Podmínky k získání zápočtu

Rozměr: px
Začít zobrazení ze stránky:

Download "Podmínky k získání zápočtu"

Transkript

1 Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné termíny - mimo hodiny cvičení!). Písemky musí být k zápočtu uznány!!! Příklady s individuálním zadáním (programy) 3 programy bez bodového hodnocení. Nutné k získání zápočtu!

2 Datum Učivo Testy Náplň cvičení Přímková a rovinná soustava sil: rovinný svazek sil, statický moment síly k bodu, dvojice sil v rovině, obecná rovinná soustava sil, rovinná soustava rovnoběžných sil Nosné stavební konstrukce: idealizace, vnější vazby, silové zatížení prutů, složky reakcí ve vnějších vazbách Výpočet přímého nosníku I: vnitřní síly přímého nosníku bodové zatížení Výpočet přímého nosníku III: vnitřní síly přímého šikmého nosníku, šikmé podepření T1 soustava sil (-3 body) T2 výpočet reakcí (-2 body) Výpočet přímého nosníku II: vnitřní síly přímého nosníku spojité zatížení T3 vnitřní síly přímý nosník (-2 b.) T4 vnitřní síly přímý nosník (-2 b.) Lomený nosník v rovině: pravoúhle lomený nosník P1 lomený nosník T5 vykreslování vnitřních sil bez zadaných hodnot (-3 body) Lomený nosník v rovině: lomený nosník se šikmými pruty T6 lomený nosník (5b.povinný) Zakřivený nosník v rovině: rovinný oblouk T7 vnitřní síly šikmý nosník (-3b.) ovinné nosníkové soustavy: spojitý nosník s vloženými klouby Gerberův nosník P2 Gerberův nosník ovinné nosníkové soustavy: trojkloubový rám a oblouk, trojkloubový rám a oblouk s táhlem T8 Gerberův nosník (5b.povinný) ovinný kloubový příhradový nosník: zjednodušená styčníková metoda, průsečná metoda P3 příhradový nosník T9 trojkloubový rám (s táhlem i bez táhla) (-2 body) Průřezové charakteristiky: Těžiště rovinných čar, jednoduchých a složených rovinných obrazců Momenty setrvačnosti a deviační momenty, kvadratické momenty rovinných obrazců, složených průřezů, polární moment setrvačnosti T1 Příhradový nosník (5b.povinný) ezerva písemky, opakování T11 průřez. charakteristiky (-3 b.)

3 PŘÍMKOVÁ A OVINNÁ SOUSTAVA SIL

4 Souřadný systém

5 Síla P z A P + + z

6 1) Přímková úloha síla určena jen působištěm a velikostí (kladná, pokud je shodný se em osy) kluzný X vázaný vektor Úlohy: výslednice ; rovnováha soustavy P 1 P 2 P 3 a 1 a 1 a 1 +

7 2) ovinný svazek sil ϕ P 2 Aiom o rovnoběžníku sil: Síla určena - a) P i, P iz b)p i, γ i Směrové úhly: α i (od osy ), γ i (od osy z) a P z,i γ i α i P,i + P 1 ϕ 2 ϕ 1 P 1 18 ϕ P 2 + z P i Postup při určování výslednice skládání sil

8 ozklad síly v rovině síla pod úhlem γ - (k ose z) až -18 až +18 z A γ P z P P γ + P P. sin γ z + z P z P. cos γ

9 3) Obecná (příp. rovnoběžná) rovinná soustava sil Výpočet statického síly P k počátku z r (kolmé rameno) P P z P z M P. r [Nm], [knm] (znaménko podle u otáčení okolo bodu) M P.z - P z. [Nm], [knm] (odvozeno pro I.kvadrant, platí obecně)

10 Statický moment dvojice sil Dvojice sil - rovnoběžné P - opačně orientované r - stejně velké Moment dvojice sil: M P.r [knm] P Moment je ke všem bodům v rovině stejný. d p n i 1 P i p i + m j 1 M j

11 Výslednice a rovnovážná síla Podmínky ekvivalence: (soustava sil je nahrazena) P i, výslednice, M, výsledný moment k počátku P i,z z M i, o Pi, zi Pi, z. i + M i. M, Podmínky rovnováhy: (soustava sil je zrušena) P i, Zrušíme účinek soustavy sil pomocí rovnovážných sil v ose V P i, z Zrušíme účinek soustavy sil pomocí rovnovážných sil v ose z z V z M i, o Zrušíme účinek soustavy sil pomocí rovnovážných momentů nebo momentů od rovnovážných síl M i, V rovině jsou 3 podmínky ekvivalence a 3 podmínky rovnováhy.

