Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia"

Transkript

1 Stavební statika, 1.ročník bakalářského studia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava 1

2 Tvar a podepření rovinného zakřiveného nosníku vrchol +x Složky reakcí z podmínek rovnováhy R ax ( x) k.x z = a +z symetrická geometrie oblouku rozpětí l ψ b f vzepětí tečna ke střednici prutu = derivace funkce = tg ψ (v každém bodě jiný směr) dz tgψ = = [ k. x ] =. k. x dx dx ψ dz R az R bz Tvar střednice: nejčastěji oblouk kvadratické paraboly, kružnice, paraboly 4 o, řetězovky. ( x) k.x z = z k = = x a a z x b b nesymetrická geometrie

3 Zatížení rovinně zakřiveného nosníku v rovinné úloze Druhy zatížení: svislá a vodorovná na jednotku délky svislá a vodorovná na jednotku délky vodorovného a svislého průmětu kolmé a tečné ke střednici. (a) (b) (c) (d) (e) q = q.cosψ závěsy mostovky sníh vlastní tíha (f) (g) (h) * p = q.sinψ p = n.cosψ * q = q.cosψ q = n.sinψ p = p.sinψ hydrostatický tlak, vítr Různé typy zatížení rovinně zakřiveného nosníku v rovinné úloze 3

4 Rovinně zakřivený nosník Žďákovský obloukový most z r.1965, délka 540 m, hlavní oblouk o rozpětí 330 m podpírá konstrukci mostovky ve výšce 50 m nad hladinou jezera Orlické přehrady. 4

5 Výpočet vnitřních sil v zadaném průřezu ψ Sklon tečny ke střednici nosníku ( x) k.x z = dx z z k = = ψ x x a a tgψ = b b dz = dx [ k. x ] =. k. x dz Pomocné vnitřní svislé S a horizontální H síly 5

6 Výpočet vnitřních sil v zadaném průřezu Rozklad S,H sil na složky rovnoběžné a kolmé k tečně S V N M tg ψ =.k.x Pozn: Není nutné počítat úhel ψ. Potřebné goniometrické funkce možno stanovit ze vztahů: cosψ = 1 1+ tg ψ H V S M N H ψ sinψ = N V tgψ 1+ tg ψ Síly S,H možno uvažovat dle znaménkové konvence v obr. vlevo, potom vždy platí: = H.cosψ + S.sinψ = H.sinψ + S.cosψ Nebo ve skutečných směrech S,H a řešit z podmínek rovnováhy dle příkladu 1 6

7 Příklad 1 řešení vnitřních sil pouze v zadaných bodech Bude součástí písemné zkoušky. Dáno: - symetrická geometrie, l = 6m, f = 5m x = 3 m, z = m - bod d, respektive x d =m Vzorce pro výpočet: cosψ = sinψ = ( ) 1 1+ tg ψ tgψ 1+ tg ψ q = 10kN / a a 5 ( x) k.x z = z k = = x a a z x b b tg ψ =.k.x m Úkol: V bodě d spočítat vnitřní síly Řešení: Viz dále Postup výpočtu: 1) Rovnice oblouku, souřadnice obou podpor ) Souřadnice působiště zatížení 3) Souřadnice zadaných bodů včetně hodnot goniometrických funkcí úhlu ψ v zadaných bodech 4) Výpočet reakcí (3+1 podmínky rovnováhy!!!) 5) Výpočet pomocných vnitřních sil: svislá S a horizontální H síly + ohybový moment M (kladná znaménková konvence shodná s H,V,M silami přímého prutu viz dále) 6) Rozklad S a H do směrů kolmých a rovnoběžných se střednici prutu v daném bodě 7) Výpočet vnitřních sil: V je součet kolmých složek S a H N je součet rovnoběžných složek S a H M je vyřešen již v 5) 7 8) Nutno dodržet znaménkovou konvenci vnitřních sil N,V,M ψ

8 Příklad 1 geometrie, reakce (bod 1-4 dle postupu řešení) x = 3m, z 5m, a a = ( x) k. x, z = k xb = 3 m, zb = 5m za zb = = = 0,555 x x a b tg ψ =.k.x xd = m zd = k. x d =, m nebo lépe: 1 cosψ = = 0, tg ψ sinψ = tgψ = 0,91 1+ tg ψ

