Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D
|
|
- Miloslav Veselý
- před 6 lety
- Počet zobrazení:
Transkript
1 Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Miroslav Sýkora Kloknerův ústav, ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady
2 Obsah přílohy D D.1 Rozsah platnosti D.2 Značky D.3 Druhy zkoušek D.4 Plánování zkoušek D.5 Odvození návrhových hodnot D.6 Obecné zásady statistického hodnocení D.7 Stanovení jedné nezávislé vlastnosti (pevnosti) D.8 Stanovení modelů odolnosti (zkoušky prvků) 2
3 Obecné zásady statistického hodnocení Zkoušky jedné nezávislá vlastnost, např. pevnosti, modulu pružnosti: velmi malý počet zkoušek (n < 6) - statistické postupy se obtížně aplikují, je možné využít předchozí informace (např. o variabilitě) oddíl D.7, nebo Bayesovské postupy podle ISO 2394 větší počet zkoušek (n 6) běžné statistické postupy popřípadě doplněné předchozími informacemi oddíl D.7 Zkoušky celého prvku, pro který je k dispozici teoretický model oddíl D.8. 3
4 Dolní a horní kvantil teoretického modelu Hustota pravděpodobnosti ϕ(u) 0,4 0,3 0,2 σ U =1 σ U =1 0,1 p = 0,05 1- p = 0,05 u 0,05 = -1,645 μ U = 0 u 0,95 = 1,645 0,0-3,5-2,5-1,5-0,5 0,5 1,5 2,5 3,5 Normovaná náhodná veličina U=(X μ X )/σ X s normálním rozdělením 4
5 Kvantil teoretického modelu x p = μ + u p σ = μ (1+ u p V) Kvantil u p normované náhodné veličiny s normálním rozdělením. p ,001 0,010 0,050 0,100 0,200 0,500 u p -5,199-4,753-4,265-3,719-3,091-2,327-1,645-1,282-0,841 0,000 Kvantil u p normované náhodné veličiny s lognormální rozdělení. Pravděpodobnosti p α ,01 0,05 0,10 0,20 0,50 0,80 0,90 0,95 0, ,0-6,40-4,70-3,03-1,85-1,32-0,74 0,15 0,84 1,13 1,34 1,68 1,99 2,19 0,0-3,72-3,09-2,33-1,65-1,28-0,84 0,00 0,84 1,28 1,65 2,33 3,09 3,72 1,0-2,19-1,99-1,68-1,34-1,13-0,84-0, ,32 1,85 3,03 4,70 6,40 5
6 Kvantil lognormálního rozdělení x p μ 2 = exp u p ln(1 + V ) 2 1+ V x ( ) u V p μ exp p Kvantil Gumbelova rozdělení x p = x mod 1 c ln( ln( p)) μ (0,45+ 0,78ln( ln( p)))σ 6
7 Návrhové hodnoty ze souboru x i,i=1, n m X = ( x i ) /n, s X = (x i m X ) 2 /(n 1), V X = s X /m X 1. Charakteristická hodnota X k(n) se dělí dílčím součinitelem (popř. násobí převodním součinitelem) X d X = k( n) X γ = η k(n) m d = 2. Návrhová hodnota se stanoví přímo, s implicitním nebo explicitním uvážením konverze výsledků a požadované spolehlivosti X d = η d m X (1 k d,n V X ) m η γ X d m {1 k m X n V X {1 k n } V X } 7
8 Mez kluzu pro S měření Relative frequency Density Plot (Shifted Lognormal) - [A1_792] f yd f yk m X = Mpa s X = 23.3 Mpa V X = 0.08 a X = 0.96 f yd,001 = 243 MPa f yk,05 = 259 MPa Odlehlá pozorování Yield strength [MPa] 8
9 Mez kluzu pro S měření Relative Frequency Density Plot (Normal (Gauss)) - [A2_780] m X = MPa s X = 20.0 MPa V X = 0.07 a X = f yd,001 = 221 MPa f yk,05 = 254 MPa f yd f yk Yield strength [MPa] 9
10 Odhad kvantilu ze souboru Základní metody Pokryvná metoda: x p,cover - konfidence γ : P{x p,cover < x p } = γ Předpovědní metoda: x p,pred -pravděpodobnost p výskytu příští hodnoty x n+1 : P{x n+1 < x p,pred } = p Bayesovský přístup: kombinace pozorovaných dat (s průměrem m a směrodatnou odchylkou s) a předchozích dat (m, s ), pro kterou se stanoví charakteristiky (m, s ) - pak pokryvná nebo předpovědní metoda 10
