, jsou kladné. n M R = M i = F y p + F y p i= Rp R = 3, , 7p R = 9, 48 p R = 4, 04 m Síla F 3 přímo prochází bodem a, pak p 3 = 0. Určím také vzdálenost výslednice R od zvoleného momentového středu a na nosníku R y r = 9, 48 r = 9, 48 R y r = 5, 0 m = 9, 48 5,

52 3. Určení výslednice obecné soustavy sil v rovině Výslednici vždy zakreslíme a zakótujeme do zadání α R = 54,8 R = 7,7 kn a F F r = 500 Grafické řešení: a) výslednicová čára r = 500 α R = 54,8 R = 7,7 kn F F III F II I IV b) složková čára = R R = 7,7 kn F I α R = 54,8 ʹ = III II IV O ʹ = 3 F 3 3ʹ = Rʹ 5

53 3 Obecná soustava sil v rovině Příklad 3.. Určete výslednici této soustavy sil. = 3 kn F 3 =6 kn F 5 = kn F = 6 kn α = 50 α 5 = 70 α 4 = 60 F 4 =8 kn 3 jednotky: m Početní řešení: y = sin50 F 3 F 5y = F 5 sin70 F 5 F a 50 F 4x = F 4 cos x = cos50 60 F 5x = F 5 cos70 F 4y = F 4 sin60 F 4 3 x = 3 cos 50 =, 98 kn y = 3 sin 50 =, 98 kn F 4x = 8 cos 60 = 4 kn F 4y = 8 sin 60 = 6, 98 kn F 5x = cos 70 = 0, 684 kn F 5y = sin 70 =, 879 kn n R x = F ix = F x + x + F 4x F 5x i= R x = 6 +, , 684 =, 44 kn 5

54 3. Určení výslednice obecné soustavy sil v rovině n R y = F iy = y F 3 + F 4y F 5y i= R y =, , 98, 879 = 3, 49 kn R = Rx + Ry =, 44 + ( 3, 49) =, 7 kn tan α R = R y 3, 49 = = 0, 89 R x, 44 α R = 6, 7 Rp R =, , , 879 7, 7p R = 6, 8 p R = 0, 58 m R y r = 6, 8 3, 49r = 6, 8 r =, 9 m F 3 F 5 F R =,7 kn a α R = 6, r =,9 60 F

55 3 Obecná soustava sil v rovině Grafické řešení: a) výslednicová čára II F 3 F 5 R =,7 kn a α R = 6, F r =,9 60 I III F 4 3 VI IV V b) složková čára F ʹ = = R II 4ʹ = 5 ʹ = 3 F 5 α R = 6, 5ʹ = Rʹ I III VI R =,7 kn F 3 F 4 IV 3ʹ = 4 V O 54

56 3. Určení výslednice obecné soustavy sil v rovině Příklady k procvičení 3..A = 4 kn α = 60 F 3 =3 kn α 3 = 40 F 4 =6 kn F = 5 kn jednotky: mm 3..B = 4 kn α = F = 5 kn jednotky: mm 3..C = 8 kn F = 6 kn α = 30 8 jednotky: m 3..D F = 4 kn F 3 =6 kn α = 50 α 3 = 40 F 4 = kn 3 3 = 5 kn jednotky: m 55

57 3 Obecná soustava sil v rovině 3. Určení výslednice rovnoběžných sil v rovině Rovinná soustava rovnoběžných sil se liší od jiných rovinných svazků tím, že průsečík rovnoběžných sil je v nekonečnu, což logicky znamená, že výslednice takové soustavy je se silami rovnoběžná. I zde je nutné zavést si znaménkovou konvenci, proto si zavedeme souřadný systém x, y tak, že osa y je rovnoběžná se silami a všechny x-ové složky jsou tedy rovny nule. n F ix = 0 = R x = 0 = R = R y i= Pro řešení výslednice soustavy rovnoběžných sil platí stejná pravidla jako pro řešení obecné soustavy sil. Příklad 3.. Určete výslednici této soustavy rovnoběžných sil. F = 6 kn, = 4 kn, F 3 = 3 kn, F 4 = 6 kn. 3 a = 4 kn F 3 = 3 kn F = 6 kn F 4 = 6 kn jednotky: m Početní řešení: 4 R = R y = F iy = F y + y + F 3y + F 4y i= R = = 5 kn 56

