široké uplatnění konstrukcí, spodní stavbou Úvod jedna jsou konstrukce Obr. 1

Rozměr: px
Začít zobrazení ze stránky:

Download "široké uplatnění konstrukcí, spodní stavbou Úvod jedna jsou konstrukce Obr. 1"

Transkript

1 Integrované želeniční mosty Ing. Jaromír Kříže, Ph.D., Ing. Software Dlubal, s.r.o. Příspěve se abývá problematiou integrovaných mostů, teré v řaděě emí nacháejí široé uplatnění jao želeniční mostyy rátých a středních ropětí. Integrované mosty jsou onstruce be ložise, přičemž ž napojení nosné onstruce na opěry je obvyle rámové. oto onstruční uspořádáníí vede výranému spolupůsobení mei nosnou onstrucí, spodní stavbou a přilehlou eminou. Hlavním problémemm při praticém navrhování integrovaných mostů je správné ohlednění vlivu eminy.. V příspěvu je popsána metoda, terá se touto problematiou podrobně abývá. Metoda je pracována ve formě příručy [1], terá je vhodná pro použití v inženýrsé prai. Úvod Integrované želeniční mosty se v řadě emí stávají stále obvylejšímm typem mostní onstruce. Uplatňuji se jao j rátéé želeniční nadjedy o jednom poli, ale i jao dlouhé údolní estaády s větším množstvím polí []. Hlavnímm specifiemm integrovaných mostů je vyloučení ložise a použití rámového napojení nosné onstruce na spodní stavbu. oto onstruční uspořádání přináší oproti tradičním mostům následující výhody: jednodušení a rychlení výstavby (díy rámovému působení může být spodní stavba výraněě subtilnější, navíc, jsou-li opěry aloženy na pilotách, stačí obvyle jedna řada pilot místo dvou), vyšší životnost mostní onstruce be nutnosti pravidelné údržby a výměny ložise, větší robustnost díy vícenásobnéé staticé neurčitosti. Použití integrovaných mostů přináší vláštnosti hledisa návrhu. Docháí výranému spolupůsobení mei nosnou onstrucí, spodní stavbou a přilehlou eminou. Vliv eminy je patrný vláště při teplotní epani mostu, dy jsou opěry atlačovány do tělesa t ásypu. Díy vájemné interaci je nutné nosnou onstruci, spodní stavbu a eminu ahrnout do společného staticého modelu, přičemž vliv eminy se modeluje pružným podepřením spodní stavby, vi obr. 1. Hlavním problémemm při praticém navrhování integrovaných mostů je stanovení odpovídajících tuhostí pružného podepření. Metoda popsaná v článu slouží výpočtu těchto tuhostí. Obr. 1 Geometrie a staticý model integrovaného mostu

