Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury."

Transkript

1 reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč ČVUT v Praze, Fakulta architektury 21. března 2016

2 Dřevěný trámový strop - Anežský klášter reálných trám - 1x stat. neurčitá kce průvlak - stat. určitá kce

3 Lávka přes Kunratický potok u soutoku s Vltavou reálných staticky určitá

4 Železniční most na Výtoni reálných staticky určitá Z tvaru ocelových ložisek vznikly značky pro pevný a posuvný kloub. Konstrukce je prostě podepřená, tzn. staticky určitá, proto reakce určíme z podmínek rovnováhy. Samotná příhradová soustava je násobná soustava, která je staticky neurčitá. Osové síly v prutech lze určit z podmínek rovnováhy doplněné o tzv. přetvárné podmínky.

5 Pevný a posuvný kloub prostý a spojitý nosník reálných Detail uložení závisí na velikosti posunu a natočení, tj. závisí na rozpětí.

6 Hlávkův most západní pohled reálných staticky určitá

7 Hlávkův most východní pohled reálných 3x staticky neurčitá

8 Čechův most reálných 1x staticky neurčitá

9 Oblouk s táhlem - Letohrádek královny Anny reálných staticky určitá

10 Železniční most v Holešovicích reálných 1x staticky neurčitá

11 Štefánikův most reálných Výrazně štíhlé stěny působí jako kyvné stojky. Staticky neurčitá soustava.

12 Obloukový most s dolní mostovkou reálných Staticky neurčitá soustava prostě podepřená.

13 Tuhé těleso je hmotný útvar, který se nedeformuje. V rovině je hmotným tuhým objektem: Hmotný bod Tuhá deska Hmotné objekty mohou být: Volné nejsou ve svém pohybu omezovány Vedené pohyb je částečně omezen Pevně podepřené pohyb je zcela znemožněn reálných Stupeň volnosti - vyjadřuje možnost objektu v daném směru se posunout nebo pootočit. Volný objekt má tolik stupňů volnosti, kolika nezávislými parametry je určena jeho poloha.

14 reálných Hmotný bod y u v x Přemístění hmotného bodu lze popsat pomocí 2 parametrů: Posun ve směru osy x: u Posun ve směru osy y: v Proto má hmotný bod 2 volnosti.

15 Tuhá deska y ϕ Přemístění tuhé desky lze popsat pomocí 3 parametrů: Posun ve směru osy x: u Posun ve směru osy y: v reálných v Natočením kolem osy z: ϕ Proto má tuhá deska 3 volnosti. u x Tyto 3 parametry pro popis přemístění je možné jednoznačně určit pro libovolný bod na desce, např. pro její těžiště.

16 reálných Stavební jsou ke svému okolí fixovány vnějšími vazbami, aby bylo zabráněno jejich přemístění. Vazby omezují volnost pohybu objektu, čímž odebírají objektu jeho stupně volnosti. Podle počtu stupňů volnosti, které odebírají hmotnému objektu, se vazby rozdělují na jednoduché, dvojné, trojné... Ve vazbách vznikají síly, které nazýváme reakce.

17 Pevný kloub - dvojná vazba - odebírá 2 volnosti reálných A x A x A y V pevném kloubu je zabráněno svislému i vodorovnému posunu (u = 0, v = 0). Natočení v pevném kloubu je umožněno. V pevném kloubu vzniká vodorovná složka A x i svislá složka A y reakce A. A y

18 Posuvný kloub - jednoduchá vazba - odebírá 1 volnosti reálných B Značka vnikla zjednodušením tvaru válečkového ložiska: V posuvném kloubu je zabráněno posunu kolmo na podtržení značky posuvného kloubu. Je umožněn posun ve směru podtržení značky posuvného kloubu. Natočení v posuvném kloubu je umožněno. V posuvném kloubu vzniká reakce B, která má směr kolmý na podtržení značky posuvného kloubu. Je ve směru posunu, kterému je zabráněno.

19 reálných Kyvný prut - jednoduchá vazba - odebírá 1 volnosti Kyvný prut znemožní posun ve směru jeho střednice (osy). Natočení je umožněno. V kyvném prutu vzniká jedna reakce C, která leží v ose kyvného prutu. C

20 reálných Vetknutí - trojná vazba - odebírá 3 volnosti D x M D Ve vetknutí je zabráněno posunu ve vodorovném i svislém směru (u = 0, v = 0). Ve vetknutí je zabráněno pootočení (ϕ = 0). D y Ve vetknutí vzniká vodorovná složka reakce D x i svislá složka reakce D y a moment M D.