11 10 Vliv konfidence Součinitele k p a -t p (1/n+1) 1/2 pro normální rozdělení a různé konfidence γ součinitele k p a t p (1/n+1) 1/2 k p pro γ = 0,95 5 k p pro γ = 0,90 k p pro γ = 0,75 1,64 t p (1/n+1) 1/2 n
12 Předpovědní metoda Soubor: x i, n, m, s, (σ) P(x n+1 < x p, pred ) = p Známé σ x p,pred = m + u p (1/n +1) 1/2 σ Neznámé σ - uvažuje se odhad s x p,pred = m + t p (1/n +1) 1/2 s 12
13 Odhad kvantilů podle Eurokódů Odpovídá přibližně konfidenci γ = 0,75 Součinitele k n pro 5% charakteristickou hodnotu. Rozsah souboru n Součinitel u p (1/n+1) 1/2, σ známé 2,31 2,01 1,89 1,83 1,80 1,77 1,74 1,72 1,68 1,67 1,64 - t p (1/n+1) 1/2, σ neznámé - - 3,37 2,63 2,33 2,18 2,00 1,92 1,76 1,73 1,64. Součinitele k n pro návrhovou hodnotu x d dominantní veličiny, P(X < x d ) = 0,001. Rozsah souboru n Součinitel u p (1/n+1) 1/2, σ známé 4,36 3,77 3,56 3,44 3,37 3,33 3,27 3,23 3,16 3,13 3,09 - t p (1/n+1) 1/2, σ neznámé ,4 7,85 6,36 5,07 4,51 3,64 3,44 3,09 13
14 Příklad odhadu kvantilu BETON: n = 5, m = 29,2 MPa, s = 4,6 MPa Pokryvná metoda Pro γ = 0,75: x p, cover = 29,2-2,46 4,6 =17,9 MPa Pro γ = 0,95: x p,cover = 29,2-4,20 Předpovědní metoda 4,6 = 9,9 MPa x p,pred = 29,2-2,33 4,6 =18,5 MPa 14
15 Závěrečné poznámky Při hodnocení zkoušek nejdříve ověřit výsledky na základě grafického znázornění Vyloučit chyby a odlehlá pozorování Materiálové vlastnosti se zpravidla popisují normálním nebo lognormálním rozdělením (V > 0,15) Porovnat kriticky nepřímé (prostřednictvím charakteristické hodnoty) a přímé stanovení návrhové hodnoty Prověřit předchozí informace (např. variabilitu, rozdělení) a využívat je obezřetně Bayesovský postup aplikovat po kritickém ověření apriorních informací Literatura: HOLICKÝ, M. MARKOVÁ, J. Základy teorie spolehlivosti a hodnocení rizik. ČVUT v Praze, 2005 HOLICKÝ, M., JUNG, K. & SÝKORA, M. Stanovení charakteristické pevnosti konstrukcí z betonu na základě zkoušek; In: Stavebnictví, číslo 03/2009, 2009, pp
Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D
Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -
Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D
PŘI PŘÍPRAVĚ PŘEDNÁŠKY BYLY VYUŽITY VÝSTUPY PROJEKTU: A/CZ0046/2/0013 ASSESSMENT OF HISTORICAL IMMOVABLES WWW.HERITAGE.CVUT.CZ Fond na podporu výzkumu, 1. Evropské kulturní dědictví, 1.1 Ochrana historických
Aktualizace modelu vlastnosti materiálu. Stanovení vlastností materiálů
podpora zaměstnanosti Aktualizace modelu vlastnosti materiálu Pro. Ing. Milan Holický, DrSc. a Ing. Miroslav Sýkora, Ph.D. ČVUT v Praze, Kloknerův ústav Stanovení vlastností materiálů při hodnocení existujících
STATISTICKÉ HODNOCENÍ ZKOUŠEK MATERIÁLOVÝCH VLASTNOSTÍ
STATISTICKÉ HODNOCENÍ ZKOUŠEK MATERIÁLOVÝCH VLASTNOSTÍ Prof. Ing. Milan Holický, PhD., DrSc., Ing. Karel Jung, Ing. Miroslav Sýkora, Ph.D. České vysoké učení technické v Praze, Kloknerův ústav, Šolínova
SPOLEHLIVOST STAVEBNÍCH KONSTRUKCÍ
