24 - Diskrétní řízení

Rozměr: px
Začít zobrazení ze stránky:

Download "24 - Diskrétní řízení"

Transkript

1 24 - Diskrétní řízení Michael Šebek Automatické řízení

2 Metody návrhu diskrétního řízení Automatické řízení - Kybernetika a robotika Návrh pro čistě diskrétní systémy Mnohé metody jsou analogické (nebo totožné) metodám spojitým Proto je zde neuvádíme, jenom je ukážeme na příkladech Tyto metody jsou stručně popsány v doplňkových slajdech Zde se soustředíme na to, co je při diskrétním návrhu odlišné Návrh diskrétního řízení pro vzorkované spojité soustavy Vyjdeme ze diskrétního modelu soustavy a použijeme metody diskrétního návrhu CL stabilitu mám zaručenu (stabilizujícím diskrétním návrhem), na rozdíl od metod emulace. Řízení funguje dobře v okamžicích vzorkování (při rozumné periodě) Naopak nemáme pod kontrolou chování mezi okamžiky vzorkování. Chování mezi okamžiky vzorkování bývá rozumné, pokud není akční zásah moc divoký Michael Šebek ARI

3 Typicky diskrétní strategie řízení, spojitě (přesně) nejde Deadbeat Cíl = všechny póly do nuly tedy ( ) n pnew z = z n takže pro výslednou platí (Cayley-Hamilton) F = Protože rovnice = F new k+ 1 new k má řešení = F k k new, tak je k =, k n, Tedy nezávisle na počátečním stavu je systém počínaje n-tým krokem úplně v klidu (všechny stavy i výstup jsou nulové)! V případě poruchy konečné délky, se také dostane do klidu (nejpozději n-tý krok po odeznění eterního signálu) Pro výsledný systém platí ( ) ( ) adj zi Fnew G zadj zi Fnew ( z) = ( zi F ) Guz ( ) + z( zi F ) = uz ( ) + n n z z Hadj( zi Fnew ) G zhadj ( zi Fnew ) bz ( ) c ( z) yz ( ) = uz ( ) + = uz ( ) + n n n n z z z z deg bz ( ), c( z) n new new ( ) 3

4 Systém typu deadbeat je nejstabilnější ze všech diskrétních Deadbeat Pro spojitou soustavu platí totéž: nejpozději za n kroků je z každého počátečního stavu v klidu - tedy všechny stavy i výstup jsou nulové i mezi okamžiky vzorkování! Spojitým řízením tohle nejde! Systém typu deadbeat reaguje velmi rychle: někdy je to výhodné, ale jindy naopak nevýhodné (jsou-li v systému šumy) Zkracujeme-li periodu vzorkování, roste velikost vstupních signálů a to v limitě h roste do nekonečna. Proto periodu nezkracujeme. Deadbeat navrhujeme stejně jako každé jiné přiřazení pólů n Protože je tady p ( z) = z, je Ackermannův vzorec speciálně K = new [ 1] C Pokud je matice F invertovatelná, platí také [ 1] 4 F n n n+ 1 = K F G F G G

5 Deadbeat pozorovatel I při odhadu stavů diskrétním pozorovatelem můžeme použít strategii deadbeat. Jako charakteristický polynom matice dynamiky pozorování zvolíme ( ) n n ppoz z = z, takže F = poz Pro odchylku pozorování = ˆ, kde = F k+ 1 poz k teď platí k =, k n, Tedy nejpozději za n kroků je odchylka vždy nulová a od toho okamžiku se stav pozorovatele přesně rovná stavu soustavy. Je-li soustava spojitá, platí totéž, ale jen v okamžicích vzorkování. Takový pozorovatel navrhneme např. modifikací Ackermannova vzorce [ ] n L= F O 1 T 5

6 Přiřazení pólů polynomiálně Automatické řízení - Kybernetika a robotika Polynomiální řešení v z - stejné jako spojité Pro danou soustavu bz ( ) az ( ) a danou poloho pólů, vyjádřenou CL charakteristickým pol. c(z) Vyřešíme rovnici azpz ( ) ( ) + bzqz ( ) ( ) = cz ( ) Polynomiální řešení v d Podobné regulátor Deadbeat polynomiálně - zvláštní případ přiřazení pólů m V z volíme cz ( ) = z, kde m (2 řád soustavy) 1, řešíme q p u soustava bd ( ) ad ( ), cd ( ) ad ( ) pd ( ) + bdqd ( ) ( ) = cd ( ) qd ( ) pd ( ) azpz ( ) ( ) + bzqz ( ) ( ) = z m b a y a vybereme řešení minimálního stupně ve q Při řešení v z je to ještě jednodušší: Řešíme rovnici az pz bz qz ( ) ( ) + ( ) ( ) = 1 6