9 Příklad 1 vnitřní síly v bodě d výpočet zprava (bod 5-8) N d = d d 39,5kN, V = 37,05kN, M = 118,056kNm

10 Příklad 1 vnitřní síly v bodě d výpočet zleva (bod 5-8) N d = d d 39,5kN, V = 37,05kN, M = 118,056kNm

11 Příklad 1 rovnováha rozděleného oblouku (ke kontrole) Podmínky rovnováhy levé části F ix = 0: Σ M i,d = 0: M + F iz = 0: Q + H = 0 H = 50kN d + ( 3 + xd ) Raz ( 0,5 f zd ) Q = 0 M d S Raz = 0 S = 0, 833kN Σ M i,b = 0: kontrola Podmínky rovnováhy pravé části F ix = 0: F iz = 0: Σ M i,d = 0: H Rbx = 0 H = 50kN S + Rbz = 0 S = 0, 833kN M d ( 3 xd ) Rbz ( 5 zd ) Rbx = 0 M d Σ M i,b = 0: kontrola

12 Příklad k samostatnému procvičení (návod viz samostatný soubor) Úkol: d V bodě c a d spočítat vnitřní síly N,V,M dle návodu v příkladu 1 Nápověda: V bodě d budou hodnoty horizontální síly H da, H db hodnoty N i V V bodě d zakreslíte pomyslný řez x: 1- těsně vlevo od bodu d (síla F působí v pravé části) v obou částech spočítáte hodnotu H da, výsledek vyjde v obou částech stejně - těsně vpravo od bodu d (síla F působí v levé části) v obou částech spočítáte hodnotu H ad, výsledek vyjde v obou částech stejně

13 Příklad 3 řešení vnitřních sil na celém nosníku Zadání a výpočet reakcí - pomocí podmínek rovnováhy Bude součástí ústní zkoušky. 1. F ix = 0: q. f Rax = 0 R = q. f = 1kN ax ( ) +x. Σ M i,a = 0: R ax +z R q. f bz = + R q. f. l bz. l = 0 =,40kN ( ) R az R bz 3. Σ M i,b = 0: 4. kontrola R az q. f = =,40kN. l ( ) F iz = 0: R az + R bz = 0 13

14 Příklad 3 řešení vnitřních sil na celém nosníku Vzepětí Geometrie prutu Tabulkový výpočet (Excel) ( x) k.x z = tg ψ =.k.x cosψ = sinψ = 0,00,00 4,00-5,00 4,00 3,4-4,00 1+ tg ψ -3,00 1 tgψ 1+ tg ψ -,00-1,00 Rozpětí 0,00 1,00,00,56 1,96 1,44 1,00 0,64 0,36 0,16 0,04 0,00 0,04 0,16 0,36 0,64 1,00 1,44 1,96,56 Geometrie oblouku 3,00 4,00 5,00 3,4 4,00 x z tg ψ ψ [rad] ψ [deg] cos ψ sin ψ -5,00 4,00-1, , , , , ,50 3,4-1, , ,169 0, , ,00,56-1, , , , , ,50 1,96-1, , , , , ,00 1,44-0, , , , ,6953 -,50 1,00-0, , , , , ,00 0,64-0, , , ,8471-0, ,50 0,36-0, , , , , ,00 0,16-0, , , ,9544-0, ,50 0,04-0, , , , , ,00 0,00 0, , , , , ,50 0,04 0, , , , , ,00 0,16 0, , , ,9544 0, ,50 0,36 0, , , , ,43731,00 0,64 0, , , ,8471 0,539054,50 1,00 0, , , , , ,00 1,44 0, , , , ,6953 3,50 1,96 1, , , , , ,00,56 1, , , , , ,50 3,4 1, , ,169 0, , ,00 4,00 1, , , , , ,00

