Typy příkladů na písemnou část zkoušky 2NU a vzorová řešení (doc. Martišek 2017)
|
|
- Stanislava Vávrová
- před 6 lety
- Počet zobrazení:
Transkript
1 Typy příkladů na písemnou část zkoušky NU a vzorová řešení (doc. Martišek 07). Vhodnou iterační metodou (tj. metodou se zaručenou konvergencí) řešte soustavu: x +x +4x 3 = 3.5 x 3x +x 3 =.5 x +x +x 3 =.5 Proveďte alespoň dvě iterace a odhadněte chybu. Řešení Méně přemýšliví a pilní využijí pozitivně definitní matici: A x = b A T A x = A T b x ( 3 ) ( x ) = (.5) x ( 3 ) ( 3 ) ( x ) = ( 3 ) (.5) 4 x x x ( 3 ) ( x ) = ( 33.5) 9 x Matice soustavy je pozitivně definitní Gauss-Seidelova metoda bude konvergovat. V tomto případě je matice i ostře diagonálně dominantní konvergovat bude i Jacobiho metoda. x = 3 x 9 x 3 x = 3 x x x 3 = 9 x 9 x
2 Jacobiho m.: Gauss-Seidel. m.: x (0) = ( 0.5; 3; 5.5) x (0) = (0; 0; 0) x () = ( 0.;.4; 5.) x () = ( 0.5;.9; 5.3) x () = ( 0.8;.54; 5.4) x () = ( 0.;.45; 5.4) Chyba: E = x i () x i () = 0.6 : E = x i () x i () = 0.46 Pro přemýšlivější a línější x +x +4x 3 = 3.5 I 4x x 3 = III I x 3x +x 3 =.5 II x 3x +x 3 =.5 II x +x +x 3 =.5 III x +x +4x 3 = 3.5 I Matice je ostře diagonálně dominantní Jacobiho i Gauss-Seidlova metoda budou konvergovat. x = x 3 4 x = 3 x + 3 x x 3 = x 4 x Jacobiho m.: Gauss-Seidel. m.: x (0) = ( 0.5; 0.8; 3.4) x (0) = (0; 0; 0) x () = (.45;.88; 3.05) x () = ( 0.5; 0.75; 3.06) x () = (.7;.33; 3.63) x () = (.8;.8; 3.45) Chyba: E = x i () x i () = 0.58 : E = x i () x i () =.53
3 Pomocí vhodného interpolačního polynomu se třemi uzly určete přibližnou hodnotu 0. 4 a odhadněte chybu interpolace (Pozor! Přesnou hodnotu nemáte k dispozici!) Řešení: Můžeme interpolovat například hodnoty funkce x x: Pozor! Tabulka není vhodná (proč?) Např. Lagrangeova metoda: (x 0.36)(x 0.49) L (x) = 0.5 ( )( ) (x 0.5)(x 0.49) ( )( ) (x 0.5)(x 0.36) +0.6 ( )( ) ( )( ) 0.4 L (0.4) = ( )( ) + ( )( ) ( )( ) E (x 0.5)(x 0.36)(x 0.49) 3! (x 0.5)(x 0.36)(x 0.49) 3! = 3! ( x) ( = 3! x ) = 3! ( 4 x 3 ) = 3! Funkce je klesající 3 8 x 5 6x 5 = 3! (x 0.5)(x 0.36)(x 0.49) = g ( ) = g(0.305) = = 6x = g(x)
4 = ( )( )( ) g ( ) = g(0.45) = = ( )( )( ) 0.55 g(x) 0.55; E 0.55 =. Další možností je interpolace hodnot funkce 0.4 x : Např. Newtonova metoda: N (x) =.5.5 (x + ) x (x + ) 0.4 N (0.4) =.5.5 (0.4 + ) (0.4 + ) = 0.65 E (x ) x (x + ) 3! (x ) x (x + ) 3! (x ) x (x + ) 3! ) ln = 3! (0.4x = 3! 0.4x 3! Funkce je klesající ln x = 0.40,5 ln ! 3! (x ) x (x + ) = g(x) g( 0.5) = g(0.5) = ( 0.5 )( 0.5)( ) = E =
5 (Alternativa): Kotel s horkou vodou chladne při stálé venkovní teplotě. Byly změřeny následující hodnoty: τ (min) t ( o C) Určete, při jaké teplotě kotel chladne a čas, kdy se ochladí na 8 o C. Závislost teploty na čase předpokládejte ve tvaru t(τ) = t 0 + k e 0.0τ Řešení: Použijeme metodu nejmenších čtverců. Funkci předpokládáme ve tvaru t(τ) = t 0 φ 0 (τ) + k φ (τ) kde φ 0 (τ) = ; φ (τ) = e 0.0τ. (φ 0 ; φ 0 ) = (; ; ; ; ; ) (; ; ; ; ; ) = 6 (φ 0 ; φ ) = (φ ; φ 0 ) (.000; 0.74; 0.549; 0.407; 0.30; 0.3) (; ; ; ; ; ) 3. (φ ; φ ) (.000; 0.74; 0.549; 0.407; 0.30; 0.3) (.000; 0.74; 0.549; 0.407; 0.30; 0.3) 0.3 (φ 0 ; t) (; ; ; ; ; ) (96; 73; 58; 45; 37; 30) = 339 (φ ; t) (.000; 0.74; 0.549; 0.407; 0.30; 0.3) (96; 73; 58; 45; 37; 30) 8 ( (φ 0; φ 0 ) (φ 0 ; φ ) (φ ; φ 0 ) (φ ; φ ) ) (t 0 k ) = ((φ 0; t) (φ ; t) ) Kotel chladne asi při o C. ( ) (t 0 C ) = ( ) t 0 k 84.5 t(τ) = t 0 φ 0 (τ) + k φ (τ) e 0.0τ 8 = e 0.0τ = e 0.0τ e 0.0τ = τ ln τ 50 ln 4 Na 8 o C se ochladí asi za 4 minut.