SPOLEHLIVOST STAVEBNÍCH KONSTRUKCÍ Prof. Ing. Milan Holický, DrSc. Ing. Jana Marková, Ph.D. Ing. Miroslav Sýkora Kloknerův ústav ČVUT Tel.: 224353842, Fax: 224355232 E-mail:holicky@klok.cvut.cz 1 SSK4
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Úterý 12:00-13:40, C -219 Přednášky a cvičení:
Příloha D Navrhování pomocí zkoušek
D.1 Rozsah platnosti a použití Příloha D Navrhování pomocí zkoušek Příloha D uvádí pokyny pro navrhování na základě zkoušek a pro určení charakteristické nebo návrhové hodnoty jedné materiálové vlastnosti
Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D
Hooceí vlastostí ateriálů pole ČSN EN 1990, přílohy D Mila Holický Klokerův ústav ČVUT v Praze 1. Úvo 2. Kvatil áhoé veličiy 3. Hooceí jeé veličiy 4. Hooceí oelu 5. Příklay - poůcky ECEL Obecé zásay statistického
OVĚŘOVÁNÍ EXISTUJÍCÍCH MOSTŮ PODLE SOUČASNÝCH PŘEDPISŮ
OVĚŘOVÁNÍ EXISTUJÍCÍCH MOSTŮ PODLE SOUČASNÝCH PŘEDPISŮ Milan Holický, Karel Jung, Jana Marková a Miroslav Sýkora Abstract Eurocodes are focused mainly on the design of new structures and supplementary
2. Směrná úroveň spolehlivosti 3. Návaznost na současné předpisy 2. Ověření spolehlivosti požadované úřady, vlastníkem, pojišťovnami
Hodnocení existujících konstrukcí Zásady hodnocení podle ISO a TS DG6P0M050 Optimalizace sledování a hodnocení. Hodnocení musí vycházet ze skutečného stavu konstrukce, nutno ověřit průzkumem stavu objektu,
Statistické vyhodnocení zkoušek betonového kompozitu
Statistické vyhodnocení zkoušek betonového kompozitu Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Středa 10:00-11:40, C -204 Přednášky a cvičení: Statistické vyhodnocení
OVĚŘOVÁNÍ EXISTUJÍCÍCH BETONOVÝCH MOSTŮ POZEMNÍCH KOMUNIKACÍ
MINISTERSTVO DOPRAVY ODBOR SILNIČNÍ INFRASTRUKTURY TP 224 TECHNICKÉ PODMÍNKY OVĚŘOVÁNÍ EXISTUJÍCÍCH BETONOVÝCH MOSTŮ POZEMNÍCH KOMUNIKACÍ Schváleno: MD-OSI čj. 586/10-910-IPK/1 ze dne 12.7.2010, s účinností
Mezní stavy. Obecné zásady a pravidla navrhování. Nejistoty ve stavebnictví. ČSN EN 1990 a ČSN ISO návrhové situace a životnost
Obecné zásady a pravidla navrhování Prof. Ing. Milan Holický, DrSc. Kloknerův ústav ČVUT, Šolínova 7, 66 08 Praha 6 Tel.: 4 353 84, Fax: 4 355 3 E-mail: holicky@klok.cvut.cz Návrhové situace Nejistoty
Zásady navrhování konstrukcí
Zásady navrhování konstrukcí Přednáška - doc. Ing. Jana Marková, Ph.D. markova@klok.cvut.cz Kloknerův ústav ČVUT, Šolínova 7, 166 08 Praha 6 Cvičení - Ing. Martin Šolc solc@kme.zcu.cz Zavěšený most v Millau
2. přednáška, Zatížení a spolehlivost. 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Kombinace
2. přednáška, 4.3.2013 Zatížení a spolehlivost 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Kombinace Navrhování podle norem Navrhování podle norem Historické a empirické metody Dovolené napětí
NK 1 Zatížení 1. Vodojem
NK 1 Zatížení 1 Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta
Revize ČSN (obecné zásady)
Revize ČSN 73 0038 (obecné zásady) www.klok.cvut.cz/projekt-naki/ Miroslav Sýkora a Jana Marková ČVUT v Praze, Kloknerův ústav Cíle revize Průzkumy existujících konstrukcí Analýza spolehlivosti Aktualizace
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