15 Příklad 3 řešení vnitřních sil na celém nosníku N Výpočet vnitřních sil M tady směry S,H sil dle obr. H = H = R R ax ax S = R az ( f z) q. levá polovina q. f = 0 pravá polovina N = H.cosψ + S.sinψ V = H.sinψ + S.cosψ q R ax H f l R az R bz S V M H ψ N V S H [kn] S [kn] N [kn] V [kn] 1, , , , , , , , , , , , , , , , , , , , , , , , , ,400000, , , ,400000, , , , ,18865, , , ,497670, , , ,000000, , , ,379177, , , ,73146, , , ,038555, , , ,9379, , , , , , , , , , , , , , , , , , , , , , , , ,

16 Příklad 3 řešení vnitřních sil na celém nosníku Vykreslení vnitřních sil N, V síly Normálová síla 10,00 0,00-10,00-5,00-4,00-3,00 Normálová síla -,00-1,00 0,00 1,00,00 3,00 Rozpětí 4,00 5,00 8,40 7,5 6,6 5,71 4,78 3,84,91,01 1,19 0,50 0,00-0,38-0,73-1,04-1,9-1,50-1,66-1,79-1,89-1,97 -,04-5,00 1,00-8,90-6,61-4,00-4,57 -,79-3,00-1,6 0,00 Posouvající síla -,00 0,99 1,70-1,00,14,35 0,00,40,37 1,00,9,16,00,0 1,87 3,00 1,73 1,60 4,00 1,48 1,37 5,00 1,7 H [kn] S [kn] N [kn] V [kn] 1, , , , , , , , , , , , , , , , , , , , , , , , , ,400000, , , ,400000, , , , ,18865, , , ,497670, , , ,000000, , , ,379177, , , ,73146, , , ,038555, , , ,9379, , , , , , , , , , , , , , , , , , , , , , , , ,

17 Příklad 3 řešení vnitřních sil na celém nosníku Vykreslení vnitřních sil ohybové momenty M = R M = R Ohybový moment ax ax ( f z). R az l. l q. + x Ohybový moment ( f z) ( f z) R. + x q. f. z. az levá polovina 0,00 7,05 11,77 14,64 16,09 16,50 16,19 15,41 14,36 13,0 1,00 10,80 9,60 8,40 7,0 6,00 4,80 3,60,40 1,0 0,00-5,00-4,50-4,00-3,50-3,00 -,50 -,00-1,50-1,00-0,50 0,00 0,50 1,00 1,50,00,50 3,00 3,50 4,00 4,50 5,00 f pravá polovina -R az.(l/+x) +R ax.(f-z) -q/.(f-z) M [knm] 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,70000, , , , , , , , , q.f.(f/-z) 17

18 Klenbový účinek v trojkloubovém oblouku K jakémukoliv svislému zatížení působícímu na oblouk lze teoreticky najít takový tvar střednice oblouku, při němž zatížení vyvolá v oblouku jen záporné normálové síly (tlak), zatímco ohybové momenty a posouvající síly jsou v celém oblouku rovny nule. Výhoda: menší rozměry průřezu Klenbový účinek v trojkloubovém oblouku vznikne tehdy, je-li střednice oblouku (a) geometricky podobná křivce popisující průběh ohybových momentů (c) na prostém nosníku (b), který je vodorovným průmětem oblouku (a) a je zatížen týmž svislým zatížením (udaným na jednotku délky vodorovného průmětu) jako oblouk (a). Důkaz: využití principu superpozice: zat M = M + M M M H ( x) ( x) ( x) zat ( x) = Raz x q x / H ( x) = Rax ( f z) = Rax z (a) (b) (c) (d) (e) M M zat H moment od svislých sil (c.) moment od horizontálních sil (e)

19 Klenbový účinek v historických objektech Kamenný klenbový most

20 Ukázky trojkloubového oblouku Maloměřický most z roku 198, 3 oblouky o rozpětí 33 m s průřezem 1 m, mezilehlá mostovka, Brno

21 Trojkloubový rám a oblouk s táhlem U trojkloubového rámu nebo oblouku vznikají vodorovné složky reakcí. (Čím nižší oblouk, tím větší reakce) Zachycení je někdy obtížné oblouk bývá uložen na zdech nebo štíhlých sloupech. Řešení: použití táhla. Táhlo slouží k odstranění velkých vodorovných složek reakcí. Táhlo je jednonásobná vnitřní vazba proti vzájemnému posunu spojovaných bodů (přenáší pouze N síly).