6 3 Určete hodnotu integrálu s chybou menší než Řešení: e x dx Chyba integrace složené obdélníkové resp. lichoběžníkové metody: 0 E C x 0; e x ( 0) h E C x 0; xe x h E C x 0; e x + 4x e x h E C x 0; (4x )e x h = C x 0; g(x) h Maximum funkce g(x) odhadneme pomocí tří funkčních hodnot: Tedy g(0) = ; g(0.5) = e ; g() = e 0.74; C g(0) h = C h Pro složenou obdélníkovou metodu je C = 4, tedy Volíme tedy h = 0. (n=5): 4 h h < 0.45 e x dx 0. (f(0.) + f(0.3) + f(0.5) + f(0.7) + f(0.9)) 0 0. ( ) Pro složenou lichoběžníkovou metodu je C =, tedy
7 Volíme tedy h = 0.6 : (n=6): 0.6 h h < 0.7 e x dx 0 (f(0) + f(0.6 ) + f(0. 3 ) + f(0.5) + f(0. 6 ) + f(0.83 ) + f()) ( Separujte kořeny rovnice x + sin x = 0 Jeden z nich (kterýkoliv) určete na dvě desetinná místa Řešení: Separace Zpřesňování: x 0; x 3; 4 x 5; 6 x 0; např. regula falsi ) i x i x i+ x i f(x i ) f( x i+ ) f(x i ) k = f(x i) f(x i ) x i x i
8 x 3; 4 např. bisekce i x i x i+ x i f(x i ) f( x i+ ) f(x i ) x 3 5; 6 např. Newton f(x) = x + sin x ; f (x) = + cos x ; f (x) = sin x Start. bod x 0 = 5.5; f(5.5) 0.34 > 0; f (5.5) 0.7 Fourierova podm. je splněna i x i f(x i ) k = f (x i ) Písemná práce se skládá ze tří příkladů (. 3 0 bodů). Čas na vypracování cca 60 minut. Povolena kalkulačka (nikoliv notebook či tablet), list papíru formátu A5 (čímkoliv) ručně popsaný po obou stranách
9 Okruhy teoretických otázek. Chyby a jejich šíření (chyby modelu a metody, chyby vstupních dat, zaokrouhlovací chyby, absolutní a relativní chyba, chyba součtu, rozdílu, součinu, podílu). Numerické řešení soustav lineárních rovnic (GEM výběr hlavního prvku, podmíněnost, číslo podmíněnosti, norma matice, pozitivně definitní matice, Jacobiho a Gauss-Seidelova metoda) 3. Aproximace funkcí (interpolace a aproximace, Lagrangeova a Newtonova interpolace a jejich chyba, Hermitův interpolační polynom, splajny, aproximace metodou nejmenších čtverců) 4. Numerická derivace a integrace (důvody numerické derivace a integrace, dopředná, zpětná a centrální diference, Richardsonova extrapolace, obdélníková, lichoběžníková a Simpsonova formule základní a složené formy a jejich chyby, metoda polovičního kroku, Rombergrova integrace) 5. Numerické řešení nelineárních rovnic a jejich soustav (separace kořenů, půlení intervalu, Newtonova metoda, metoda sečen, regula falsi, obecná iterační metoda, stop-kriteria, řešení soustav nelineárních rovnic Newtonova metoda, obecná iterační metoda) 6. Úvod do optimalizace (formulace optimalizační úlohy, účelová funkce. Jednorozměrná minimalizace půlení intervalu, trisekce, zlatý řez, metoda kvadratické minimalizace. Vícerozměrná minimalizace princip simplexové metody, metody souřadnicových směrů a gradientní metody). Odpověď na jednu ústně položenou teoretickou otázku hodnocena 0. body.
Numerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.
A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin
Požadavky a podmínky zkoušky z Numerických metod I (2NU)
Požadavky a podmínky zkoušky z Numerických metod I (2NU) LS 2018/2019 Zkouška je písemná, trvá 90 min. Skládá se ze 3 praktických příkladů a 4 teoretických otázek. S sebou ke zkoušce: psací potřeby (čisté
s velmi malými čísly nevýhodou velký počet operací, proto je mnohdy postačující částečný výběr
1. Úvod 1.1. druhy chyb: ch. matematického modelu rozdíl mezi idealizovaným a reálným problémem ch. numerické metody výsledkem nepřesné řešení ch. zaokrouhlovací vystupují současaně 1.. chyba absolutní
A 9. Počítejte v radiánech, ne ve stupních!
A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00
Zadání semestrálních prací 2NU, 2016/17, doc. Martišek
Zadání semestrálních prací NU, 016/17, doc. Martišek Každý(á) student(ka) najde u svého jména čísla dvou úloh, které vypracuje. U každé úlohy prosím uvést jméno, příjmení, studijní skupinu, den a hodinu,
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
Numerická matematika Banka řešených příkladů
Numerická matematika Banka řešených příkladů Radek Kučera, Pavel Ludvík, Zuzana Morávková Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava K D M G ISBN 978-80-48-894-6
METODA PŮLENÍ INTERVALU (METODA BISEKCE) METODA PROSTÉ ITERACE NEWTONOVA METODA
2-3. Metoda bisekce, met. prosté iterace, Newtonova metoda pro řešení f(x) = 0. Kateřina Konečná/ 1 ITERAČNÍ METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC - řešení nelineární rovnice f(x) = 0, - separace kořenů =
INTERPOLAČNÍ POLYNOM. F (x)... hledaná funkce (polynom nebo funkce vytvořená z polynomů), pro kterou platí
8 Řešení Lagrangeovy a Hermiteovy úlohy interpolace Kateřina Konečná/1 INTERPOLAČNÍ POLYNOM aproximace zadaných hodnot nebo hledané funkce f funkcí F (x) (polynomem) F musí být k f co nejblíže značení:
Matematika 3. Sbírka příkladů z numerických metod. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY
Matematika 3 Sbírka příkladů z numerických metod RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Matematika 3 1 Obsah 1 Soustavy lineárních rovnic 5 1.1 Jacobiho a Gauss-Seidelova metoda......................
Pozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně
9. Řešení typických úloh diskrétní metodou nejmenších čtverců. DISKRÉTNÍ METODA NEJMENŠÍCH ČTVERCŮ použití: v případech, kdy je nevhodná interpolace využití: prokládání dat křivkami, řešení přeurčených
Numerické metody a programování. Lekce 7
Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno
Hledání extrémů funkcí
Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání
Soustavy lineárních rovnic-numerické řešení. October 2, 2008
Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a
Zadání semestrálních prací 2NU, 2015/16 doc. Martišek
Zadání semestrálních prací NU, 0/6 doc. Martišek Každý(á) student(ka) najde u svého jména čísla dvou úloh, které vypracuje. Seznam zadání a vzor vypracování následuje. Výuka Ca - Út :00 (sudý i lichý)
Numerické metody a statistika
Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 016-017 ( ) Numerické metody a statistika 016-017 1 / Numerické integrování ( ) Numerické metody a statistika 016-017 / Geometrický význam integrálu
INTERPOLAČNÍ POLYNOM.... hledaná funkce (polynom nebo funkce vytvořená z polynomů), pro kterou platí
8 Řešení Lagrangeovy a Hermiteovy úlohy interpolace 1 INTERPOLAČNÍ POLYNOM aproximace zadaných hodnot nebo hledané funkce f funkcí F (x) (polynomem) F musí být k f co nejblíže značení: P (n) množina všech
Semestrální písemka BMA3 - termín varianta A13 vzorové řešení
Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň
MATLAB a numerické metody
MATLAB a numerické metod MATLAB je velmi vhodný nástroj pro numerické výpočt mnoho problémů je již vřešeno (knihovní funkce nebo Toolbo), jiné si můžeme naprogramovat sami. Budeme se zabývat některými
Numerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
Čebyševovy aproximace
Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu
Řešení nelineárních rovnic
Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
Integrace. Numerické metody 7. května FJFI ČVUT v Praze
Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál
Teoretické otázky z numerických metod
Teoretické otázky z numerických metod Literatura: L. Čermák, R. Hlavička: Numerické metody, CERM, Brno, 8. 1. Úvod do problematiky numerických metod 1.1. Jaké druhy chyb vznikají pří řešení reálných problémů?
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí.
NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. RNDr. Radovan Potůček, Ph.D., K-15, FVT UO, KŠ 5B/11, Radovan.Potucek@unob.cz, tel. 443056 -----
Numerické řešení diferenciálních rovnic
Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních
Soustavy lineárních rovnic-numerické řešení
Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 21 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 21 Řešíme následující úlohu: differencovatelnou funkci f : R R známe jen v konečném počtu bodů x 0,
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM
OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady
Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Příklady pro cvičení 22. dubna 2015
Úvod Předběžná verze (015) 1 1 Normy vektorů a matic, vlastnosti matic Příklad 1.1 Pro dané vektory x = ( 1; ; 1) T, y = (; 3; 1) T určete x =? x =? x 1 =? y =? y =? y 1 =? Příklad 1. Je dán vektor x =
Interpolace pomocí splajnu
Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
Integrace funkcí více proměnných, numerické metody
Matematika III 6. přednáška Integrace funkcí více proměnných, numerické metody Michal Bulant Masarykova univerzita Fakulta informatiky 27. 10. 2010 Obsah přednášky 1 Literatura 2 Integrální počet více
Aproximace a interpolace
Aproximace a interpolace Aproximace dat = náhrada nearitmetické veličiny (resp. složité funkce) pomocí aritmetických veličin. Nejčastěji jde o náhradu hodnot složité funkce g(x) nebo funkce zadané pouze
Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Opakování rovnice přímky Úloha: Určete rovnici přímky procházející body A[a, f(a)] a B[b, f(b)], kde f je funkce spojitá
Numerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
Nelineární rovnice. Numerické metody 6. května FJFI ČVUT v Praze
Nelineární rovnice Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Ohraničení kořene Hledání kořene Soustava Programy 1 Úvod Úvod - Úloha Hledáme bod x, ve kterém je splněno pro zadanou funkci
Moderní numerické metody
Moderní numerické metody Sbírka příkladů doc. RNDr. Jaromír Baštinec, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Moderní numerické metody 1 Obsah 1 Soustavy lineárních rovnic 7 2 Řešení jedné nelineární
Petr Hasil
Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny
Ukázka závěrečného testu
Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál
Co jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Základní spádové metody
Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)
Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
Newtonova metoda. 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce
Princip řešení soustavy rovnic
Princip řešení soustavy rovnic Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Formulace úlohy Metody řešení
Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc.
FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Numerické metody Garant předmětu: doc. RNDr. Libor Čermák, CSc. Autoři textu: Mgr. Irena Růžičková RNDr. Rudolf Hlavička, CSc. Ústav matematiky
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojmy: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocniny neznámé x, tj. a n x n + a n 1 x n 1 +... + a x + a 1 x + a 0 = 0, kde n je přirozené
Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1
ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu
Numerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/~navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.
. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,
Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.
Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace
DRN: Kořeny funkce numericky
DRN: Kořeny funkce numericky Kořenem funkce f rozumíme libovolné číslo r splňující f(r) = 0. Fakt. Nechť f je funkce na intervalu a, b. Jestliže f(a) f(b) < 0 (tj. f(a) a f(b) mají opačná znaménka) a f
1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23
Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
Nelineární optimalizace a numerické metody (MI NON)
Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha
Numerické metody I. Jaro Normy vektorů a matic 1. 2 Nelineární rovnice Metoda bisekce (půlení intervalu) Iterační metody...
Poznámky k přednášce 1 Numerické metody I Jaro 2010 Tomáš Řiháček Obsah 1 Normy vektorů a matic 1 2 Nelineární rovnice 3 2.1 Metoda bisekce (půlení intervalu).............................. 3 2.2 Iterační
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD
Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011
Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
Aplikovaná matematika I
Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3
Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze
Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně
A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2.
A NUMERICKÉ METODY Fourierova podmínka: f (x) > 0 => rostoucí, f (x) < 0 => klesající, f (x) > 0 => konvexní ᴗ, f (x) < 0 => konkávní ᴖ, f (x) = 0 ᴧ f (x)!= 0 => inflexní bod 1. Řešení nelineárních rovnic:
DRN: Soustavy linárních rovnic numericky, norma
DRN: Soustavy linárních rovnic numericky, norma Algoritmus (GEM: Gaussova eliminace s částečným pivotováním pro převod rozšířené regulární matice na horní trojúhelníkový tvar). Zadána matice C = (c i,j
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná
0 0 a 2,n. JACOBIOVA ITERAČNÍ METODA. Ax = b (D + L + U)x = b Dx = (L + U)x + b x = D 1 (L + U)x + D 1 b. (i) + T J
6 Jacobiova a Gaussova-Seidelova iterační metoda pro řešení systémů lin rovnic Kateřina Konečná/ ITERAČNÍ METODY PRO ŘEŠENÍ SYSTÉMŮ LINEÁRNÍCH ROVNIC Budeme se zabývat řešením soustavy lineárních rovnic
FAKULTA STAVEBNÍ MATEMATIKA NUMERICKÉ METODY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ doc RNDr Josef Dalík, CSc MATEMATIKA NUMERICKÉ METODY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε c Josef Dalík
Numerická matematika. Zkouška: 4 příklady, důraz na dif. rovnice.
Numerická matematika Úvodní informace Viz http://mat.fs.cvut.cz Rozsah: 2+2, Z, Zk, seminář 0+2 Z, Obsah: numerické metody pro lineární algebru, obyčejné a parciální diferenciální rovnice, Zápočet: požadavky,
BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír
Numerické metody: aproximace funkcí
Numerické metody: aproximace funkcí Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
Numerické metody: aproximace funkcí
Numerické metody: aproximace funkcí Mirko Navara http://cmp.felk.cvut.cz/~navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
Otázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.
metoda Regula Falsi 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda Regula Falsi Michal Čihák 23. října 2012 Metoda Regula Falsi hybridní metoda je kombinací metody sečen a metody půlení intervalů předpokladem je (podobně
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden
stránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Faster Gradient Descent Methods
Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Důvodů proč se zabývat numerickou matematikou je více. Ze základní školy si odnášíme znalost, že číslo
0.1 Numerická matematika 1 0.1 Numerická matematika Důvodů proč se zabývat numerickou matematikou je více. Ze základní školy si odnášíme znalost, že číslo π. = 22/7 s dovětkem, že to pro praxi stačí. Položme
Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.
Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech
Numerická integrace. b a. sin 100 t dt
Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě
f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
3. Přednáška: Line search
Úloha: 3. Přednáška: Line search min f(x), x R n kde x R n, n 1 a f : R n R je dvakrát spojitě diferencovatelná. Iterační algoritmy: Začínám v x 0 a vytvářím posloupnost iterací {x k } k=0, tak, aby minimum