58 3. Určení výslednice rovnoběžných sil v rovině M R = R r = 4 i= M i 4 F iy r i = F y r + y r + F 3y r 3 + F 4y r 4 + i= 5r = r = 3 r =, 6 m Momentový střed je vhodné (ale ne nezbytné) volit na jedné ze sil. Zakreslení výslednice 3 r =,6 F 3 a R = 5 kn F F 4 Grafické řešení: a) výslednicová čára III II 3 IV r =,6 V F 3 F I R = 5 kn F 4 57

59 3 Obecná soustava sil v rovině b) složková čára 3ʹ = 4 = R IV I ʹ = 3 III O R = 5 kn 4ʹ = Rʹ V II Příklad 3.. ʹ = Určete výslednici této soustavy rovnoběžných sil. F = 4 kn, = 3 kn, F 3 = kn, F 4 = 6 kn, F 5 = 3 kn. F 3 = kn 3 4 a = 3 kn F 5 = 3 kn F = 4 kn F 4 = 6 kn jednotky: m Početní řešení: 5 R = R y = F iy = F y + y + F 3y + F 4y + F 5y i= R = = 4 kn 58

60 3. Určení výslednice rovnoběžných sil v rovině M R = R r = 5 i= M i 4 F iy r i = F y r + y r + F 3y r 3 + F 4y r 4 + F 5y r 5 + i= 4r = r = 9, 75 m Zakreslení výslednice F ,75 a r = 9,75 F 5 F F 4 R = 4 kn 59

61 3 Obecná soustava sil v rovině Grafické řešení: a) výslednicová čára IV V III II F 3 VI 3 4 8,75 r = 9,75 F 5 I F F 4 R = 4 kn b) složková čára 5ʹ = Rʹ VI R = 4 kn 4ʹ = 5 V = R I O ʹ = 3ʹ = 4 II IV III ʹ = 3 60

62 3. Určení výslednice rovnoběžných sil v rovině Příklad 3..3 Určete výslednici této soustavy rovnoběžných sil. F = 3 kn, = 8 kn, F 3 = 5 kn, F 4 = kn. a F 3 = 5 kn 4 F 4 = kn F = 3 kn = 8 kn jednotky: m Početní řešení: 4 R = R y = F iy = F y + y + F 3y + F 4y i= R = = 5 kn M R = R r = 4 i= M i 4 F iy r i = F y r + y r + F 3y r 3 + F 4y r 4 i= 5r = r = 4, 8 m 6

63 3 Obecná soustava sil v rovině Zakreslení výslednice F 4 r = 4,8 4 a F R = 5 kn F 3 Grafické řešení: a) výslednicová čára r = 4,8 I V IV 4 III F 4 R = 5 kn F II F 3 6

64 3. Určení výslednice rovnoběžných sil v rovině b) složková čára = R I ʹ = II R = 5 kn 4ʹ = Rʹ 3ʹ = 4 V IV O III ʹ = 3 Příklady k procvičení 3..A 3 4 a F 3 = kn F = 3 kn F 4 = 4 kn = 5 kn jednotky: m 63

65 3 Obecná soustava sil v rovině 3..B a 3 F = 5 kn = 4 kn F 3 = 3 kn F 4 = 4 kn jednotky: m 3..C F 4 = 400 N F 3 = 800 N a 4 3 F = 500 N F 5 = 600 N = 700 N jednotky: m 64

66 3.3 Rovnováha soustavy rovnoběžných sil 3..D F 3 = 40 kn = 0 kn a F = 70 kn jednotky: m 3.3 Rovnováha soustavy rovnoběžných sil Aby byla jakákoliv soustava sil v rovnováze, musí být splněny podmínky rovnováhy (viz kapitola 3.). Právě pomocí těchto rovnic v případě početního řešení, nebo pomocí složkové čáry a výslednicového obrazce v případě grafického řešení, dáváme soustavu sil do rovnováhy. U grafické metody je základní nosnou myšlenkou, že jak složková, tak výslednicová čára musí být uzavřena. Příklad 3.3. Uveďte soustavu rovnoběžných sil do rovnováhy pomocí dvou sil V a a V b, jejichž poloha je dána. Určete jak jejich velikost, tak i jejich smysl. 65

67 3 Obecná soustava sil v rovině 3 4 F 3 = 4 kn V a F = 8 kn V b = 6 kn jednotky: m Početní řešení: Zvolíme si na síle V b momentový střed b a sestavíme momentovou podmínku rovnováhy k bodu b, ze které vypočítáme sílu V a. Sílu V a uvažujeme vždy kladnou, teprve až znaménko výsledku nám ukáže orientaci momentu, který síla V a vyvolává. Sílu V b nemusíme uvažovat, protože r b = 0. n M ib = 0 i= V a r a + F r + r + F 3 r 3 = 0 + V a = 0 5V a = 36 V a = 7, kn + Z předchozího výsledku vyplývá, že síla V a musí vyvolat kolem momentového středu b kladný moment, potom V a. Zvolíme si na síle V a momentový střed a a sestavíme momentovou podmínku rovnováhy k bodu a, ze které vypočítáme sílu V b. I zde platí, že neznámou sílu V b uvažujeme jako kladnou a teprve výsledné znaménko nám ukáže, zda moment, který síla V b vyvolává kolem bodu a, bude kladný nebo záporný. Tomu pak přizpůsobíme smysl síly. Ani v tomto případě nebudeme zahrnovat sílu V a do momentové podmínky, protože stejně platí r a = 0. 66

68 3.3 Rovnováha soustavy rovnoběžných sil n M ia = 0 i= F r + V b r b + r + F 3 r 3 = V b = 0 5V b = 4 V b =, 8 kn Zkouška n F i = 0 i= V a + F + V b + + F 3 = 0 7, 8 +, = 0 0 = 0 Zakreslení výsledků do zadání a b 3 4 V b =,8 kn F 3 F V a = 7, kn 67

69 3 Obecná soustava sil v rovině Grafické řešení: a) výslednicová čára V b =,8 kn IV 3 4 V III F 3 I V a = 7, kn II F 68

70 3.3 Rovnováha soustavy rovnoběžných sil b) složková čára = aʹ I V a = 7, kn bʹ = a V O V b =,8 kn ʹ = II IV 3ʹ = b III ʹ = 3 69

71 3 Obecná soustava sil v rovině Příklad F 3 = 3 kn F = 7 kn = 8 kn V a V b jednotky: m Početní řešení n M ib = 0 i= F r + V a r a + r + F 3 r 3 = V a = 0 7V a = 07 V a = 5, 86 kn n M ia = 0 i= F r + r + F 3 r 3 + V b r b = V b 7 = 0 V b = 3, 86 kn 70

72 3.3 Rovnováha soustavy rovnoběžných sil Zkouška n F i = 0 i= F + V a + + F 3 + V b = , , 86 = 0 0 = 0 Zakreslení do zadání 3 4 V b = 3,86 kn F 3 a b F V a = 5,86 kn 7

73 3 Obecná soustava sil v rovině Grafické řešení a) výslednicová čára 3 4 F 3 V b = 3,86 kn IV III II V F I V a = 5,86 kn 7

74 3.3 Rovnováha soustavy rovnoběžných sil b) složková čára = aʹ I V a = 5,86 kn ʹ = II O IV 3ʹ = b V b = 3,86 kn III V ʹ = 3 bʹ = a 73

75 3 Obecná soustava sil v rovině Příklad F = 3 kn 3 V a V b = 5 kn jednotky: m Početní řešení n M ib = 0 i= F r + V a r a + r = V a 5 = 0 V a = kn n M ia = 0 i= F r + V b r b + r = V b 5 3 = 0 V b = 4 kn Zkouška n F i = 0 i= F + + V a + V b = = 0 0 = 0 74

76 3.3 Rovnováha soustavy rovnoběžných sil Zakreslení do zadání: 3 F V a = kn V b = 4 kn a b 75

77 3 Obecná soustava sil v rovině Grafické řešení a) výslednicová čára F 3 V b = 4 kn V a = kn III II IV I 76

78 3.3 Rovnováha soustavy rovnoběžných sil b) složková čára ʹ = b III = aʹ I O II ʹ = V a = kn V b = 4 kn IV bʹ = a 77

79 3 Obecná soustava sil v rovině Příklady k procvičení Uveďte soustavu rovnoběžných sil do rovnováhy pomocí dvou sil V a a V b, jejichž poloha je dána. Určete jak jejich velikost, tak jejich smysl. 3.3.A F = 4 kn 3 3 V a = 6 kn V b F 3 = 8 kn jednotky: m 3.3.B 3 3 F = 5 kn V a = 8 kn F 3 = 4 kn V b jednotky: m 78