22 Okruhy problémů k ústní části zkoušky Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly

23 Příklad k procvičení

24 Příklad k procvičení

25 Příklad k procvičení

26 Nápověda k samostatnému procvičení

27 7

28 8

29 9

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského stuia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katera stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

Téma 5 Lomený a zakřivený nosník

Téma 5 Lomený a zakřivený nosník Stavební statika, 1.ročník bakalářského studia Téma 5 Lomený a zakřivený nosník Rovinně lomený nosník v rovinné úloze Rovinně lomený nosník v příčné úloze Prostorově lomený nosník Katedra stavební mechaniky

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

Téma 6 Rovinné nosníkové soustavy

Téma 6 Rovinné nosníkové soustavy Stavební statika, 1.ročník bakalářského studia Téma 6 Rovinné nosníkové soustavy Spojitý nosník s vloženými klouby Trojkloubový rám a oblouk Trojkloubový rám a oblouk s táhlem Katedra stavební mechaniky

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

trojkloubový nosník bez táhla a s

trojkloubový nosník bez táhla a s Kapitola 10 Rovinné nosníkové soustavy: trojkloubový nosník bez táhla a s táhlem 10.1 Trojkloubový rám Trojkloubový rám se skládá ze dvou rovinně lomených nosníků v rovinné úloze s kloubovým spojením a

Více

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5. Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Vnitřní síly na nosnících Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW:

Více

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1). Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

Téma 8 Příčně zatížený rám a rošt

Téma 8 Příčně zatížený rám a rošt Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu

Více

Téma 1 Nosné lano. Statika stavebních konstrukcí I., 2.ročník bakalářského studia

Téma 1 Nosné lano. Statika stavebních konstrukcí I., 2.ročník bakalářského studia Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 1 Nosné lano Pojem nosného lana Obecné vlastnosti příčně zatíženého nosného lana Lano zatížené svislými bodovými silami (vláknový polygon)

Více

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc.

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc. Předmět: SM0 PRŮBĚH VNITŘNÍCH SIL M(), V(), N() NA ROVINNÉM ŠIKMÉM PRUTU pro. Ing. Michl POLÁK, CSc. Fkult stvení, ČVUT v Pre 004-014 PRŮBĚHY VNITŘNÍCH SIL M(), N(), V() NA ROVINNÉM ŠIKMÉM PRUTU: ZATÍŽENÍ

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2 3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut .13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Stavební mechanika přednáška, 10. dubna 2017

Stavební mechanika přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola

Více

VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA

VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Anežka Jurčíková, Martin Krejsa, Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA Vzdělávací pomůcka Ostrava

Více

Požadavky pro písemné vypracování domácích cvičení

Požadavky pro písemné vypracování domácích cvičení Požadavky pro písemné vypracování domácích cvičení (cvičící: Vladimír Šána, B380) 1. Docházka na cvičení Docházka na cvičení je dobrovolná a nebude na ní brán zřetel při udělování zápočtů. Naopak budu

Více

Autor: Vladimír Švehla

Autor: Vladimír Švehla Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta

Více

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO4 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Vnitřní síly v prutových konstrukcích

Vnitřní síly v prutových konstrukcích Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví 5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Téma 4 Výpočet přímého nosníku

Téma 4 Výpočet přímého nosníku Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

BO009 KOVOVÉ MOSTY 1 NÁVOD NA VÝPOČET VNITŘNÍCH SIL NA PODÉLNÝCH VÝZTUHÁCH ORTOTROPNÍ MOSTOVKY. AUTOR: Ing. MARTIN HORÁČEK, Ph.D.

BO009 KOVOVÉ MOSTY 1 NÁVOD NA VÝPOČET VNITŘNÍCH SIL NA PODÉLNÝCH VÝZTUHÁCH ORTOTROPNÍ MOSTOVKY. AUTOR: Ing. MARTIN HORÁČEK, Ph.D. BO009 KOVOVÉ MOSTY 1 NÁVOD NA VÝPOČET VNITŘNÍCH SIL NA PODÉLNÝCH VÝZTUHÁCH ORTOTROPNÍ MOSTOVKY AUTOR: Ing. MARTIN HORÁČEK, Ph.D. Obsah Stanovení pérové konstanty poddajné podpory... - 3-1.1 Princip stanovení

Více

BO004 KOVOVÉ KONSTRUKCE I

BO004 KOVOVÉ KONSTRUKCE I BO004 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ VYPRACOVAL: Ing. MARTIN HORÁČEK, Ph.D. AKADEMICKÝ ROK: 2018/2019 Obsah Dispoziční řešení... - 3 - Příhradová vaznice... - 4 - Příhradový vazník... - 6 - Spoje

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

Napětí v ohybu: Výpočet rozměrů nosníků zatížených spojitým zatížením.