21 Určení statické určitosti ze stupňů volnosti n počet stupňů volnosti volného hmotného objektu v počet stupňů volnosti, které ruší připojené vazby s stupeň tvarové variability vázaného objektu Potom rozlišujeme : s = n v jestliže s = 0. Staticky neurčité jestliže s < 0. Podle s rozlišujeme 1krát, 2krát, 3krát,... staticky neurčité. Staticky přeurčité jestliže s > 0 (jedná se o objekt vedený nebo volný, který se může pohybovat) V případě staticky určitých i neurčitých konstrukcí se nesmí jednat o výjimkový případ. reálných

22 reálných Výpočet reakcí u staticky určité Pro tuhou desku je možné sestavit 3 lineárně nezávislé podmínky rovnováhy, např.,, a nebo a, b, c. Pro hmotný bod je možné sestavit 2 lineárně nezávislé podmínky rovnováhy, např., nebo ve dvou jiných směrech ր, ց. Počet neznámých reakcí odpovídá počtu lineárně nezávislých rovnic podmínek rovnováhy. Proto u konstrukcí staticky určitých je možné stanovit velikost reakcí ze statických podmínek rovnováhy. Výpočet reakcí lze zkontrolovat ověřením podmínek rovnováhy, které nebyly použity pro jejich výpočet.

23 reálných ϕ u vznikají, jestliže soustava rovnic má lineárně závislé řádky, tzn. jedna rovnice je lineární kombinací ostatních rovnic. Hmotné těleso může konat zobecněný posun. u Reakce z podmínek rovnováhy nelze stanovit.

24 Spojité zatížení na nosníku Základní jednotka: N/m q reálných 1m w 1 (sání větru) g 1m 1m g V g N w 2 (tlak větru) 1m Stálé zatížení g působí svisle na jednotku délky nosníku. Užitné zatížení q působí svisle na jednotku půdorysného průmětu nosníku. Tlak nebo sání větru w působí kolmo na konstrukci na jednotku její délky.

25 Příklad staticky určité reálných Konzola (krakorec) F = 5kN A x A y a M A 2m n = 3 v = 3 s = 3 3 = 0 Jedná se o staticky určitou konstrukci. : A y F = 0 a : MA + F.2 = 0 : A x = 0

26 Příklad staticky určité Prostý nosník A x a A y Q = 2.q q = 4kN/m 2m 1m 1m F = 4kN α F = 80 b s = = 0 Jedná se o staticky určitou konstrukci. : A x F cosα F = 0 Q.1 {}}{ 1 a : 2 q F sinα F B.4 = 0 b : Ay.4+ Q {}}{ q f sinα F = 0 B reálných

27 Příklad staticky určité F = 6kN A x : A y a A y Q {}}{ q.1 = 0 q = 2kN/m 1m Q = 1.q a : F.0,5 Q.0,5 {}}{ 1 2 q.12 +B.1 = 0 : F B + A x = 0 b 0,5m 0,5m B n = 3 v = = 3 s = 3 3 = 0 Jedná se o staticky určitou konstrukci. reálných

28 reálných deska 1 deska 2 deska 1 deska 2 Hmotná tělesa mohou být navzájem spojena vnitřními vazbami. Ve vnitřních vazbách vznikají vnitřní reakce. Reakce ve vnitřních vazbách jsou vždy párovou veličinou na hmotné těleso 1 působí stejně velká síla jako na těleso 2, ale opačného směru. Takto spojená hmotná tělesa nazýváme soustavou staticky určitou, neurčitou nebo přeurčitou.