7 Stabilizace diskrétním regulátorem Pracujeme-li v z, pak je parametrizace všech stabilizujících regulátorů stejná jako ve spojité verzi Pracujeme-li v z -1, je to ještě jednodušší: Všechny stabilizující regulátory jsou parametrizovány takto q y + at = p bt kde t je libovolný zlomek polynomů se stabilním jmenovatelem a polynomy y, splňují rovnici a + by = 1 kde a= ( aba, ), b= ( abb, ) Řešitelnost: soustava nemá nestabilní skryté módy a gcd( ab, ) je stabilní bz ( ) az ( ) qz ( ) pz ( ) 7

8 Odvození slabé a silné verze deadbeat Návrh deadbeat regulátoru v z -1 je velmi podobný tomu v z Pro zajímavost tedy alespoň zvolíme opačný postup odvození: Dosud jsme deadbeat pokládali za zvláštní případ umístění pólů (když všechny umístíme do počátku, chování bude deadbeat) Teď naopak hledejme regulátor tak, aby chování bylo typu deadbeat: Navíc budeme pracovat s polynomy v z -1 (zde je to výhodnější) Formulace problému: Deadbeat regulátor silná verze Najděte regulátor tak, aby vstupní a výstupní posloupnosti měly konečnou délku, a to pro každé pp. soustavy i regulátoru. Navíc tak, aby měly nejkratší délku (nejmenší počet kroků) r ˆ ( z ) pz ( ) 1 uz ( ) bz az ( ) ( ) qz pz ( ) ( ) c ( z ) ( ) az 1 yz ( ) 8

9 Při odvození vyjdeme z rovnic systému Odvození: Deadbeat silná verze b p y = rˆ + c ap + bq ap + bq a q u = rˆ c ap + bq ap + bq Cílem návrhu je najít polynomy pz ( ), qz ( ) tak, aby pro všechny možné polynomy rˆ ( z ), c byly výsledné posloupnosti také ( z ) polynomy (= měly konečnou délku) Protože rˆ, c nejsou dány (reprezentují různé možné pp.), musí být každý ze 4 zlomků výše polynomem sám o sobě Zlomek polynomů je obecně nekonečná posloupnost (formální řada) Konečný bude jen tehdy, když jmenovatel dělí čitatel beze zbytku Lze ale ukázat, že jmenovatel ap + bq nemůžeme současně vykrátit se všemi čtyřmi čitateli Každý ze zlomků je polynom ab,, pq, az ( ) pz ( ) + bz ( ) qz ( ) = 1 9

10 Odvození: Deadbeat silná verze Je-li splněno ap + bq = 1, pak výše jsou uvedené vztahy yz ( ) = bz ( ) rˆ ( z ) + pz ( ) c ( z ) uz ( ) = az ( ) rˆ ( z ) qz ( ) c ( z ) Protože vše napravo jsou polynomy, jsou yz ( ), uz ( ) také polynomy a to pro každé pp., což bylo třeba zajistit. Délka posloupností je dána stupněm polynomů +1 Jediná možnost, jak ji pro některé pp. zkrátit, je vybrat řešení rovnice minimálního stupně pz ( ), qz ( ) Shrnutý postup řešení K nalezení silné verze deadbeat regulátoru je třeba a stačí řešit polynomiální rovnici az ( ) pz ( ) + bz ( ) qz ( ) = 1 a z možných řešení vybrat to minimálního stupně pz ( ), qz ( ) Řešitelnost: a, b nesoudělné (řiditelná a pozorovatelná soustava), dále nesmějí být skryté módy 1

11 Formulace problému: Deadbeat regulátor slabá verze Deadbeat slabá verze Najděte regulátor tak, aby výstupní posloupnost y měla konečnou délku, a to pro každé pp. Soustavy i regulátoru. Navíc tak, aby měla délku co nejkratší A současně musí být CL systém stabilní. Rozdíl proti silné verzi: vstup u může být nekonečně dlouhý, ale stabilní Řešení Zajímá nás jen teď jeden vztah a v něm už krátit můžeme proti b Rozdělíme b na stabilní a nestabilní faktory a položíme ap + bq = b + b p y = rˆ + c ap + bq ap + bq 1 + ( ) ( ) ( ) bz = b z b z 11