Napětí v ohybu: Výpočet rozměrů nosníků zatížených spojitým zatížením. Číslo projektu CZ.1.07/ 1.1.36/ 02.0066 Autor Pavel Florík Předmět Mechanika Téma Namáhání součástí na ohyb Metodický pokyn výkladový text s ukázkami Napětí v ohybu: Výpočet rozměrů nosníků zatížených

Více

Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí)

Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí) Složené soustavy Vznikají spojením jednotlivých konstrukčních prvků Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí) Metoda: Konstrukci idealizujeme jako soustavu

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM

PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM 1. Úvod Tvorba fyzikálních modelů, tj. modelů skutečných konstrukcí v určeném měřítku, navazuje na práci dalších řešitelských týmů z Fakulty stavební Vysokého

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

Složené soustavy v rovině, stupně volnosti

Složené soustavy v rovině, stupně volnosti Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové

Více

STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618

STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618 STATIKA Vyšetřování reakcí soustav Úloha jednoduchá Ústav mechaniky a materiálů K618 1 Zadání Posuďte statickou určitost a vyšetřete reakce rovinné soustavy zadané dle obrázku: q 0 M Dáno: L = 2 m M =

Více

Návrh a posudek osově namáhaného nosníku podle obou MS

Návrh a posudek osově namáhaného nosníku podle obou MS Návrh a posudek osově namáhaného nosníku podle obou MS 1) Statický rozbor 2) Dobře pochopit zadání definovat, v jakých hodnotách počítat (charakteristické x návrh.) 2) MSÚ nutný průřez dle MSÚ a) pevnost

Více

Téma 12, modely podloží

Téma 12, modely podloží Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení

Více

Návrh žebrové desky vystavené účinku požáru (řešený příklad)

Návrh žebrové desky vystavené účinku požáru (řešený příklad) Návrh žebrové desky vystavené účinku požáru (řešený příklad) Posuďte spřaženou desku v bednění z trapézového plechu s tloušťkou 1 mm podle obr.1. Deska je spojitá přes více polí, rozpětí každého pole je

Více

Téma 5 Rovinný rám. Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 5 Rovinný rám. Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Stvební mechnik,.ročník bklářského studi AST Tém 5 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit

Více

Prvky betonových konstrukcí BL01 5. přednáška

Prvky betonových konstrukcí BL01 5. přednáška Prvky betonových konstrukcí BL01 5. přednáška Dimenzování průřezů namáhaných posouvající silou. Chování a modelování prvků před a po vzniku trhlin, způsob porušení. Prvky bez smykové výztuže. Prvky se

Více

Téma 7 Rovinný kloubový příhradový nosník

Téma 7 Rovinný kloubový příhradový nosník Stavební statika,.ročník bakalářského studia Téma 7 Rovinný kloubový příhradový nosník Obecná a zjednodušená styčníková metoda Průsečná metoda Mimostyčníkové zatížení Katedra stavební mechaniky Fakulta

Více

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty Obsah Dimenzování křivého tenkého prutu zde Deformace v daném místě prutu zde Castiglianova věta zde Dimenzování křivého tenkého prutu Mějme obecný křivý prut z homogeního izotropního materiálu. Obrázek:

Více

LANGERŮV TRÁM MOST HOLŠTEJN

LANGERŮV TRÁM MOST HOLŠTEJN LANGERŮV TRÁM MOST HOLŠTEJN Ing. Jiří Španihel, Firesta - Fišer, rekonstrukce, stavby a.s. Konference STATIKA 2014, 11. a 12. června POPIS KONSTRUKCE Most pozemní komunikace přes propadání potoka Bílá

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

4. cvičení výpočet zatížení a vnitřních sil

4. cvičení výpočet zatížení a vnitřních sil 4. cvičení výpočet zatížení a vnitřních sil Výpočet zatížení stropní deska Skladbu podlahy a hodnotu užitného zatížení převezměte z 1. úlohy. Uvažujte tloušťku ŽB desky, kterou jste sami navrhli ve 3.