29 Vnitřní kloub - odebírá 2 volnosti deska 1 deska 2 reálných A y A x Je zabráněno vzájemnému vodorovnému i svislému posunu. Ve vnitřním kloubu působí vodorovná složka reakce A x i svislá složka A y. A x A y

30 Dvojnásobný kloub - odebírá 4 volnosti deska 1 deska 2 reálných deska 1 deska 3 B 1y B 1x B 2y deska 2 B 2x B 1y +B 2y Dvojnásobný kloub spojuje 3 tuhé desky. Je zabráněno vzájemnému vodorovnému i svislému posunu. Ve dvojnásobném kloubu působí 2 vodorovné složky reakce B 1x, B 2x a 2 svislé složky B 1y, B 2y. B 1x +B 2x deska 3

31 N-násobný kloub - odebírá 2N volnosti deska 2 reálných deska 1 deska 1 deska N deska N+1 C 1y C 1x C 2y deska 2 C 2x C Ny deska N C Nx C 1y +C 2y +...+C Ny N-násobný kloub spojuje tuhé desky v počtu N+1. Je zabráněno vzájemnému vodorovnému i svislému posunu. V N-násobmém kloubu působí N vodorovných složek C 1x, C 2x,..., C Nx a N svislých složek C 1y, C 2y,..., C Ny. C 1x +C 2x +...+C Nx deska N+1

32 Vnitřní kyvný prut (táhlo) - odebírá 1 volnosti reálných deska 1 deska 2 D D Vnitřní kyvný prut spojuje 2 hmotné objekty. Na vnitřní kyvný prut nepůsobí žádné síly kromě vnitřních reakcích na jeho koncích. Je zabráněno vzájemnému posunu ve směru střednice táhla. V kyvném prutu vzniká jediná reakce, síla v ose kyvného prutu D. Pokud je kyvný prut namáhán jen v tahu, nazýváme takový prut táhlo.

33 Určení statické určitosti n počet stupňů volnosti všech volných hmotných objektů v soustavě v počet stupňů volnosti, které ruší připojené vazby vnitřní i vnější s stupeň tvarové variability Potom rozlišujeme : s = n v jestliže s = 0. reálných Staticky neurčité jestliže s < 0. Staticky přeurčité jestliže s > 0. U staticky určitých i neurčitých soustav musí zároveň platit, že každý hmotný objekt, celá soustava nebo její samostatná část je staticky určitě podepřená a nejedná se o výjimkový případ.

34 příklady reálných

35 reálných Výpočet reakcí staticky určitých soustav Na každé samostatné tuhé desce jsou k dispozici 3 lineárně nezávislé podmínky rovnováhy, např.,, a. Pro každý samostatný hmotný bod jsou k dispozici 2 lineárně nezávislé podmínky rovnováhy a. Na celé soustavě jsou rovněž k dispozici 3 lineárně nezávislé podmínky rovnováhy. Počet neznámých reakcí odpovídá počtu lineárně nezávislých rovnic. Proto u staticky určitých soustav je možné stanovit velikost reakcí ze statických podmínek rovnováhy. Výpočet reakcí lze zkontrolovat ověřením podmínek rovnováhy, které nebyly použity pro jejich výpočet.

36 staticky určitých soustav Trojkloubový oblouk (trojkloubový rám) q = 3kN/m c deska 1 deska 2 3m q = 3kN/m deska 1 c C y C x C x c C y deska 2 reálných A x a b B x A x a b B x 2m 1m A y B y A y B y Celek: a: 1 2 q.22 B y.3 = 0 Deska 2: c : B y.1+b x.3 = 0 : C x B x = 0 : B y C y = 0 Celek: : A y + B y q.2 = 0 : A x B x = 0

37 staticky určitých soustav Oblouk s táhlem F = 10kN deska 1 c deska 2 2m F = 10kN c deska 1 C y C x C x c C y deska 2 reálných A x a táhlo b 1m A x a D D b A y 2m 1m B A y B Celek: : A x = 0 a: F.2 B.3 = 0 : A y + B F = 0 Deska 2: c : B.1+D.2 = 0 : B C y = 0 : D + C x = 0

38 staticky určitých soustav 3 desky F = 10kN F = 10kN reálných deska 1 c deska 2 deska 1 c C x C x c deska 2 A x A y d a q = 6kN/m deska 3 e b 2m 1m B 2m 1m d a A x A y D y D x D x C y q = 6kN/m d deska 3 D y E y e C y E y E x E x e b B Celek: :, a:, : Deska 3: d :, : Deska 2: c :, :, : Deska 3: : Kontrola: Podmínky rovnováhy na desce 1: :, :, c :

39 staticky určitých soustav Kloubové nosníky (Gerberovy nosníky) q F reálných deska 5 F deska 1 q deska 2 deska 3 deska 4 Vodorovné reakce se určí z : na deskách v pořadí deska 5, 4, 3, 2, 1 Ostatní reakce se určí z : a : na deskách v pořadí deska 5, (4 a 2), (1 a 3)