ČSN ISO Hodnocení existujících konstrukcí
ČSN ISO 13822 Hodnocení existujících konstrukcí Jana Marková a Milan Holický Kloknerův ústav ČVUT v Praze Úvod ISO 13822 (ČSN 73 0038) Národní přílohy NA až NF Příklady Obsah mezinárodní normy ISO 13822
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 8 Normové předpisy 2012 Spolehlivost konstrukcí,
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
NK 1 Zatížení 1. Vodojem
NK 1 Zatížení 1 Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta
Trvanlivost je schopnost konstrukce odolávat vlivům
Prof.Ing. Milan Holický, DrSc. Kloknerův ústav ČVUT Trvanlivost je schopnost konstrukce odolávat vlivům prostředí. Rozlišují se dva základní druhy vlivů: Fyzikální: Chemické: - abraze, otěr - sulfáty,
OBECNÉ ZÁSADY NAVRHOVÁNÍ
OBECNÉ ZÁSADY NAVRHOVÁNÍ Prof. Ing. Milan Holický, DrSc. ČVUT, Šolínova 7, 166 08 Praha 6 Tel.: 224 353 842, Fax: 224 355 232 E-mail: holicky@klok.cvut.cz, http://web.cvut.cz/ki/710/prednaskyfa.html Metody
Metody teorie spolehlivosti
Metoy teorie spolehlivosti Historické metoy mpirické metoy Kalibrace Pravěpoobnostní metoy FOM úroveň II AKTNÍ úroveň III Kalibrace MTOD NÁVH. BODŮ Kalibrace MTODA DÍLČÍCH SOUČINITLŮ úroveň I Nejistoty
Zatížení stálá a užitná
ZÁSADY OVĚŘOVÁNÍ EXISTUJÍCÍCH KONSTRUKCÍ Zatížení stálá a užitná prof. Ing. Milan Holický, DrSc. Kloknerův ústav, ČVUT v Praze 1. Zatížení stálá 2. Příklad stanovení stálého zatížení na základě zkoušek
Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem
2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Směrnice rady 89/106/EHS (CPD) Hlavní požadavky
Zásady navrhování podle Eurokódů Školení, 2011 Milan Holický Kloknerův ústav ČVUT, Šolínova 7, 166 08 Praha 6 Zavěšený most v Millau Tvorba Eurokódů Návrhové situace, mezní stavy Nejistoty, spolehlivost
Vρ < πd 2 f y /4. π d 2 f y /4 - Vρ = 0
5 ZÁKLADY TOI SPOLHLIVOSTI 5.1 Základní úvahy Základní úlohou teorie spolehlivosti stavebních konstrukcí je rozbor zdánlivě jednoduché podmínky mezi účinkem zatížení a odolností konstrukce ve tvaru nerovnosti
Mechanické vlastnosti betonu a oceli
Mechanické vlastnosti betonu a oceli Pracovní diagram betonu Třídy betonu podle EN 1992 Smršťování Dotvarování Pracovní diagram oceli Krycí vrstva betonu Podstata železobetonu Otázky ke zkoušce Program
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Mechanické vlastnosti betonu a oceli
Mechanické vlastnosti betonu a oceli Pracovní diagram betonu Třídy betonu podle EN 1992 Smršťování Dotvarování Pracovní diagram oceli Krycí vrstva betonu Podstata železobetonu Otázky ke zkoušce Program
Dotvarování. Podmínka pro získání zápočtu je věcně správné (výpočty a výkresy) zpracování uvedených cvičení včetně účasti na cvičeních.
Pracovní diagram betonu Třídy betonu podle EN 1992 Smršťování Dotvarování Pracovní diagram a oceli Krycí vrstva betonu Podstata železobetonu e o Otázky ke zkoušce 1.a 2. 1. Výkres tvaru. Předběžné rozměry
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
133YPNB Požární návrh betonových a zděných konstrukcí. 4. přednáška. prof. Ing. Jaroslav Procházka, CSc.