12 Příklad 1 Stanovte výslednici obecně působících sil v rovině: a) pomocí, z, M b) pomocí, γ, M c) pomocí, γ, ramene r F 1 2kN, 1 3m, z 1-3m, γ 1 1, F 2 4kN, 2-2m, z 2 1m, γ 2 2.

13 Postup: a) pomocí, z, M F i, z F i,z 33,377 kn 34,115 kn M F i, z i - F i,z i 4,292 knm M z

14 Postup: b) pomocí, γ, M z výslednice 47,727 kn M γ sinγ / (cosγ z /) γ 44,37 z M 4,292 knm (viz a)

15 Postup: c) pomocí, γ, ramene r výslednice 47,727 kn γ 44,37 r M.r z r M /,844 m

16 Příklad 1a U předešlého příkladu zrušte účinek obecné soustavy sil. ovnovážnou sílu (V) vyjádřete pomoci složek síly a. Podmínky rovnováhy: z P i, Zrušíme účinek soustavy sil pomocí rovnovážné sily v ose P i, z Zrušíme účinek soustavy sil pomocí rovnovážné sily v ose z M M i, o Zrušíme účinek soustavy sil pomocí rovnovážného Pi, F1, + F2, + Pi,z F1,z + F2,z + z M ( ) F + F + M i, o F1, z1 + F2, z2 1, z 1 2, z 2 V V z M V z M 33,38kN 34,12kN 4,2kNm

17 Příklad 2 Určete výslednici a rovnovážnou sílu V () rovinného svazku sil. F1 5, kn; F2 3, kn; F3 2, kn; F4 4, kn γ ; γ 2 21 ; γ ; γ 4 6 F2 F1 F3 γ 1 γ 3 γ 2 γ 4 F4 Výsledky: V 4,977kN γ 123,649 γ γ V 33,649

18 ovinná soustava rovnoběžných sil Příklad 3 P 3 P 1 5kN, P 2 18kN, γ 1 γ 3, γ 2 18 (síly jsou rovnoběžné s osou z) 1 2m, 2 6m, 3 7m (z-ové souřadnice ) a) nahraďte soustavu sil jedinou silou (výslednicí) procházející počátkem a momentem b) nahraďte soustavu sil pouze jedinou silou a určete její polohu vzhledem k počátku c) určete výslednici a její polohu vzhledem k síle P 1 d) určete rovnovážnou sílu ( zruší účinek soustavy sil) a její polohu vzhledem k počátku

19 Příklad 3 P 3 P 1 5kN, P 2 18kN, γ 1 γ 3, γ 2 18 (síly jsou rovnoběžné s osou z) 1 2m, 2 6m, 3 7m (z-ové souřadnice ) P 2 + P 1 P z

20 Příklad 3 P 3 P 1 5kN, P 2 18kN, γ 1 γ 3, γ 2 18 (síly jsou rovnoběžné s osou z) 1 2m, 2 6m, 3 7m (z-ové souřadnice ) a) nahraďte soustavu sil jedinou silou (výslednicí ) procházející počátkem a momentem Podmínky ekvivalence: P i, P i,z z M 63kNm 8kN + M o P i,.z i P i,z. i + z

21 Příklad 3 P 3 P 1 5kN, P 2 18kN, γ 1 γ 3, γ 2 18 (síly jsou rovnoběžné s osou z) 1 2m, 2 6m, 3 7m (z-ové souřadnice ) b) nahraďte soustavu sil pouze jedinou silou a určete její polohu vzhledem k počátku 8kN r 7,875 m 8kN + M 63kNm z + z