2 Metoda výpočtu modulů reace podloží Metoda se abývá výpočtem tuhostí pružného podepření jednotlivých částí spodní stavby integrovaných mostů, teré se nacháejí v ontatu se eminou. uhosti pružného podepření jsou vyjádřeny pomocí modulů reace podloží h,, a p, de: h je modul reace na opěrách ve vodorovném směru, vyjadřující odpor eminy ásypového línu při atlačování opěr do eminy, je modul reace pod plošným áladem ve svislém směru, vycháející e stlačitelnosti eminy v podloží, je modul reace pod plošným áladem ve vodorovném směru, vyjadřující odpor áladové spáry proti vodorovným posunům, p je modul reace na pilotách ve vodorovném směru, vyjadřující příčné podepření piloty přilehlou eminou. Metoda obsahuje obecné vorce, tabuly a grafy, pomocí terých le jednotlivé moduly reace vypočítat. Výpočet modulů reace h je možné použít pro želeobetonové opěry, u terých nenastávají výrané ohybové ormace vlivem vodorovných emních tlaů. Vypočtené hodnoty modulů reace h le apliovat na opěry aložené na plošných áladech nebo pilotách. Moduly reace h se vypočítají v ávislosti na těchto parametrech: výša opěry, vodorovný posun horního a dolního once opěry směrem do ásypu, typ eminy v ásypu. Moduly reace a se vypočítají v ávislosti na těchto parametrech: roměry plošných áladů, svislé a vodorovné atížení plošného áladu, typ a třída eminy v podloží pod plošným áladem. Výpočtem modulů reace p se metoda neabývá. K jejich stanovení je třeba použít jinou odbornou literaturu []. Metoda je použitelná cela obecně pro široé spetrum integrovaných mostů. Le jí apliovat na integrované mosty o jednom či více polích s libovolným typem nosné onstruce, tj. na mosty ocelobetonové, želeobetonové, případně prefabriované sládající se předpjatých či jiných prefabriátů. Výpočet modulů reace h Metoda uvádí obecný postup, pomocí terého le stanovit průběh modulů reace h po výšce opěry. Průběh modulů h ávisí na působu přemístění opěry do ásypu vlivem teplotních a jiných účinů. Přemístění opěry do ásypu je inováno vodorovným posunem horního once opěry u a vodorovným posunem dolního once opěry u B. Závislost průběhu modulů reace h na působu přemístění opěry uauje obr.. Na vodorovné ose jsou vyneseny hodnoty modulů reace h, na svislé hlouba pod terénem. Metoda rolišuje tři působy přemístění opěry: přemístění opěry posunem (u = u B ): Průběh modulů reace h se v tomto případě uvažuje pomocí lineární řivy, terá je inovaná bodem 1 na horním onci opěry a bodem na dolním onci opěry. Mei body 1 a se v hloubce nacháí meilehlý bod. přemístění opěry rotací (u B = ): Průběh modulů reace h se v tomto případě uvažuje pomocí bilineární řivy R, terá je inovaná body 1, R a R. Bod 1 je společný s řivou, bod R se nacháí ve stejné hloubce pod terénem jao. Bod R se nacháí na spodním onci opěry a leží na svislici s bodem R.

3 přemístění opěr ombinací posunuu a rotace (u > u B > ): Průběhyy modulů reace jsou uvažovány bilineární řivou M, terá leží mei řivami a R. Křiva M je inovány body 1, M a M. Hlouba bodu M pod terénem jee shodná s body a R. Polohu bodů M mei body a R le ísat lineární interpolací dle hodnoty posunu ub, B nacháejícího se v romeí odd nuly do u. Bod M leží na dolním onci opěry. Jeho polohu le ísat interpolací mei bodyy a R. Aby bylo možné řivy, R a M pro onrétní případ stanovit, je nutnéé inovat body 1, R a. U aždého výše uvedených bodůů je nutné inovat modul reace h, u bodu R ještěě jeho hloubu. K tomu slouží rovnice (1) a (): h Řešený přílad A E u B E A E u B E de: A až D jsou součinitele ávislé na výšce opěry a typu eminy, E ormační modul eminy ásypu v MPa v suchémm stavu, u vodorovný posun horního once opěry v mm. Stanovte průběh modulů reace r h po výšce opěry. Opěraa je náorněná na obr.. Výša opěry H a = 6, m. Zásyp a opěrou je proveden písčitého materiálu s ormačním modulem E = MPa, přičemž se předpoládáá jeho důladné hutnění. Vodorovný posun horníhoo once opěry u =, mm, vodorovný posun dolního once opěry u B = 1, mm. Řešení: Přemístění opěry je ombinací posunu a rotace. Průběh h je proto inován řivou M, terá bude stanovena ve třech rocích. V prvnímm rou stanovíme lineární řivu a předpoladu u = u B =,, mm. Moduly h v bodech 1 a se vypočítají rovnice (1), hlouba rovnice r (). Součinitele A, B, C, D jsou pro výšu opěry 6, m a písčitou eminu v ásypu shrnuty v tab. 1. Modul h v bodě b see určí interpolací mei body 1 a. - 8, 5.., 5, 5.,., h,1,, 1MN/m h, Obr. Průběhy modulů h po výšce opěry C u C u D - 1, 6.., 18, 7. 1,.,, 7 7, 9MN/mM D (1) ()