12 Deadbeat slabá verze Rovnici ap + bq = b + můžeme vydělit b + (neboť p musí být dělitelné) a dostaneme a + b q = 1, kde p = b + Potom vztah pro výstup přechází na y = b r + c Tedy výstup je polynomem pro všechny pp. Nejkratší pochod dostaneme výběrem řešení s min. stupně Ještě překontrolujeme vstup u: (není konečný, ale je stabilní) a q a q u = r c = r c ap + bq ap + bq b b ˆ + ˆ + Také celý CL systém je stabilní, neboť ap + bq = b + Řešení shrnuto 1 + Rozdělíme bz ( ) = b( z ) b( z ) Řešíme rovnici az ( ) z ( ) + b( z ) qz ( ) = 1 pro min. stupně Řešitelnost: ab, nesoudělné neboli gcd( ab, ) stabilní 12 ˆ

13 Regulátor 2DOF Automatické řízení - Kybernetika a robotika Pokud má řídicí systém referenční vstup Je přirozené použít regulátor se dvěma stupni volnosti (2DOF) qz ( ) rz ( ) uz ( ) = yz ( ) yr ( z) pz ( ) + pz ( ) pzuz ( ) ( ) = qzyz ( ) ( ) + rzy ( ) ( ) r z [ ] pro kauzalitu musí být deg p deg qz ( ), rz ( ) klasické řízení odchylkou (1DOF) je zvláštní případ, kdy při návrhu vypočteme ZV část ze známé rovnice qz ( ) = rz ( ) azpz ( ) ( ) + bzyz ( ) ( ) = cz ( ) kde vhodně volíme CL charakteristický polynom ze srovnání se stavovým přístupem plyne, že cz ( ) = cc( zc ) o( z) kde faktory jsou c ( z) = det zi F + GK, c ( z) = det zi F + LH c y r ( ) ( ) o rs () v c ˆ u 1 ps () bs () 1 as () qs () y 13

14 Přímá větev Automatické řízení - Kybernetika a robotika výsledný přenos celého systému je bzrz ( ) ( ) yz ( ) = yr ( z) appz ( ) ( ) + bzqz ( ) ( ) bzrz ( ) ( ) bzrz ( ) ( ) = yr( z) = yr( z) cz ( ) c( zc ) ( z) c o Přímou větev volíme např. tak, aby vykrátila póly pozorovatele tj. c ( o z ) rz ( ) tedy například jako r( z) = tc( z) o pak jsou řídicí signály zavedeny tak, že negenerují odchylku pozorování t konstantu volíme tak, abychom zajistili požadované statické zesílení obvykle má být statické zesílení = 1, takže nastavíme tbz ( ) yz ( ) = yr ( z) c ( z) t = cc (1) b(1) c 14

15 Diskrétní sledování asymptotické a deadbeat Asymptotické sledování je u diskrétních systémů stejné jako u spojitých rovnice jsou stejné ap + bq = m, f t + br = m, m stabilní Podmínky jsou stejné 1) gcd( ab, ) stabilní; 2) gcd( f, b) = 1 ; 3) f a Řešení je stejné v z i v z -1, až na to, že při řešení v z ještě musíme vybrat m patřičně vysokého stupně Na rozdíl od spojitého případu tu ale eistuje varianta deadbeat, tedy sledování za konečný počet kroků: Pokud postupujme v z, volíme n 1 mz ( ) = z pokud v z -1, volíme 1 mz ( ) = 1 a vybereme řešení minimálních stupňů (nastává koincidence) řešení eistuje, právě když gcd( ab, ) = 1 ostatní podmínky jsou stejné. 15

Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým

Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým Michael Šebek Automatické řízení 2013 21-4-13 Metody diskrétního návrhu Metody diskrétního návrhu, které jsou stejné (velmi

Více

Příklady k přednášce 24 Diskrétní řízení

Příklady k přednášce 24 Diskrétní řízení Příklady k přednášce 4 Diskrétní řízení Michael Šebek Automatické řízení 03 3-5-4 Automatické řízení - Kybernetika a robotika Vezměme opět dvojitý integrátor vzorkovaný s periodou h h h xk ( + ) 0 xk +

Více

19 - Polynomiální metody

19 - Polynomiální metody 19 - Polynomiální metody Automatické řízení 218 16-4-18 Opakování - Vlastnosti polynomů Polynomy netvoří těleso, ale okruh - obecně jimi nelze dělit beze zbytku! Proto existuje: dělitel, násobek, společný

Více

15 - Stavové metody. Michael Šebek Automatické řízení

15 - Stavové metody. Michael Šebek Automatické řízení 15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

19 - Polynomiální metody

19 - Polynomiální metody 19 - Polynomiální metody Automatické řízení 215 19-4-15 Opakování - Vlastnosti polynomů Polynomy tvoří okruh, ne těleso. Obecně nelze polynomy dělit. Proto existují: dělitel, násobek, společný dělitel,

Více

26 Nelineární systémy a řízení

26 Nelineární systémy a řízení 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 016 18-5-16 Lineární vs. nelineární Reálné systémy jsou většinou (ne vždy) nelineární, při relativně malých signálech (výchylkách) je často

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Nastavení parametrů PID a PSD regulátorů

Nastavení parametrů PID a PSD regulátorů Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum: 9. 1. 2010 Zadání Je dána

Více

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

21 Diskrétní modely spojitých systémů

21 Diskrétní modely spojitých systémů 21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,

Více

Příklady k přednášce 6 - Spojování a struktury

Příklady k přednášce 6 - Spojování a struktury Příklad k přednášce 6 - Spojování a truktur Michael Šebek Automatické řízení 07 7-3-8 Automatické řízení - Kbernetika a robotika Zpětnovazební pojení tavových modelů Odvození obecného případu (značení

Více

Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus

Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Michael Šebek Automatické řízení 018 1-3-18 Automatické řízení - Kybernetika a robotika Pro bod na RL platí (pro nějaké K>0) KL( s) = (k

Více

Soustavy rovnic pro učební obory

Soustavy rovnic pro učební obory Variace 1 Soustavy rovnic pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy rovnic

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Příklady k přednášce 15 - Stavové metody

Příklady k přednášce 15 - Stavové metody Příklady k přednášce 5 - Stavové metody Michael Šebek Automatické řízení 8 9-4-8 Příklad: Naivní návrh stavové ZV Naivní přístup je schůdný jen pro jednoduché případy, obvykle. řádu Uvažme soustavu (kyvadlo

Více

Youla-Kučerova parametrizace. Co to je?

Youla-Kučerova parametrizace. Co to je? Youla-Kučerova parametrizace. Co to je? Vladimír Kučera Český institut informatiky, robotiky a kybernetiky ČVUT Ústav teorie informace a automatizace AV ČR Slavnostní přednáška při příležitosti 50 let

Více

( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.

( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem. Vzorce pro dvojnásobný úhel Předpoklady: 0 Začneme příkladem Př : Pomocí součtových vzorců odvoď vzorec pro sin x sin x sin x + x sin x cos x + cos x sin x sin x cos x Př : Pomocí součtových vzorců odvoď

Více

Příklady k přednášce 16 - Pozorovatel a výstupní ZV

Příklady k přednášce 16 - Pozorovatel a výstupní ZV Příklady k přednášce 6 - Pozorovatel a výtupní ZV Michael Šebek Automatické řízení 08 6-4-8 Příklad: Pozorovatel pro kyvadlo naivně pro kyvadlo frekvencí ω 0 a rovnicemi x 0 x 0 navrhneme pozorovatel dvojitým

Více

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1 ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což

Více

Stavové modely a stavové řízení

Stavové modely a stavové řízení Stavové model a stavové řízení Tato publikace vznikla jako součást projektu CZ.04..03/3.2.5.2/0285 Inovace VŠ oborů strojního zaměření, který je spolufinancován evropským sociálním fondem a státním rozpočtem

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x

( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x 9 Vzorce pro dvojnásobný úhel II Předpoklady: 08 Př : Urči definiční obor výrazů a zjednoduš je a) ( sin cos ) sin x + cos x sin x x + x sin x b) cos x + cos x + sin x + cos x sin x a) x R sin x + cos

Více

Soustavy rovnic pro učební obor Kadeřník

Soustavy rovnic pro učební obor Kadeřník Variace 1 Soustavy rovnic pro učební obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy

Více

Automatizační technika. Regulační obvod. Obsah

Automatizační technika. Regulační obvod. Obsah 30.0.07 Akademický rok 07/08 Připravil: Radim Farana Automatizační technika Regulátory Obsah Analogové konvenční regulátory Regulátor typu PID Regulátor typu PID i Regulátor se dvěma stupni volnosti Omezení

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Pozorovatel, Stavová zpětná vazba

Pozorovatel, Stavová zpětná vazba Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu

Více

Limita ve vlastním bodě

Limita ve vlastním bodě Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než

Více

k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor

k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor METODICKÝ LIST k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor Téma DUM: spojitá regulace test 1 Anotace: Digitální učební materiál DUM - slouží k výuce regulátorů