133YPNB Požární návrh betonových a zděných konstrukcí 4. přednáška prof. Ing. Jaroslav Procházka, CSc. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Zjednodušené
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
ČSN ISO 13822 73 0038 Hodnocení existujících konstrukcí ČKAIT Brno, 13.9.2012
ČSN ISO 13822 73 0038 Hodnocení existujících konstrukcí ČKAIT Brno, 13.9.2012 Vocational Training in Assessment of Existing Structures CZ/11/LLP-LdV/TOI/134005 Milan Holický Kloknerův ústav ČVUT Úvod Charakteristika
Téma 3 Metoda LHS, programový systém Atena-Sara-Freet
Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 3 Metoda LHS, programový systém Atena-Sara-Freet Parametrická rozdělení Metoda Latin Hypercube Sampling (LHS) aplikovaná v programu Freet
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Stavební obzor 2001, to be published VLIV ALTERNATIVNÍCH POSTUPŮ V EN 1990 NA SPOLEHLIVOST KONSTRUKCÍ
Stavební obzor 2001, to be published VLIV LTRNTIVNÍCH POSTUPŮ V N 1990 N SPOLHLIVOST KONSTRUKCÍ oc.ing. Milan Holický, rsc., Ph., Ing. Jana Marková, Ph. ČVUT v Praze, Kloknerův ústav Souhrn Základní evropská
Co to je existující konstrukce? - nosná část dokončené konstrukce Hodnocení existujících konstrukcí se liší od navrhování:
Principy hodnocení a ověřování existujících konstrukcí podle ČSN ISO 13822 a ČSN 73 0038 Milan Holický, Miroslav Sýkora (miroslav.sykora@cvut.cz) Kloknerův ústav ČVUT Motivace pro (polo)pravděpodobnostní
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY. Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku.
PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku Skladba stropu: Podlaha, tl.60mm, ρ=400kg/m 3 Vlastní žb deska, tl.dle návrhu,
5. Odhady parametrů. KGG/STG Zimní semestr
Základní soubor Výběr, výběrový (statistický) soubor Náhodný výběr Princip Odhad neznámých parametrů základního souboru na základz kladě charakteristik výběru. Přecházíme z části na celek, zevšeobec eobecňujeme
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
2. přednáška, Zatížení a spolehlivost. 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Zatížení sněhem
2. přednáška, 25.10.2010 Zatížení a spolehlivost 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Zatížení sněhem Navrhování podle norem Navrhování podle norem Historickéa empirickémetody Dovolenénapětí
Václav Kučera TZÚS Praha
hodně havárií Václav Kučera TZÚS Praha seminář Zásady hodnocení existujících konstrukcí-řijen 26 Hodně sněhu řidič kamionu 2 Hodně sněhu 8 6 4 2 96 97 98 99 2 2 Hodně sněhu Josef Lada Hrusice Hodně sněhu-čhmú
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33
1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
OVĚŘOVÁNÍ EXISTUJÍCÍCH KONSTRUKCÍ PODLE ISO 13822
OVĚŘOVÁNÍ EXISTUJÍCÍCH KONSTRUKCÍ PODLE ISO 13822 VERIFICATION OF EXISTING STRUCTURES ACCORDING TO ISO 13822 Prof. Ing. Milan Holický, DrSc., PhD., Ing. Jana Marková, Ph.D. Kloknerův ústav ČVUT Anotace:
2 Materiály, krytí výztuže betonem
2 Materiály, krytí výztuže betonem 2.1 Beton V ČSN EN 1992-1-1 jsou běžné třídy betonu (C12/15, C16/20, C20/25, C25/30, C30/37, C35/45, C40/50, C45/55, C50/60) rozšířeny o tzv. vysokopevnostní třídy (C55/67,
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních
NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU
NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU Vypracoval: Zodp. statik: Datum: Projekt: Objednatel: Marek Lokvenc Ing.Robert Fiala 07.01.2016 Zastínění expozice gibonů ARW pb, s.r.o. Posudek proveden dle: ČSN EN