40 Kontrolní otázka Určete, zda se jedná o konstrukci: a) staticky určitou b) staticky neurčitou c) staticky přeurčitou nebo výjimkový případ reálných

41 Kontrolní otázka Určete, zda se jedná o konstrukci: a) staticky určitou b) staticky neurčitou c) staticky přeurčitou nebo výjimkový případ reálných

42 Konec přednášky reálných Děkuji za pozornost. Vysázeno systémem L A T E X. Obrázky vytvořeny v systému.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví 5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými

Více

Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí)

Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí) Složené soustavy Vznikají spojením jednotlivých konstrukčních prvků Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí) Metoda: Konstrukci idealizujeme jako soustavu

Více

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Stavební mechanika, 2.ročník bakalářského studia AST Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava Osnova přednášky

Více

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. 7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý

Více

Petr Kabele

Petr Kabele 4. Statika tuhých objektů 4.1 Idealizovaný model konstrukce předpoklad: konstrukci (jako celek nebo jejíčásti) idealizujme jako body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural

Více

Příhradové konstrukce

Příhradové konstrukce Příhradové konstrukce Základní předpoklady konstrukce je vytvořena z přímých prutů pruty jsou navzájem pospojovány v bodech =>styčnících vzájemné spojení prutů se ve všech styčnících se předpokládá kloubové

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Stupně volnosti a vazby hmotných objektů

Stupně volnosti a vazby hmotných objektů Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často

Více

trojkloubový nosník bez táhla a s

trojkloubový nosník bez táhla a s Kapitola 10 Rovinné nosníkové soustavy: trojkloubový nosník bez táhla a s táhlem 10.1 Trojkloubový rám Trojkloubový rám se skládá ze dvou rovinně lomených nosníků v rovinné úloze s kloubovým spojením a

Více

STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618

STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618 STATIKA Vyšetřování reakcí soustav Úloha jednoduchá Ústav mechaniky a materiálů K618 1 Zadání Posuďte statickou určitost a vyšetřete reakce rovinné soustavy zadané dle obrázku: q 0 M Dáno: L = 2 m M =

Více

4.6.3 Příhradové konstrukce

4.6.3 Příhradové konstrukce 4.6.3 Příhradové konstrukce Forth Bridge (1890) 2529 m Akashi Kaikyō Bridge (1998) 3911 m "Forth rail bridge head-on-panorama josh-von-staudach" by Josh von Staudach - Own work. "The Forth Bridge seen

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5. Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

Kinematická metoda výpočtu reakcí staticky určitých soustav

Kinematická metoda výpočtu reakcí staticky určitých soustav Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení

Více

Složené soustavy v rovině, stupně volnosti

Složené soustavy v rovině, stupně volnosti Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

Statika tuhého tělesa Statika soustav těles. Petr Šidlof

Statika tuhého tělesa Statika soustav těles. Petr Šidlof Statika tuhého tělesa Statika soustav těles Petr Šidlof Rovnováha volného tuhého tělesa (1) Hmotný bod: v rovnováze když rovnováha sil F 0 Tuhé těleso: v rovnováze když rovnováha sil a momentů F 0, M 0

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

Statika tuhého tělesa Statika soustav těles

Statika tuhého tělesa Statika soustav těles Statika tuhého tělesa Statika soustav těles Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Téma 8 Příčně zatížený rám a rošt

Téma 8 Příčně zatížený rám a rošt Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.

Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč. 1. cvičení Svazek sil & tlak Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 14. února 2018 do soustav sil Síla je vektor y tuhé těleso F & tlak působiště paprsek [0,0] α A[x A,y

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

α = 210 A x =... kn A y =... kn A M =... knm

α = 210 A x =... kn A y =... kn A M =... knm Vzorový příklad k 1. kontrolnímu testu Konzola Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A M A y y q = kn/m M = - 5kNm A α B c a b d F = 10 kn 1 1 3,5,5 L = 10 x α = 10 A

Více

VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA

VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Anežka Jurčíková, Martin Krejsa, Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA Vzdělávací pomůcka Ostrava

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE ohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. m [00] +x volný hmotný od v rovině: n v =2 (posun

Více

A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10

A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10 Vzorový příklad k 1. kontrolnímu testu Prostý nosník Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A y y q = kn/m M = 5kNm F = 10 kn A c a b d 1 1 3,5,5 L = 10 α B B y x α = 30