4 , 8..,,. 18,.,, 5,7 m h, h,1 1 Ve druhém rou stanovíme řivu R. Předpoládáme u =, mm a u B =, mm. K výpočtu bodů modulů h v bodech R a R použijme rovnici (1) a tabulu 1: h, R h, R Ve třetím rou stanovíme výslednouu řivu M. Moduly reace h v bodech M a M ísáme interpolací mei řivami a R: h, M h, R h, M h, R ( h, H a - 1, 6.., 19,.,.,, 9 8, MN/mm ( h, R ( h, R h,1 u u ) h, h, ) u ) u (7, 9, 1).,7, 1, 8MN/m 6, Výsledný průběh modulů h po výšce opěry je vyreslen na obr. o. B B (8,,8).1, 8, 6,9 MN/m, (8, 7,9).1, 8, 8, MN/m, Bod A Součinitel B C D 1-8,5 5,5,, R -1,6-1,6,8 19,,,9 18,7 1,,7, 1,8,5 ab. 1 Součinitele A, B, C, D pro Ha = 6, m Obr. Geometriee opěry a průběh modulů h Výpočet modulů reace a Při výpočtu modulů reacee a see vycháí předpoladu, že jejichh roložení je po celé ploše áladu onstantní. Je-li podloží pod plošným áladem tvořeno eminou poue jedné třídy, vypočítají se moduly reace a dle rovnic () a (): K L f M E N W () P f f Q f R S f G U W () de: K až U W, W E, f, f G jsou součinitelee ávislé na roměrechh áladu a třídě eminy, součinitele ávislé na úrovni podemní vody, ormační a smyový modul eminyy v MPa v suchém stavu, svislé a vodorovné napětí v áladové spáře v N/m.

5 V případě jemnornných emin je vlivv f na modul reace anedbatelný. Rovnice () se tedy reduujee na tvar: - S f V prai nastávají případy, dy je podloží pod áladem vrstevnaté, to namená, že je tvořeno eminami růných tříd. Při výpočtu modulů reace s a s vrstevnatého podloží se vycháí obecného principu, že převrácená hodnota h celového modulu reace vrstevnatého podloží se rovná součtu převrácených hodnot modulů jednotlivých vrstev. Sládá-li se vrstevnaté podloží n vrstev, výsledné moduly reace s a s se vypočtou dle rovnic (6) a (7): n n 1 1 s i 1 s (6), (7) i, i 1 i de: i, i jsou moduly reace i-té vrstvy podloží. Moduly reace i a i se vypočtou pomocí rovnic (8) a (9): i i (8), (9) ur urb, ur urb de:, jsou svislé a vodorovné moduly reace určené é dle vtahů () až (5) pro případ, dy je celé podloží pod álademm tvořeno poue eminou i-té vrstvy, u r, u r relativní svislý a vodorovný posun na horním oraji i-té vrstvy (bod, vi obrr ), u rb, u rb relativní svislý a vodorovný posun na dolním oraji i-té vrstvy (bod B, vi obrr ). Relativní posuny u r, u r, u rb a u rb se stanoví jednotového grafu na obr.. Jednotový graf obrauje ávislost relativních posunů u r na n relativních hloubách r. Je-li i-tá vrstva omeena body a B ležících v hloubáchh a B pod terénem, le relativní hlouby r a rb stanovit rovnic () a (11): r H s, de:, H s B rb -1 G U H B s W -1 jsou hlouby bodůů a B vymeující i-tou vrstvu, mocnost emníhoo tělesa. (5) (), (11) Mocnosti emních těles H s jsou pro jednotlivé třídy emin a hodnoty svislého atížení áladu tabe- hloube r a rb i-té vrstvy le lovány v [1]. Na áladě relativních jednotového grafu odečíst rela a u rb. tivní posuny u r, u r, u rb Relativní posuny ve svislém směru u r a u rb se odečítají větve grafu pro svislý směr, relativní posuny ve vodorovném směru u r a u rb se odečítají větve pro vodorovný směr. Obr. Jednotový graff vrstevnatéhoo podloží