22 Příklad 3 P 3 P 1 5kN, P 2 18kN, γ 1 γ 3, γ 2 18 (síly jsou rovnoběžné s osou z) 1 2m, 2 6m, 3 7m (z-ové souřadnice ) c) určete výslednici a její polohu vzhledem k síle P 1 r 1 5,875 m Varignonova věta: P 2 8kN.r 1 P. r i i P 1 P r1 5, 875m 8 + z 2 4 1

23 Příklad 3 P 3 P 1 5kN, P 2 18kN, γ 1 γ 3, γ 2 18 (síly jsou rovnoběžné s osou z) 1 2m, 2 6m, 3 7m (z-ové souřadnice ) d) určete rovnovážnou sílu (V) ( zruší účinek soustavy sil) a její polohu vzhledem k počátku P 2 Podmínky rovnováhy: Pi, + + M i P i, z + z, Pi,. zi ( Pi, z. i + z. r ) P 1 P 3 r 7,875 m kN Pozor na znaménka!!! Místo dosazení do rovnice lze počítat podle u působení síly. + z

24 Obecná rovinná soustava sil Příklad 4 - DÚ P 1 36kN, P 2 15kN, P 3 22kN; γ 1 27, γ 2 18, γ ,5m, z 1-1,5m; 2-2,5m, z 2 4,m; 3 3,m, z 3 4,8m a) nahraďte soustavu sil jedinou silou (výslednicí) a určete její polohu vzhledem k počátku (, γ, r) b) určete rovnovážnou sílu ( zruší účinek soustavy sil) a její polohu vzhledem k počátku ( (V),, r) Výsledky: 42,244 kn r 2,993 m γ 216,285 γ V 36,285 γ P 1 P 2 γ γ 1 γ 2 P 3 r γ 3 γ γ

25 Obecná rovinná soustava sil Příklad 5 - DÚ P 1 1kN, P 2 2kN, M -5kNm (statický moment dvojice sil) 1 2m, z 1-1m, γ 1 3 ; 2 2m, z 2 2m, γ a) nahraďte soustavu sil jedinou silou (výslednicí) a určete její polohu vzhledem k počátku (, γ, r) b) určete rovnovážnou sílu ( zruší účinek soustavy sil) a její polohu vzhledem k počátku ( (V),, r) γ M i, o Pi, zi Pi, z. i + M i Výsledky: 19,911 kn r 1,469 m γ 15,981 γ V 285,981 γ. M, M r γ 1 γ P 1 P 2 γ 2 γ

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel STAVEBNÍ STATIKA Ing. Petr Konečný, Ph.D. LPH 47/3 tel. 59 732 1394 petr.konecny@vsb.c http://fast1.vsb.c/konecny roklad síly v rovině síla pod úhlem γ - (k ose ) až -18 až +18 x A γ P P P x γ + x P x

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA

VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Anežka Jurčíková, Martin Krejsa, Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA Vzdělávací pomůcka Ostrava

Více

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 5 Obsah P řed m lu va 11 P o u žitá sym b o lik a 13 I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 15 1. Úvodní č á s t 17 I. I. Vědní obor mechanika..... 17 1.2. Stavební mechanika a je

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5. Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou

Více

Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč.

Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. 1. přednáška Úvod & Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 22. února 2016 Konzultační hodiny Ing. Miroslav Vokáč, Ph.D. Kloknerův ústav, ČVUT v Praze Šolínova 7 166 08

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

trojkloubový nosník bez táhla a s

trojkloubový nosník bez táhla a s Kapitola 10 Rovinné nosníkové soustavy: trojkloubový nosník bez táhla a s táhlem 10.1 Trojkloubový rám Trojkloubový rám se skládá ze dvou rovinně lomených nosníků v rovinné úloze s kloubovým spojením a

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17. Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma

Více

2.5 Rovnováha rovinné soustavy sil

2.5 Rovnováha rovinné soustavy sil Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice

Více

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter

Více

Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan Vyčichl, Ph.D.

Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan Vyčichl, Ph.D. Statika (18SAT) letní semestr 2016/2017 přednášky: Ing. Daniel Kytýř, Ph.D. cvičení: Ing. Tomáš Doktor, Ing. Petr Koudelka, Ing. Nela Krčmářová, Ing. Jitka Řezníčková, CSc., Ing. Jan Šleichrt, Ing. Jan

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2 3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.

Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč. 1. cvičení Svazek sil & tlak Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 14. února 2018 do soustav sil Síla je vektor y tuhé těleso F & tlak působiště paprsek [0,0] α A[x A,y

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc.

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc. Předmět: SM0 PRŮBĚH VNITŘNÍCH SIL M(), V(), N() NA ROVINNÉM ŠIKMÉM PRUTU pro. Ing. Michl POLÁK, CSc. Fkult stvení, ČVUT v Pre 004-014 PRŮBĚHY VNITŘNÍCH SIL M(), N(), V() NA ROVINNÉM ŠIKMÉM PRUTU: ZATÍŽENÍ

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1). Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Základní pojmy Přímková a rovinná soustava sil

Základní pojmy Přímková a rovinná soustava sil Stavební statka, 1.ročník bakalářského studa Základní pojmy římková a rovnná soustava sl Základní pojmy římková soustava sl ovnný svaek sl Statcký moment síly k bodu a dvojce sl v rovně Obecná rovnná soustava

Více

Vnitřní síly v prutových konstrukcích

Vnitřní síly v prutových konstrukcích Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE ohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. m [00] +x volný hmotný od v rovině: n v =2 (posun

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

Téma 8 Příčně zatížený rám a rošt

Téma 8 Příčně zatížený rám a rošt Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu

Více

Moment síly výpočet

Moment síly výpočet Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.2.3.2 Moment síly výpočet Moment síly je definován jako součin síly a kolmé vzdálenosti osy síly od daného

Více

5. Prutové soustavy /příhradové nosníky/

5. Prutové soustavy /příhradové nosníky/ PŠ a VOŠ KLDNO MECHNIK I. - TTIK. Prutové soustavy /příhradové nosníky/ - nosné konstrukce mostů, jeřábů, stožárů, střech, letadel apod. - skládají se z prutů spojených nýty, šrouby nebo svary v kloubech

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

6. Statika rovnováha vázaného tělesa

6. Statika rovnováha vázaného tělesa 6. Statika rovnováha vázaného tělesa 6.1 Rovnováha vázaného tělesa Těleso je vystaveno působení vnějších sil akčních, kterými mohou být osamělé síly, spojité zatížení a momenty silových dvojic. Akční síly

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Cvičebnice stavební mechaniky

Cvičebnice stavební mechaniky Cvičebnice stavební mechaniky Ing. Karla Labudová. vydání Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky. Obsah Síly působící v jednom paprsku 7. Dvě síly

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského studia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např.

Vybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např. : 4 2 R 1 1 R 2 0,8 R 3 : 8 0 R 1 1 R 2 0,8 R 3 : 2 1 R 1 2 R 2 0 R 3 [2 1 0,8 ] 0 1 0,8 1 2 0 A Vbrané metod řešení soustav rovnic Podmínk rovnováh či ekvivalence vedou často na soustavu rovnic, např.

Více

Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy

Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky Základní pojmy Pojem hmota, základní formy existence (atributy) hmoty Čím se liší pojmy hmota a hmotnost Axiomy statiky Mechanický

Více

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8 Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

F - Mechanika tuhého tělesa

F - Mechanika tuhého tělesa F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném

Více

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. 7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

2.4 Výslednice rovinné soustavy sil

2.4 Výslednice rovinné soustavy sil Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.4 Výslednice rovinné soustavy sil Při skládání sil v rovinné soustavě zpravidla definované rovinou X-0-Y

Více

Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava

Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava Stavební statika, 1.ročník bakalářského studia Stavební statika Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava

Více

STAVEBNÍ STATIKA. Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova

STAVEBNÍ STATIKA. Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova STAVEBNÍ STATIKA Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova Požadavky pro udlení zápotu zápoet z pedmtu Matematika I minimáln 70% aktivní úast na cviení prokázání znalostí procviované látky

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

1. Úvod do pružnosti a pevnosti

1. Úvod do pružnosti a pevnosti 1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků

Více

Petr Kopelec. Elektronická cvičebnice. Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic

Petr Kopelec. Elektronická cvičebnice. Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic Elektronická cvičebnice Petr Kopelec Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Základní úlohy statiky... 3 2 Určení síly v rovině...

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02)

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) Požadavky pro písemné vypracování domácích cvičení cvičící: Vladimír Šána, B380 semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) 1 Docházka na cvičení Docházka na cvičení je dobrovolná a nebude

Více

Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí)

Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí) Složené soustavy Vznikají spojením jednotlivých konstrukčních prvků Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí) Metoda: Konstrukci idealizujeme jako soustavu

Více

α = 210 A x =... kn A y =... kn A M =... knm

α = 210 A x =... kn A y =... kn A M =... knm Vzorový příklad k 1. kontrolnímu testu Konzola Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A M A y y q = kn/m M = - 5kNm A α B c a b d F = 10 kn 1 1 3,5,5 L = 10 x α = 10 A

Více

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut .13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =

Více

BIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly

BIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly BIOMECHANIKA 3,Geometrie lidského těla, těžiště, stabilita, moment síly Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. TĚŽIŠTĚ TĚLESA Tuhé těleso je složeno z velkého

Více

A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10

A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10 Vzorový příklad k 1. kontrolnímu testu Prostý nosník Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A y y q = kn/m M = 5kNm F = 10 kn A c a b d 1 1 3,5,5 L = 10 α B B y x α = 30

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Statika 2. Miroslav Vokáč 6. ledna ČVUT v Praze, Fakulta architektury. Statika 2. M. Vokáč. Grafické metody statiky

Statika 2. Miroslav Vokáč 6. ledna ČVUT v Praze, Fakulta architektury. Statika 2. M. Vokáč. Grafické metody statiky 7. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 6. ledna 2016 Síly se v měřítku vynáší do součtové čáry (diagram vpravo). Součtové podmínky rovnováhy jsou splněny,

Více

2.9.2 PRŮSEČNÁ METODA

2.9.2 PRŮSEČNÁ METODA Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.9.2 PRŮSEČNÁ METODA Průsečná metoda řešení příhradové konstrukce vychází opět ze základních předpokladů statiky

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví 5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

K výsečovým souřadnicím

K výsečovým souřadnicím 3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové

Více

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

Rámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016

Rámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016 Rámové konstrukce Obsah princip působení a vlastnosti rámové konstrukce statická a tvarová řešení optimalizace tvaru rámu zachycení vodorovných sil stabilita rámu prostorová tuhost Uspořádání a prvky rámové

Více

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze 4.5 eakce staticky určitých konstrukcí Úloha: posoudit statickou určitost / navrhnout podepření konstrukce jistit jakými silami jsou namáhanéčásti konstrukce, jakými silami působí konstrukce na áklady

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stavební mechanika 1 (K132SM01) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz http://mech.fsv.cvut.cz/~leps/teaching/index.html Organizace předmětu

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

Shodná zobrazení v rovině

Shodná zobrazení v rovině Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech

Více

Požadavky pro písemné vypracování domácích cvičení

Požadavky pro písemné vypracování domácích cvičení Požadavky pro písemné vypracování domácích cvičení (cvičící: Vladimír Šána, B380) 1. Docházka na cvičení Docházka na cvičení je dobrovolná a nebude na ní brán zřetel při udělování zápočtů. Naopak budu

Více

STATIKA Fakulta strojní, prezenční forma, středisko Šumperk

STATIKA Fakulta strojní, prezenční forma, středisko Šumperk STATIKA 2013 Fakulta strojní, prezenční forma, středisko Šumperk Př. 1. Určete výslednici silové soustavy se společným působištěm (její velikost a směr). Př. 2. Určete výslednici silové soustavy se společným

Více

6. MECHANIKA TUHÉHO TĚLESA

6. MECHANIKA TUHÉHO TĚLESA 6. MECHANIKA TUHÉHO TĚLESA 6.1. ZÁKLADNÍ VLASTNOSTI A POJMY Tuhé těleso: Tuhé těleso je fyzikální model tělesa u kterého uvažujeme s jeho.. a. Zanedbáváme.. Pohyb tuhého tělesa: 1). Při posuvném pohybu

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Střední průmyslová škola strojírenská a azyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky CZ.1.07/1.5.00/34.1003

Více

ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ

ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 10. ČERVNA 2012 Název zpracovaného celku: ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště

Více

Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D

Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz Organizace předtermínu a N & O zápočtových testů ze SM02 Předtermín

Více