Více

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.

p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá. TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními

Více

Rámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016

Rámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016 Rámové konstrukce Obsah princip působení a vlastnosti rámové konstrukce statická a tvarová řešení optimalizace tvaru rámu zachycení vodorovných sil stabilita rámu prostorová tuhost Uspořádání a prvky rámové

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2

3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2 3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Vliv okrajových podmínek na tvar ohybové čáry

Vliv okrajových podmínek na tvar ohybové čáry Vliv okrajových podmínek na tvar ohybové čáry Petr Havlásek 213 1 Co budeme zkoumat? Tvar deformované střednice při zatížení osamělou silou v polovině rozpětí o prostě podepřeného nosníku (KK) o oboustranně

Více

Materiály ke 12. přednášce z předmětu KME/MECHB

Materiály ke 12. přednášce z předmětu KME/MECHB Materiály ke 12. přednášce z předmětu KME/MECH Zpracoval: Ing. Jan Vimmr, Ph.D. Prutové soustavy Prutové soustavy představují speciální soustavy těles, které se uplatňují při navrhování velkorozměrových

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

Vnitřní síly v prutových konstrukcích

Vnitřní síly v prutových konstrukcích Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m

Více

Statika 2. & Stabilita tuhé konstrukce. Miroslav Vokáč 10. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. & Stabilita tuhé konstrukce. Miroslav Vokáč 10. prosince ČVUT v Praze, Fakulta architektury. 6. přednáška & Stabilita tuhé konstrukce A. Desky podél Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 10. prosince 2015 jsou rovinné konstrukce zatížené kolmo na střednicovou

Více

Téma 7 Rovinný kloubový příhradový nosník

Téma 7 Rovinný kloubový příhradový nosník Stavební statika,.ročník bakalářského studia Téma 7 Rovinný kloubový příhradový nosník Obecná a zjednodušená styčníková metoda Průsečná metoda Mimostyčníkové zatížení Katedra stavební mechaniky Fakulta

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 4. ŘÍJNA 202 Název zpracovaného celku: PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Příhradové konstrukce jsou sestaveny

Více

Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M.

Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M. 3. přednáška Průhybová čára Mirosav Vokáč mirosav.vokac@kok.cvut.cz ČVUT v Praze, Fakuta architektury 2. istopadu 2016 Průhybová čára ohýbaného nosníku Znaménková konvence veičin M z x +q +w +ϕ + q...

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 5 Obsah P řed m lu va 11 P o u žitá sym b o lik a 13 I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 15 1. Úvodní č á s t 17 I. I. Vědní obor mechanika..... 17 1.2. Stavební mechanika a je

Více

Obsah. Opakování. Sylabus přednášek OCELOVÉ KONSTRUKCE. Kontaktní přípoje. Opakování Dělení hal Zatížení. Návrh prostorově tuhé konstrukce Prvky

Obsah. Opakování. Sylabus přednášek OCELOVÉ KONSTRUKCE. Kontaktní přípoje. Opakování Dělení hal Zatížení. Návrh prostorově tuhé konstrukce Prvky Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Prof. Ing. František Wald, CSc., místnost B

Více

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1). Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace

Více

Rovinné nosníkové soustavy

Rovinné nosníkové soustavy Stvení sttik,.ročník kominovného studi Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový rám Trojklouový rám s táhlem Ktedr stvení mehniky

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

BL 04 - Vodohospodářské betonové konstrukce MONOTOVANÉ KONSTRUKCE

BL 04 - Vodohospodářské betonové konstrukce MONOTOVANÉ KONSTRUKCE BL 04 - Vodohospodářské betonové konstrukce MONOTOVANÉ KONSTRUKCE doc. Ing. Miloš Zich, Ph.D. Ústav betonových a zděných konstrukcí VUT FAST Brno 1 TYPY MONTOVANÝCH PRUTOVÝCH SOUSTAV 1. HALOVÉ OBJEKTY

Více

Stavební mechanika přednáška, 10. dubna 2017

Stavební mechanika přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO3 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE

Více

Předpjatý beton Přednáška 4

Předpjatý beton Přednáška 4 Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení

Více

Téma 6 Rovinné nosníkové soustavy

Téma 6 Rovinné nosníkové soustavy Stavební statika, 1.ročník bakalářského studia Téma 6 Rovinné nosníkové soustavy Spojitý nosník s vloženými klouby Trojkloubový rám a oblouk Trojkloubový rám a oblouk s táhlem Katedra stavební mechaniky