6 Použití a rosah platnosti metody Metodu výpočtu modulů reace h le použít a těchto předpoladů: most má želeobetonové opěry, teré při atlačování do ásypu vyaují malé ohybové ormace. Výša opěr se pohybuje v rosahu -15 m, vodorovné posuny horního a dolního once opěry u a u B se pohybují v romeí -6 mm. ímto ritériem je dána maimální celová déla nosné onstruce v ávislosti na jejím typu (betonová, spřažená, ocelová) a uvažovaném rovnoměrném ohřátí, pro ásyp se předpoládají nesoudržné, nenamravé písčité nebo štěrovité materiály. Dále se předpoládá, že ásyp je odvodněný a hutněný na hodnotu relativní hutnosti I D =,75 a vyšší. Metodu výpočtu modulů reace a le použít a těchto předpoladů: půdorysné roměry áladů jsou v rosahu 6 8 m, pod áladem jsou písčité eminy S1-S5, štěrovité eminy G1-G5 a jemnornné eminy F1-F6 s parametry dle lasifiace uvedené v [], svislé a vodorovné napětí f a f v áladové spáře se pro jednotlivé třídy emin v podloží pohybuje v rosahu inovaném v [1]. Vešeré součinitele použité v rovnicích (1) až (11) le nalét v [1]. Metoda výpočtu modulů h,, a byla odvoena na áladě numericého modelování. Přitom byl použit pružnoplasticý mohr-coulombův materiálový model eminy. Z rovnic (1) až (5) je patrné, že vypočtené moduly reace ávisí na veliosti atížení. U modulů h se atížením roumí posuny opěry u a u B, u modulů a pa svislé a vodorovné napětí v áladové spáře f a f. ímto působem je ve výpočtu modulů reace ahrnuto nelineární pružnoplasticé chování eminy. Vypočítáme-li moduly reace pro dvě růná atížení, le stanovit míru plastiování eminy. Budou-li výsledy v obou případech přibližně stejné, převládá pružné chování eminy. V opačném případě docháí jejímu výranějšímu plastiování. o v případě ásypu a opěrami obecně není žádoucí, vláště jedná-li se o posuny opěr v důsledu cylicých teplotních měn. Jaým působem se vypočítané moduly reace použijí ve staticém modelu integrovaného mostu ávisí na úvae projetanta. Je možné vypočítat moduly reace pro jedno či více repreentativních atížení a ty apliovat jao lineárně pružná podepření spodní stavby. Alternativně le pomocí metody inovat pružné podepření spodní stavby, jehož tuhost je proměnná. Závěr Článe se abývá spolupůsobením integrovaných mostů se eminou. Zemina je modelována jao pružné podepření spodní stavby, přičemž jeho tuhost je vyjádřena pomocí modulů reace pružného podloží. V článu je popsána metoda, s jejíž pomocí le moduly rece vypočítat. Metoda je pracována ve formě příručy [1] vhodné pro použití v inženýrsé prai. Příruča popisuje metodu v jejím plném rosahu a obsahuje něoli řešených příladů demonstrujících její praticé použití. Literatura: [1] Kříže, J.: Integrované mosty spolupůsobení se eminou, [] Buba, R., Stumpf, D.: Integrální želeniční mosty v SRN a jejich výhody pro minimaliaci doby výlu, Želeniční mosty a tunely sborní příspěvů, 7 [] Masopust, J.: Vrtané piloty, Čeně a Ježe, 199 [] ČSN 7 1: Zaládání staveb, Vydavatelství ÚNM, 1987

INTEGROVANÉ MOSTY SPOLUPŮSOBENÍ SE ZEMINOU

INTEGROVANÉ MOSTY SPOLUPŮSOBENÍ SE ZEMINOU INTEGROVANÉ MOSTY SPOLUPŮSOBENÍ SE ZEMINOU Jaromír Kříže PŘEDMLUVA Příruča Integrované mosty - spolupůsobení se zeminou je praticou pomůcou projetování integrovaných mostů. Integrované mosty jsou mostní

Více

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN PŘÍKLAD VÝPOČTU RÁU PODLE ČS E 99-- Jaub Dolejš*), Zdeně Sool**).Zadání avrhněte sloup plnostěnného dvouloubového rámu, jehož roměr jsou patrné obráu. Horní pásnice příčle je po celé délce ajištěna proti

Více

Příklad zatížení ocelové haly

Příklad zatížení ocelové haly 4. Zatížení větrem Přílad haly Zatížení stavebních onstrucí Přílad atížení ocelové haly Zadání Určete atížení a maximální možné vnitřní síly na prostřední rám halového jednolodního objetu (vi obráe). Celová

Více

Prvky betonových konstrukcí BL01 10 přednáška

Prvky betonových konstrukcí BL01 10 přednáška Prvy betonových onstrucí BL0 0 přednáša ŠTÍHLÉ TLAČENÉ PRVKY chování štíhlých tlačených prutů chování štíhlých onstrucí metody vyšetřování účinů 2. řádu ŠTÍHLÉ TLAČENÉ PRVKY POJMY ztužující a ztužené prvy

Více

Sedání piloty. Cvičení č. 5

Sedání piloty. Cvičení č. 5 Sedání piloty Cvičení č. 5 Nelineární teorie (Masopust) Nelineární teorie sestrojuje zatěžovací křivku piloty za předpokladu, že mezi nulovým zatížením piloty a zatížením, kdy je plně mobilizováno plášťové

Více

pracovní verze pren 13474 "Glass in Building", v níž je uveden postup výpočtu

pracovní verze pren 13474 Glass in Building, v níž je uveden postup výpočtu POROVNÁNÍ ANALYTICKÉHO A NUMERICKÉHO VÝPOČTU NOSNÉ KONSTRUKCE ZE SKLA Horčičová I., Netušil M., Eliášová M. Česé vysoé učení technicé v Praze, faulta stavební Anotace Slo se v moderní architetuře stále

Více

ÚNOSNOST A SEDÁNÍ MIKROPILOT TITAN STANOVENÉ 3D MODELEM MKP

ÚNOSNOST A SEDÁNÍ MIKROPILOT TITAN STANOVENÉ 3D MODELEM MKP Dr.Ing. Hyne Lahuta VŠB-TU Ostrava, Faulta stavební, atedra geotechniy e-mail: hyne.lahuta@vsb.cz Prof.Ing. Josef Aldorf, DrSc. VŠB-TU Ostrava, Faulta stavební, atedra geotechniy e-mail: josef.aldorf@vsb.cz

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

Použitelnost. Obvyklé mezní stavy použitelnosti betonových konstrukcí podle EC2: mezní stav omezení napětí, mezní stav trhlin, mezní stav přetvoření.

Použitelnost. Obvyklé mezní stavy použitelnosti betonových konstrukcí podle EC2: mezní stav omezení napětí, mezní stav trhlin, mezní stav přetvoření. Použitelnost Obvylé mezní stavy použitelnosti betonových onstrucí podle EC2: mezní stav omezení napětí, mezní stav trhlin, mezní stav přetvoření. je potřebné definovat - omezující ritéria - návrhové hodnoty

Více

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná

Více

kde je rychlost zuhelnatění; t čas v minutách. Pro rostlé a lepené lamelové dřevo jsou rychlosti zuhelnatění uvedeny v tab. 6.1.