80 3.4 Rovnováha obecné soustavy sil v rovině 3.3.C F 4 = kn 3 3 V a = 4 kn F 3 = 6 kn V b F = 7 kn jednotky: m 3.3.D F 3 = 400 N 3 F = 600 N = 800 N V a V b F 4 = 500 N jednotky: m 3.4 Rovnováha obecné soustavy sil v rovině Princip řešení je stále stejný. Pokud má být soustava sil v rovnováze, je nutné, aby splňovala podmínky rovnováhy. 79

81 3 Obecná soustava sil v rovině Pro názornost si představme, že obecná soustava sil působí na nosníku, jehož osu si budeme schematicky znázorňovat vodorovnou čarou. Místa, kde působí síly, které dávají soustavu sil do rovnováhy, si představme jako místa podpor nosníku (např. stěny). Dohodněme se také na značení. Síly kolmé k ose nosníku budeme označovat V, síly působící v ose nosníku označíme N a síly v obecné poloze ponecháme označeny jako reakce R. Všechny síly budou mít vždy dolní index dle označení místa působení (podpory). Omezíme se pouze na početní řešení, které je rychlejší a přesnější. Příklad: Uveďte soustavu rovnoběžných sil do rovnováhy pomocí dvou sil, u kterých znáte buď místo působení nebo působiště i paprsek. Je dáno působiště a, působiště b a paprsek síly. Příklad 3.4. Zadání: F = 5 kn α = 30 a α = 5 = 8 kn b 3 4 jednotky: m Rozložení sil: F F y a y 5 b F x x 3 4 F x = 5 cos 50 = 3, 4 kn F y = 5 sin 50 = 3, 83 kn x = 8 cos 5 = 7, 5 kn y = 8 sin 5 = 3, 38 kn 80

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA I STATIKA Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

Obsah. 1 ÚVOD 2 1.1 Vektorové operace... 2 1.2 Moment síly k bodu a ose... 4 1.3 Statické ekvivalence silových soustav... 10 2 TĚŽIŠTĚ TĚLES 21

Obsah. 1 ÚVOD 2 1.1 Vektorové operace... 2 1.2 Moment síly k bodu a ose... 4 1.3 Statické ekvivalence silových soustav... 10 2 TĚŽIŠTĚ TĚLES 21 Obsah 1 ÚVOD 1.1 Vektorové operace................................... 1. Moment síly k bodu a ose.............................. 4 1.3 Statické ekvivalence silových soustav........................ 1 TĚŽIŠTĚ

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

Více

1.7.10 Střední příčky trojúhelníku

1.7.10 Střední příčky trojúhelníku 1710 Střední příčky trojúhelníku Předpoklady: Př 1: Narýsuj libovolný trojúhelník (zvol ho tak, aby se co nejvíce lišil od trojúhelníku, který narýsoval soused) Najdi středy všech stran S a, S b a S c

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

M - Planimetrie pro studijní obory

M - Planimetrie pro studijní obory M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

STATIKA TUHÝCH TĚLES

STATIKA TUHÝCH TĚLES VOŠ a SOŠ Roudnice nad Labem STATIKA TUHÝCH TĚLES Studijní obor: Dopravní prostředky Ing. Jan JINDRA 1.9.2011 Pro vnitřní potřebu školy 1 Tělesa volná: Určení síly: působiště, velikost, směr a smysl Přeložení

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé. 1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Nosníky

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pohybové šrouby Ing. Magdalena

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

-Zobrazí čísla a nulu na číselné ose

-Zobrazí čísla a nulu na číselné ose Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel

Více

Tvorba technická dokumentace

Tvorba technická dokumentace Tvorba technická dokumentace Základy zobrazování na technických výkresech Zobrazování na technických výkresech se provádí dle normy ČSN 01 3121. Promítací metoda - je soubor pravidel, pro dvourozměrné

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208 4.. Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 4, 48 Pedagogická poznámka: Tato kapitola nepřináší nic nového a nemá ekvivalent v klasických učebnicích. Cílem hodiny je uspořádat v hlavách

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Matematika a její aplikace. Matematika a její aplikace

Matematika a její aplikace. Matematika a její aplikace Oblast Předmět Období Časová dotace Místo realizace Charakteristika předmětu Průřezová témata Matematika a její aplikace Matematika a její aplikace 1. 9. ročník 1. ročník 4 hodiny týdně 2. 5. ročník 5

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 5. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace Využívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více