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze 4.5 eakce staticky určitých konstrukcí Úloha: posoudit statickou určitost / navrhnout podepření konstrukce jistit jakými silami jsou namáhanéčásti konstrukce, jakými silami působí konstrukce na áklady

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského studia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

Příklad č.1. BO002 Prvky kovových konstrukcí

Příklad č.1. BO002 Prvky kovových konstrukcí Příklad č.1 Posuďte šroubový přípoj ocelového táhla ke styčníkovému plechu. Táhlo je namáháno osovou silou N Ed = 900 kn. Šrouby M20 5.6 d = mm d 0 = mm f ub = MPa f yb = MPa A s = mm 2 Střihová rovina

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

STATIKA STAVEBNÍCH KONSTRUKCÍ I

STATIKA STAVEBNÍCH KONSTRUKCÍ I VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka

Více

5. Prutové soustavy /příhradové nosníky/

5. Prutové soustavy /příhradové nosníky/ PŠ a VOŠ KLDNO MECHNIK I. - TTIK. Prutové soustavy /příhradové nosníky/ - nosné konstrukce mostů, jeřábů, stožárů, střech, letadel apod. - skládají se z prutů spojených nýty, šrouby nebo svary v kloubech

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

s01. Základy statiky nutné pro PP

s01. Základy statiky nutné pro PP s01 1 s01. Základy statiky nutné pro PP Poznámka: Tato stať není přehledem statiky, ale pouze připomenutím některých základních poznatků, bez nichž se v PP nelze obejít. s01.1. Mechanický pohyb Pohyb chápeme

Více

Statika 2. Miroslav Vokáč 6. ledna ČVUT v Praze, Fakulta architektury. Statika 2. M. Vokáč. Grafické metody statiky

Statika 2. Miroslav Vokáč 6. ledna ČVUT v Praze, Fakulta architektury. Statika 2. M. Vokáč. Grafické metody statiky 7. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 6. ledna 2016 Síly se v měřítku vynáší do součtové čáry (diagram vpravo). Součtové podmínky rovnováhy jsou splněny,

Více

Téma 12, modely podloží

Téma 12, modely podloží Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení

Více

Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D.

Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D. Konstrukční systémy I Třídění, typologie a stabilita objektů Ing. Petr Suchánek, Ph.D. Zatížení a namáhání Konstrukční prvky stavebního objektu jsou namáhány: vlastní hmotností užitným zatížením zatížením

Více

SOU plynárenské Pardubice Mechanika - Statika - příhradové konstrukce

SOU plynárenské Pardubice Mechanika - Statika - příhradové konstrukce Identifikátor materiálu: ICT příhradové konstrukce Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního

Více

Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška

Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška Těleso na podporách. Obsah přednášky : uvolňování jako jeden ze základních postupů mechaniky, statická určitost a neurčitost, vazby a jejich vlastnosti, řešení staticky neurčitých úloh Doba studia : asi

Více

Numerická analýza dřevěných lávek pro pěší a cyklisty

Numerická analýza dřevěných lávek pro pěší a cyklisty Ing. Jana Bártová, Helika, a.s. Konference STATIKA 2014, 12. a 13. června Lávky Lávka přes Roklanský potok v Modravě 1 Lávka přes Roklanský potok v Modravě Technické parametry: Lávka převádí běžeckou trať

Více

LANGERŮV TRÁM MOST HOLŠTEJN

LANGERŮV TRÁM MOST HOLŠTEJN LANGERŮV TRÁM MOST HOLŠTEJN Ing. Jiří Španihel, Firesta - Fišer, rekonstrukce, stavby a.s. Konference STATIKA 2014, 11. a 12. června POPIS KONSTRUKCE Most pozemní komunikace přes propadání potoka Bílá

Více

Přijímací zkoušky na magisterské studium, obor M

Přijímací zkoušky na magisterské studium, obor M Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského studi Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Trojklouový nosník Ktedr

Více

VÝSTAVBA MOSTŮ (2018 / 2019) M. Rosmanit B 304 ŽB rámové mosty

VÝSTAVBA MOSTŮ (2018 / 2019) M. Rosmanit B 304 ŽB rámové mosty Technická univerzita Ostrava 1 VÝSTAVBA MOSTŮ (2018 / 2019) M. Rosmanit B 304 miroslav.rosmanit@vsb.cz Charakteristika a oblast použití - vzniká zmonolitněním konstrukce deskového nebo trámového mostu