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní

při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní prvek, stádium II dříve vznikají trhliny ohybové a

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr)

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr) Šikmý nosník Šikmý nosník rovnoměrné spojité ztížení ztížení kolmé ke střednii prutu (vítr) q h - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku prutu (vlstní tíh) - ztížení svislé

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02)

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) Požadavky pro písemné vypracování domácích cvičení cvičící: Vladimír Šána, B380 semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) 1 Docházka na cvičení Docházka na cvičení je dobrovolná a nebude

Více

Problematika navrhování železobetonových prvků a ocelových styčníků a jejich posuzování ČKAIT semináře 2017

Problematika navrhování železobetonových prvků a ocelových styčníků a jejich posuzování ČKAIT semináře 2017 IDEA StatiCa Problematika navrhování železobetonových prvků a ocelových styčníků a jejich posuzování ČKAIT semináře 2017 Praktické použití programu IDEA StatiCa pro návrh betonových prvků Složitější případy

Více

Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,

Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního

Více

K výsečovým souřadnicím

K výsečovým souřadnicím 3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové

Více

Téma 7 Smyková napětí v ohýbaných nosnících

Téma 7 Smyková napětí v ohýbaných nosnících Pružnost a plasticita,.ročník bakalářského studia Téma 7 Smková napětí v ohýbaných nosnících Základní vtah a předpoklad řešení Výpočet smkového napětí vbraných průřeů Dimenování nosníků namáhaných na smk

Více

Výpočet vnitřních sil na kruhovém ostění

Výpočet vnitřních sil na kruhovém ostění Výpočet vnitřních sil na kruhovém ostění Výpočet dle metody Zurabova-Bugajevové Metoda Zubarova-Bugajevové patří k metodám stanovení vnitřních sil na pružném ostění s předurčenou křivkou pasivního odporu.

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

předběžný statický výpočet

předběžný statický výpočet předběžný statický výpočet (část: betonové konstrukce) KOMUNITNÍ CENTRUM MATKY TEREZY V PRAZE . Základní informace.. Materiály.. Schéma konstrukce. Zatížení.. Vodorovné konstrukc.. Svislé konstrukce 4.

Více

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední

Více

2. kapitola. Co jsou to vnitřní síly, jakými způsoby se dají určit, to vše jsme se naučili v první kapitole.

2. kapitola. Co jsou to vnitřní síly, jakými způsoby se dají určit, to vše jsme se naučili v první kapitole. 2. kapitola Stavební mechanika 2 Janek Faltýnek SI J (43) Průběhy vnitřních sil Teoretická část: V tomto příkladu máme za úkol vyšetřit průběhy vnitřních sil na rovinné konstrukci zatížené libovolným spojitým

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

STATIKA STAVEBNÍCH KONSTRUKCÍ I

STATIKA STAVEBNÍCH KONSTRUKCÍ I VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka

Více

Normálová napětí v prutech namáhaných na ohyb

Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

Některá klimatická zatížení

Některá klimatická zatížení Některá klimatická zatížení 5. cvičení Klimatické zatížení je nahodilé zatížení vyvolané meteorologickými jevy. Stanoví se podle nejnepříznivějších hodnot mnohaletých měření, odpovídajících určitému zvolenému

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927) Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

2.9.2 PRŮSEČNÁ METODA

2.9.2 PRŮSEČNÁ METODA Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.9.2 PRŮSEČNÁ METODA Průsečná metoda řešení příhradové konstrukce vychází opět ze základních předpokladů statiky

Více

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá. TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod.

Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod. Výpočet spojovacích prostředků a spojů (Prostý smyk) Průřez je namáhán na prostý smyk: působí-li na něj vnější síly, jejichž účinek lze ekvivalentně nahradit jedinou posouvající silou T v rovině průřezu

Více

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova

Více