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

1. Obyčejné diferenciální rovnice

1. Obyčejné diferenciální rovnice & 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

M - Algebraické výrazy

M - Algebraické výrazy M - Algebraické výrazy Určeno jako studijní text pro studenty dálkového studia a jako shrnující textpro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

Příklady k přednášce 20 - Číslicové řízení

Příklady k přednášce 20 - Číslicové řízení Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

14 - Moderní frekvenční metody

14 - Moderní frekvenční metody 4 - Moderní frekvenční metody Michael Šebek Automatické řízení 28 4-4-8 Loop shaping: Chování pro nízké frekvence Tvar OL frekvenční charakteristiky L(s)=KD(s)G(s) určuje chování, ustálenou odchylku a

Více

Stavový model a Kalmanův filtr

Stavový model a Kalmanův filtr Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,

Více

Kirchhoffovy zákony. Kirchhoffovy zákony

Kirchhoffovy zákony. Kirchhoffovy zákony Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy 7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

Příklady k přednášce 13 - Návrh frekvenčními metodami

Příklady k přednášce 13 - Návrh frekvenčními metodami Příklady k přednášce 13 - Návrh frekvenčními metodami Michael Šebek Automatické řízení 2015 30-3-15 Nastavení šířky pásma uzavřené smyčky Na přechodové frekvenci v otevřené smyčce je (z definice) Hodnota

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Západočeská univerzita. Lineární systémy 2

Západočeská univerzita. Lineární systémy 2 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,

Více

Ṡystémy a řízení. Helikoptéra Petr Česák

Ṡystémy a řízení. Helikoptéra Petr Česák Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné

Více

Přijímací zkouška na navazující magisterské studium 2017

Přijímací zkouška na navazující magisterské studium 2017 Přijímací zkouška na navazující magisterské studium 27 Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Sedmé cvičení bude vysvětlovat tuto problematiku:

Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Velmi stručně o parciálních derivacích Castiglianova věta k čemu slouží Castiglianova věta jak ji použít Castiglianova věta staticky určité přímé nosníky

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Regulační obvody se spojitými regulátory

Regulační obvody se spojitými regulátory Regulační obvody se spojitými regulátory U spojitého regulátoru výstupní veličina je spojitou funkcí vstupní veličiny. Regulovaná veličina neustále ovlivňuje akční veličinu. Ta může dosahovat libovolné

Více

Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat. .. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých

Více

M - Lomené algebraické výrazy pro učební obory

M - Lomené algebraické výrazy pro učební obory M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

3. přednáška 15. října 2007

3. přednáška 15. října 2007 3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

13 - Návrh frekvenčními metodami

13 - Návrh frekvenčními metodami 3 - Návrh frekvenčními metodami Michael Šebek Automatické říení 208 28-3-8 Návrh pomocí Bodeho grafu Automatické říení - Kybernetika a robotika Návrh probíhá v OL s konečným cílem lepšit stabilitu a chování

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

cv3.tex. Vzorec pro úplnou pravděpodobnost

cv3.tex. Vzorec pro úplnou pravděpodobnost 3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

š úř é ý ř ř Č á á ů š ř ů úř é ž ý ň ý á é úř ř ž ůž ž é á áš ů úř úř é é úř ů ž ž é ř ý Ďť ď ť š ý š ýř úř é Ý ý ř Č á á ů é š ř ů úř é ž ý ň ý á é úř ř ž ůž ž é á áš ů úř úř é é úř ů ž ž é ř ý ť ď ť

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

čitatel jmenovatel 2 5,

čitatel jmenovatel 2 5, . ZLOMKY Zlomek má následující tvar čitatel jmenovatel Příkladem zlomku může být například zlomek, tedy dvě pětiny. Jmenovateli se říká jmenovatel proto, že pojmenovává zlomek. Pětina, třetina, šestina

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky 0 Učivo Vysvětlení Př. + pozn. Zlomek vyjádření části celku část snědla jsem kousky celek a pizza byla rozdělena na kousky Pojem zlomek Vyjádření zlomku Základní tvar: čitatel a jmenovatel jsou nesoudělná

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz

Více

Pseudospektrální metody

Pseudospektrální metody Pseudospektrální metody Obecně: založeny na rozvoji do bázových funkcí s globálním nosičem řešení diferenciální rovnice aproximuje sumou kde jsou např. Čebyševovy polynomy nebo trigonometrické funkce tyto

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 6. kapitola. Nejmenší společný násobek In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 73 79. Persistent URL: http://dml.cz/dmlcz/403569

Více