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
Navrhování - nalezení rozměrů prvků konstrukční soustavy - dosáhnout požadované provozní spolehlivosti navrhovaného inženýrského díla
Základy teorie navrhování konstrukcí 1. Základní pojmy, vztahy, definice Navrhování - nalezení rozměrů prvků konstrukční soustavy - dosáhnout požadované provozní spolehlivosti navrhovaného inženýrského
OBECNÉ ZÁSADY NAVRHOVÁNÍ
OBECNÉ ZÁSADY NAVRHOVÁNÍ Prof. Ing. Milan Holický, DrSc. ČVUT, Šolínova 7, 166 08 Praha 6 Tel.: 224 353 842, Fax: 224 355 232 email: milan.holicky@klok.cvut.cz, http://www.klok.cvut.cz Pedagogická činnost
NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ
NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ Vypracoval: Zodp. statik: Datum: Projekt: Objednatel: Marek Lokvenc Ing.Robert Fiala 07.01.2016 Zastínění expozice gibonů ARW pb, s.r.o. Posudek proveden dle: ČSN EN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
Projekt CZ.04.3.07/4.2.01.1/0005 INOVACE METOD HODNOCENÍ EXISTUJÍCÍCH STAVEBNÍCH KONSTRUKCÍ
Projekt CZ.04.3.07/4.2.01.1/0005 INOVACE METOD HODNOCENÍ EXISTUJÍCÍCH STAVEBNÍCH KONSTRUKCÍ Projekt je podporován Evropským sociálním fondem v ČR a státním rozpočtem ČR v rámci Jednotného programového
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
2 ZATÍŽENÍ KONSTRUKCÍ PODLE ČSN EN : 2004
2 ZATÍŽENÍ KONSTRUKCÍ PODLE ČSN EN 1991-1-2: 24 2.1 Obsah normy ČSN EN 1991-1-2:24 Zatížení konstrukcí, Obecná zatížení, Zatížení konstrukcí vystavených účinkům požáru uvádí všechny potřebné požadavky
SBORNÍK. k semináři konaném 12. dubna 2006 v Praze v Arcibiskupském semináři
SBORNÍK ZÁSADY HODNOCENÍ EXISTUJÍCÍCH KONSTRUKCÍ k semináři konaném 12. dubna 2006 v Praze v Arcibiskupském semináři Projekt CZ.04.3.07/4.2.01/0005 INOVACE METOD HODNOCENÍ EXISTUJÍCÍCH STAVEBNÍCH KONSTRUKCÍ
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
MPO - FT-TA5/076. Fajkus M., Rozlívka L. INSTITUT OCELOVÝCH KONSTRUKCÍ, s. r. o. Základní materiálové normy oceli pro konstrukce
MPO - FT-TA5/076 Výzkum vlastností stávajících a nově vyvíjených patinujících ocelí zhlediska jejich využití pro ocelové konstrukce Etapa 2 Návrhové hodnoty patinujících ocelí na základě reálných hodnot
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Cvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS
Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 3 Posudek únosnosti ohýbaného prutu Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Katedra stavební
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.
ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
ANALÝZA RIZIK MOŽNOSTÍ POSUZOVÁNÍ CHARAKTERISTICKÝCH HODNOT VLASTNOSTÍ STAVEBNÍCH MATERIÁLŮ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ÚSTAV SOUDNÍHO INŽENÝRSTVÍ INSTITUTE OF FORENSIC ENGINEERING ANALÝZA RIZIK MOŽNOSTÍ POSUZOVÁNÍ CHARAKTERISTICKÝCH HODNOT VLASTNOSTÍ STAVEBNÍCH
Projekt CZ.04.3.07/4.2.01.1/0005 INOVACE METOD HODNOCENÍ EXISTUJÍCÍCH STAVEBNÍCH KONSTRUKCÍ
Projekt CZ.04.3.07/4.2.01.1/0005 INOVACE METOD HODNOCENÍ EXISTUJÍCÍCH STAVEBNÍCH KONSTRUKCÍ Projekt je podporován Evropským sociálním fondem v ČR a státním rozpočtem ČR v rámci Jednotného programového
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI
1. cvičení ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI Podmínky pro uznání části Konstrukce aktivní účast ve cvičeních, předložení výpočtu zadaných příkladů. Pomůcky pro práci ve cvičeních psací potřeby a kalkulačka.
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr