* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "* Modelování (zjednodušení a popis) tvaru konstrukce. pruty"

Transkript

1 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1

2 Prut: konstrukční prvek, jehož jeden roměr (délka) převládá nad ostatními. h l >> h l >> b l b Průře: příčný ře prutu Střednice: čára tvořená těžišti průřeů prutu Pruty budeme modelovat jejich střednicí. 2

3 Prostorový prut - střednice je prostorová křivka nebo lomená čára Rovinný prut - střednice je rovinná křivka nebo lomená čára Primatický prut - přímý prut konstantního průřeu osa Obecný prut - akřivený, proměnného průřeu 3

4 Nosník = podepřený prut Př: Prostý nosník Prostý nosník s převislými konci Konolový nosník, konola, krakorec 4

5 Nosníky přímé obloukové lomené prutové soustavy 5

6 2.2 Vnitřní síly prutu L Prut v rovnováe (reakce a atížení... rovnovážná soustava sil) P rodělíme fiktivním řeem na 2 části L a P by každá část byla v rovnováe, musí v řeu působit síly a momenty: F P, M P... účinek části P na L, uvádí část L do rovnováhy F L, M L... účinek části L na P, uvádí část P do rovnováhy M L kce a reakce: L M P F P F L P F P = -F L M P = -M L 6

7 V y F P Ve koumaném řeu avedeme lokální souřadný systém -y-; osa tečna ke střednici, y, normály M y y V N T=M M P M Vntiřní síly prutu Vektory F P a M P roložíme do složek: F P = N... normálová síla [N] F Py = V y... posouvající síla [N] F P = V... posouvající síla [N] M P = T = M... kroutící moment [Nm] M Py = M y... ohybový moment [Nm] M P = M... ohybový moment [Nm] 7

8 Kladná orientace vnitřních sil Záporně orientovaný průře (vidíme e směru áporné poloosy ) F L = -F P F P M L = -M P M y M y V y V N T T N V M L M y Kladně orientovaný průře (vidíme e směru kladné poloosy ) kladné vnitřní síly orientované shodně se souřadnicovými osami M P M F L y V y kladné vnitřní síly orientované opačně než souřadnicové osy 8

9 Rovinný prut atížený v rovině g g Pokud: 1) střednice - rovinná křivka 2) vnější síly (atížení a reakce) - rovnovážná soustava v rovině střednice jednodušení vnitřních sil: V y = 0 T = M = 0 podmínek rovnováhy oddělené části y Μ V N Vnitřní síly: N... normálová síla [N] V = V... posouvající síla [N] M y = M... ohybový moment [Nm] 9

10 Kladná orientace vnitřních sil g g M V N N V M Kladně orientovaný průře (vidíme e směru kladné poloosy ) Záporně orientovaný průře (vidíme e směru áporné poloosy ) 10

11 Příklad 1: Určete vnitřní síly v průřeu rovinného nosníku. 11

12 12

13 Příklad 2: Určete vnitřní síly v průřeu prostorového nosníku. 13

14 14

15 15

16 2.3 Sřednicový model rovinného prutu Pruty budeme modelovat jejich střednicí. 16

17 Zatížení prutu/nosníku Pruty modelujeme jejich střednicí veškeré síly působící na konstrukci (atížení i reakce) redukujeme ke střednici Příklady: h h 2 F h/2 h/2 h B osamělé síly/reakce v redukujeme k těžišti průřeu, ve kterém působí F h F F 2 v h B 17

18 f f f d m = f d spojité momentové atížení [Nm/m] 18

19 f f = f sinα f = f cosα d α f = f cosα f = f sinα m = f cosα d 19

20 F F F d 1 d 1 atížení působící v této oblasti redukujeme ke styčníku d 2 d 2 F F M 2 = F d 2 M 1 = F d 1 20

21 f F = f d 2 atížení působící v této oblasti redukujeme ke styčníku d 2 d 2 F = f d 2 M s =F 21

22 Orientace lokálního souřadnicového systému (rovinná kce.) osa... vždy tečná ke střednici prutu osa... preferujeme ve směru emské tíže (shora dolu) nebo leva doprava - pravotočivá soustava souřadnic někdy též * "spodní" vlákna (stranu) prutů onačujeme čárkovanou čarou 22

23 2.4 Výpočet vnitřních sil v daném průřeu prutu (rovinná složená sousava) Určete vnitřní síly v průřeu. F f 1 1) Prut vyjmeme e soustavy a určíme všechny vnější síly na něj působící (atížení a reakce) F F R1 f 2 h v B h B v 23

24 2) Prut rodělíme řeem na části L a P a do řeu avedeme nenámé vnitřní síly. h v F F R1 h v F L M V N N M V F R1 P B h B h B v B v 3) Pro výpočet vnitřních sil můžeme uvážit rovnováhu nebo ekvivalenci vnějších a vnitřních sil. 24

25 3a) Rovnováha: Vnitřní síly interpretujeme jako síly uvádějící do rovnováhy oddělenou část prutu. Vnitřní síly v řeu určíme podmínek rovnováhy všech sil působících na oddělenou část prutu L nebo P: h v F F R1 h v F L M V N N M V F R1 P Bv B h L: h, v, F, N, V, M... musí být v rovnováe Bv B h P: B h, B v, F R1, N, V, M... musí být v rovnováe * ť použijeme část L nebo P, vnitř. síly N, V, M musí vyjít stejně (akce a reakce) kontrola výsledku! 25

26 3b) Ekvivalence: Vnitřní síly interpretujeme jako síly vyjadřující účinek jedné oddělené části prutu na druhou. Vnitřní síly v řeu určíme podmínek ekvivalence všech sil působících na opačné straně průřeu: F F V M M N F R1 h h v L v N L P L V P B h h, v, F jsou ekvivalentní N, V, M působícím na P B v B h, B v, F R1 jsou ekvivalentní N, V, M působícím na L * ť použijeme část L nebo P, vnitř. síly N, V, M musí vyjít stejně (akce a reakce) kontrola výsledku! 26

27 Příklad: Vypočítejte vnitřní síly v řeech, B, C dané konstrukce. F 2 = 2 kn f = 1,5 kn/m B C F 1 = 8 kn (m) Reakce: (kn) 9 27

28 Průře : Výpočet rovnováhy oddělené části prutu "leva" N M V N + 5 = 0 N = 5kN 8 V = 0 V = 4 kn 8 4 M = 0 M = 0kNm (m, kn) 28

29 Průře : Výpočet rovnováhy oddělené části prutu "prava" V 2 1,5 4 4 N M 3 N = 0 N = 5kN 2 2 V + 4 = 0 V = 4 kn (m, kn) M = 0 M = 0kNm 29

30 Průře : Výpočet ekvivalence vnitřních sil a sil působících na oddělenou část prutu "leva" V 8 M N = 5kN N (m, kn) V = = 4kN M = = 0kNm Pon.: oproti výpočtu rovnováhy není třeba hledané vnitř síly převádět na druhou stranu rovnice... rychlejší výpočet 30

31 Průře B: Výpočet rovnováhy oddělené části prutu "leva" 2 B M B N B N = 0 N = 4 kn B B 8 8 V B V = 0 V = 3kN B B M = 0 M = 0kNm B B 5 (m, kn) 31

32 Průře B: Rovnováha ve styčníku V N V B 2 M B B N N B V = 0 N B = V = 4kN B VB + N + 2 = 0 VB = N 2 = 3kN M (m, kn) M M = 0 M = M = 0kNm B B 32

33 Průře C: 2 1,5 2 C M C N C V C (m, kn) 2 N = 0 N = 4 kn V = 0 V = 0kN C C M = 0 M = 3kNm C C C C 33

34 Průře C: (alternativní výpočet): N B V B 1,5 2 C M C N C M B 2 V C (m, kn) N N = 0 N = N = 4 kn C B C B V V + 3 = 0 V = V 3 = 0kN C B C B M M V = 0 M = 3kN C B B C 34

35 2.5 Vnitřní síly v průřeu vs. vnitřní síly v bodě střednice V bodech, kde se mění tvar střednice (a) stýká více prutů (e) působí osamělá síla či moment (b, c) je umístěna vaba (d) mohou mít vnitřní síly nespojitost. V takovýchto bodech je třeba vypočítat vnitřní síly ve všech přilehlých průřeech. a b c d e 35

36 Vi předchoí příklad: Určete vnitřní síly v bodě a. V bodě a leva průře V bodě a prava průře B 8 2 a M 8 N V 8 2 B M B V B N B (m, kn) N V M 5 = 5kN = 4 kn = 0kNm N V B M B 5 = 4 kn = 3kN B = 0kNm 36

37 Tento dokument je určen výhradně jako doplněk k přednáškám předmětu Stavební mechanika 2 pro studenty Stavební fakulty ČVUT v Prae. Dokument je průběžně doplňován, opravován a aktualiován a i přes veškerou snahu autora může obsahovat nepřesnosti a chyby. Datum poslední revie:

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02)

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) Požadavky pro písemné vypracování domácích cvičení cvičící: Vladimír Šána, B380 semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) 1 Docházka na cvičení Docházka na cvičení je dobrovolná a nebude

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

Schöck Isokorb typ W. Schöck Isokorb typ W. Schöck Isokorb typ W

Schöck Isokorb typ W. Schöck Isokorb typ W. Schöck Isokorb typ W Schöck Isokorb typ Schöck Isokorb typ Používá se u volně vyložených stěn. Přenáší záporné ohybové momenty a kladné posouvající síly. Navíc přenáší i vodorovné síly působící střídavě opačnými směry. 115

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Nosníky

Více

Projekt 3. Zastřešení sportovní haly založené na konceptu Leonardova mostu: statická analýza

Projekt 3. Zastřešení sportovní haly založené na konceptu Leonardova mostu: statická analýza Projekt 3 Zastřešení sportovní haly založené na konceptu Leonardova mostu: statická analýza Vypracovala: Bc. Karolína Mašková Vedoucí projektu: Doc. Ing. Jan Zeman, Ph.D. Konzultace: Ing. Ladislav Svoboda,

Více

Cvičebnice stavební mechaniky

Cvičebnice stavební mechaniky Cvičebnice stavební mechaniky Ing. Karla Labudová. vydání Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky. Obsah Síly působící v jednom paprsku 7. Dvě síly

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

A. 1 Skladba a použití nosníků

A. 1 Skladba a použití nosníků GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995-1-1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Výstavba nového objektu ZPS na LKKV. Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS)

Výstavba nového objektu ZPS na LKKV. Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS) Výstavba nového objektu ZPS na LKKV Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS) D.1.2 - STAVEBNĚ KONSTRUČKNÍ ŘEŠENÍ Statický posudek a technická zpráva

Více

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter RIBtec BEST výpočet a zadání zatížení sloupu korespondující s průběhem jeho vnitřních sil v globálním výpočetním modelu (FEM) nosné konstrukce Běžným pracovním postupem, zejména u prefabrikovaných betonových

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

PŘÍKLADY ŘEŠENÍ NOSNÍKŮ STATICKY NEURČITÝCH

PŘÍKLADY ŘEŠENÍ NOSNÍKŮ STATICKY NEURČITÝCH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Lukáš Vráblík, Vladimír Křístek 1. Úvod Jedním z nejzávažnějších faktorů ovlivňujících hlediska udržitelné výstavby mostů

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA

NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA BAKALÁŘSKÝ PROJEKT Ubytovací zařízení u jezera v Mostě Vypracoval: Ateliér: Konzultace: Paralelka: Vedoucí cvičení: Jan Harciník Bočan, Herman, Janota, Mackovič,

Více

http://www.tobrys.cz STATICKÝ VÝPOČET

http://www.tobrys.cz STATICKÝ VÝPOČET http://www.tobrys.cz STATICKÝ VÝPOČET REVITALIZACE CENTRA MČ PRAHA - SLIVENEC DA 2.2. PŘÍSTŘEŠEK MHD 08/2009 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY:

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

STATIKA TUHÝCH TĚLES

STATIKA TUHÝCH TĚLES VOŠ a SOŠ Roudnice nad Labem STATIKA TUHÝCH TĚLES Studijní obor: Dopravní prostředky Ing. Jan JINDRA 1.9.2011 Pro vnitřní potřebu školy 1 Tělesa volná: Určení síly: působiště, velikost, směr a smysl Přeložení

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pohybové šrouby Ing. Magdalena

Více

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling Objednavatel: M.T.A., spol. s r.o., Pod Pekárnami 7, 190 00 Praha 9 Zpracoval: Ing. Bohumil Koželouh, CSc. znalec v oboru

Více

10. Frézování. Frézováním obrábíme především rovinné nebo tvarové plochy nástrojem s více břity.

10. Frézování. Frézováním obrábíme především rovinné nebo tvarové plochy nástrojem s více břity. 10. Fréování Fréováním obrábíme především rovinné nebo tvarové plochy nástrojem s více břity. Princip réování: Při réování používáme vícebřité nástroje réy. Fréa koná hlavní řený pohyb otáčivý. Podle polohy

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING.

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING. 2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ SŠS Jihlava ING. SVOBODOVÁ JANA OBSAH 1. ZATÍŽENÍ 3 ŽELEZOBETON PRŮHYBEM / OHYBEM / NAMÁHANÉ PRVKY

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY: 3 2.2.1. Použité

Více

NEXIS 32 rel. 3.60 Samostatný betonový průřez

NEXIS 32 rel. 3.60 Samostatný betonový průřez SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Tvorba technické dokumentace

Tvorba technické dokumentace Tvorba technické dokumentace Požadavky na ozubená kola Rovnoměrný přenos otáček, požadavek stálosti převodového poměru. Minimalizace ztrát. Volba profilu boku zubu. Materiály ozubených kol Šedá a tvárná

Více

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků

Více

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa Strojírenské výpočty http://michal.kolesa.zde.cz michal.kolesa@seznam.cz Předmluva Publikace je určena jako pomocná kniha při konstrukčních cvičeních, ale v žádném případě nemá nahrazovat publikace typu

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

NEXIS 32 rel. 3.70 Betonové konstrukce referenční příručka

NEXIS 32 rel. 3.70 Betonové konstrukce referenční příručka SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet Stupeň dokumentace: DPS S-KON s.r.o. statika stavebních konstrukcí Ing.Vladimír ČERNOHORSKÝ Podnádražní 12/910 190 00 Praha 9 - Vysočany tel. 236 160 959 akázkové číslo: 12084-01 Datum revize: prosinec

Více

Stavební mechanika 1 - K132SM1 Structural mechanics

Stavební mechanika 1 - K132SM1 Structural mechanics Stavební mechanika 1 - K132SM1 Structural mechanics Přednášející Vít Šmilauer, Ing., Ph.D. katedra Mechaniky vit.smilauer@fsv.cvut.cz místnost D2034, konzultační hodiny Út 10:00 11:30 Literatura Kufner,

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA I STATIKA Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Schöck Isokorb typ D. Schöck Isokorb typ D. Schöck Isokorb typ D

Schöck Isokorb typ D. Schöck Isokorb typ D. Schöck Isokorb typ D Schöck Isokorb typ Schöck Isokorb typ Schöck Isokorb typ Používá se u ových desek pronikajících do stropních polí. Prvek přenáší kladné i záporné ohybové momenty a posouvající síly. 105 Schöck Isokorb

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

pracovní list BIOMECHANIKA 1 Běhy do schodů Potřebné vybavení: stopky (na mobilu), kalkulačka

pracovní list BIOMECHANIKA 1 Běhy do schodů Potřebné vybavení: stopky (na mobilu), kalkulačka BIOMECHANIKA 1 Běhy do schodů pracovní list Potřebné vybavení: stopky (na mobilu), kalkulačka 1. Vyberte ze skupiny nejtěžšího a nejlehčího žáka a zapište si jejich hmotnost. 2. Stopněte oběma čas, za

Více

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady:

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady: Předložený statický výpočet řeší založení objektu SO 206 most na přeložce silnice I/57 v km 13,806 přes trať ČD v km 236,880. Obsahem tohoto výpočtu jsou pilotové základy krajních opěr O1 a O6 a středních

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

IDEA StatiCa novinky

IDEA StatiCa novinky strana 1/22 IDEA StatiCa novinky IDEA StatiCa novinky verze 5 strana 2/22 IDEA StatiCa novinky IDEA StatiCa... 3 Natočení podpor... 3 Pružné podpory... 3 Únava a mimořádné návrhové situace... 4 Změny a

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

1. Molekulová stavba kapalin

1. Molekulová stavba kapalin 1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá

Více

Manuál. Návrh ocelových konstrukcí

Manuál. Návrh ocelových konstrukcí Manuál Návrh ocelových konstrukcí Návrh ocelových konstrukcí Obsah Úvod do posudků... 2 Parametry posudků dílce pro EC-ENV... 3 Parametry posudků dílce pro EC-EN... 4 Parametry posudků dílce pro NEN 6770-6771...

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving. ČSN EN ISO 9001 NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.cz PROLAMOVANÉ NOSNÍKY SMĚRNICE 11 č. S

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208 4.. Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 4, 48 Pedagogická poznámka: Tato kapitola nepřináší nic nového a nemá ekvivalent v klasických učebnicích. Cílem hodiny je uspořádat v hlavách

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

STANOVENÍ ZATÍŽITELNOSTI MOSTŮ PK navržených podle norem a předpisů platných před účinností EN

STANOVENÍ ZATÍŽITELNOSTI MOSTŮ PK navržených podle norem a předpisů platných před účinností EN Ministerstvo dopravy TP 200 ODBOR INFRASTRUKTURY STANOVENÍ ZATÍŽITELNOSTI MOSTŮ PK navržených podle norem a předpisů platných před účinností EN Technické podmínky Schváleno MD-OI čj. 1075/08-910-IPK/1

Více

Obsah. 1 ÚVOD 2 1.1 Vektorové operace... 2 1.2 Moment síly k bodu a ose... 4 1.3 Statické ekvivalence silových soustav... 10 2 TĚŽIŠTĚ TĚLES 21

Obsah. 1 ÚVOD 2 1.1 Vektorové operace... 2 1.2 Moment síly k bodu a ose... 4 1.3 Statické ekvivalence silových soustav... 10 2 TĚŽIŠTĚ TĚLES 21 Obsah 1 ÚVOD 1.1 Vektorové operace................................... 1. Moment síly k bodu a ose.............................. 4 1.3 Statické ekvivalence silových soustav........................ 1 TĚŽIŠTĚ

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické

Více

Letecké kompozitové konstrukce

Letecké kompozitové konstrukce Přehled konstrukčních schémat podle základních stavebních prvků letounu křídlo Trup Ocasní plochy Konstrukční řešení spojů a připojovacích bodů kompozitových konstrukcí 1 Konstrukce kompozitových křídel

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE + MP vazby 1. Obor přirozených čísel - používá čísla v oboru 0-20 k modelování reálných situací.- práce s manipulativy - počítá předměty v oboru 0-20, vytváří soubory

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více