Více

6. Statika rovnováha vázaného tělesa

6. Statika rovnováha vázaného tělesa 6. Statika rovnováha vázaného tělesa 6.1 Rovnováha vázaného tělesa Těleso je vystaveno působení vnějších sil akčních, kterými mohou být osamělé síly, spojité zatížení a momenty silových dvojic. Akční síly

Více

Autor: Vladimír Švehla

Autor: Vladimír Švehla Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta

Více

Jednoosá tahová zkouška betonářské oceli

Jednoosá tahová zkouška betonářské oceli Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright

Více

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Mechanismy - klasifikace, strukturální analýza, vazby Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Mechanismy - úvod Mechanismus je soustava těles, spojených

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO4 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE

Více

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Pohyb mechanismu Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Doba studia : asi,5 hodiny Cíl přednášky : uvést studenty do problematiky mechanismů, seznámit

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI

ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI KONSTRUKČNÍ SYSTÉMY POZEMNÍCH STAVEB Halové stavby Konstrukční

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

Pozemní stavitelství II. Konstrukce vyložen. Zpracoval: Filip Čmiel, Ing.

Pozemní stavitelství II. Konstrukce vyložen. Zpracoval: Filip Čmiel, Ing. Pozemní stavitelství II. Konstrukce vyložen ené a ustupující Zpracoval: Filip Čmiel, Ing. Základnífunkce a požadavky Z hlediska účelu a funkce se mezi předsazené konstrukce řadí: balkóny lodžie pavlače

Více

4. cvičení výpočet zatížení a vnitřních sil

4. cvičení výpočet zatížení a vnitřních sil 4. cvičení výpočet zatížení a vnitřních sil Výpočet zatížení stropní deska Skladbu podlahy a hodnotu užitného zatížení převezměte z 1. úlohy. Uvažujte tloušťku ŽB desky, kterou jste sami navrhli ve 3.

Více

Sylabus k přednášce předmětu BK30 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc.

Sylabus k přednášce předmětu BK30 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc. Schodiště jsou souborem stavebních prvků (schodišťová ramena, podesty, mezipodesty, podestové nosníky, schodnice a schodišťové stěny), které umožňují komunikační spojení různých výškových úrovní. V budovách

Více

Sylabus k přednášce předmětu BK1 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc.

Sylabus k přednášce předmětu BK1 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc. Schodiště jsou souborem stavebních prvků (schodišťová ramena, podesty, mezipodesty, podestové nosníky, schodnice a schodišťové stěny), které umožňují komunikační spojení různých výškových úrovní. V budovách

Více

Prostorové konstrukce - rošty

Prostorové konstrukce - rošty Prostorové konstrukce - rošty a) princip působení roštu, b) uspořádání nosníků v pravoúhlé c) kosoúhlé, d) šestiúhelníkové, e) trojúhelníkové osnově, f) příhradový rošt 14.4.2010 Nosné konstrukce III 1

Více

PŘEHLED SVISLÉHO POHYBLIVÉHO ZATÍŽENÍ SILNIČNÍCH MOSTŮ

PŘEHLED SVISLÉHO POHYBLIVÉHO ZATÍŽENÍ SILNIČNÍCH MOSTŮ PŘEHLED SVISLÉHO POHYBLIVÉHO ZATÍŽENÍ SILNIČNÍCH MOSTŮ 1 MOSTNÍ ŘÁD C.K. MINISTERSTVA ŽELEZNIC Z ROKU 1887 Pohyblivé zatížení mostů I. třídy (dynamické účinky se zanedbávají). Alternativy : 1) Čtyřkolové

Více

Příklad č.1. BO002 Prvky kovových konstrukcí

Příklad č.1. BO002 Prvky kovových konstrukcí Příklad č.1 Posuďte šroubový přípoj ocelového táhla ke styčníkovému plechu. Táhlo je namáháno osovou silou N Ed = 900 kn. Šrouby M20 5.6 d = mm d 0 = mm f ub = MPa f yb = MPa A s = mm 2 Střihová rovina

Více

Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma,

Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma, NMAG66 LS 25 Inženýr, jeřáb a matice Výpočet sil v prutových soustavách styčníkovou metodou Úvod Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma, a proto

Více