kde je rychlost zuhelnatění; t čas v minutách. Pro rostlé a lepené lamelové dřevo jsou rychlosti zuhelnatění uvedeny v tab. 6.1. 6 DŘEVĚNÉ KONSTRUKCE Petr Kulí Kapitola je zaměřena na oblematiu navrhování vů a spojů dřevěných onstrucí na účiny požáru. Postupy výpočtu jsou uázány na příladu návrhu nosníu a sloupu. 6. VLASTNOSTI DŘEVA

Více

6 Mezní stavy únosnosti

6 Mezní stavy únosnosti 6 Mezní stavy únosnosti U dřevěných onstrucí musíme ověřit jejich mezní stavy, teré se vztahují e zřícení nebo jiným způsobům pošození onstruce, při nichž může být ohrožena bezpečnost lidí. 6. Navrhování

Více

Výpočet vodorovné únosnosti osamělé piloty

Výpočet vodorovné únosnosti osamělé piloty Inženýrsý anuál č. 16 Atualizace: 04/016 Výpočet vodorovné únosnosti osaělé piloty Progra: Soubor: Pilota Deo_anual_16.gpi Cíle tooto inženýrséo anuálu je vysvětlit použití prograu GEO 5 PILOTA pro výpočet

Více

Posouzení piloty Vstupní data

Posouzení piloty Vstupní data Posouzení piloty Vstupní data Projekt Akce Část Popis Vypracoval Datum Nastavení Velkoprůměrová pilota 8..07 (zadané pro aktuální úlohu) Materiály a normy Betonové konstrukce Součinitele EN 99 Ocelové

Více

Téma 12, modely podloží

Téma 12, modely podloží Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení

Více

Winklerovo-Pasternakovo dvouparametrické podloží

Winklerovo-Pasternakovo dvouparametrické podloží Winklerovo-Pasternakovo dvouparametrické podloží Řešení pružné vrstvy ve Westergardově duchu se řídí podmínkou rovnováhy ve směru gravitace směr osy : w w ( ) + ρgψ d () Výčet použitých symbolů následue:

Více

Měření indukčností cívek

Měření indukčností cívek 7..00 Ṫeorie eletromagneticého pole Měření indučností cíve.......... Petr Česá, studijní supina 05 Letní semestr 000/00 . Měření indučností cíve Měření vlastní a vzájemné indučnosti válcových cíve ZAÁNÍ

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Výpočet přetvoření a dimenzování pilotové skupiny

Výpočet přetvoření a dimenzování pilotové skupiny Inženýrský manuál č. 18 Aktualizace: 08/2018 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu

Více

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady:

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady: Předložený statický výpočet řeší založení objektu SO 206 most na přeložce silnice I/57 v km 13,806 přes trať ČD v km 236,880. Obsahem tohoto výpočtu jsou pilotové základy krajních opěr O1 a O6 a středních

Více

Nejprve v rámu Nastavení zrušíme zatrhnutí možnosti nepočítat sedání. Rám Nastavení

Nejprve v rámu Nastavení zrušíme zatrhnutí možnosti nepočítat sedání. Rám Nastavení Inženýrský manuál č. 10 Aktualizace: 05/2018 Výpočet sedání a natočení patky Program: Soubor: Patky Demo_manual_10.gpa V tomto inženýrském manuálu je popsán výpočet sednutí a natočení plošného základu.

Více

Posouzení mikropilotového základu

Posouzení mikropilotového základu Inženýrský manuál č. 36 Aktualizace 06/2017 Posouzení mikropilotového základu Program: Soubor: Skupina pilot Demo_manual_36.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu GEO5 SKUPINA

Více

SLOUP NAMÁHANÝ TLAKEM A OHYBEM

SLOUP NAMÁHANÝ TLAKEM A OHYBEM SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro

Více

þÿ Ú n o s n o s t o c e l o v ý c h o t e vy e n ý c h þÿ u z a vy e n ý c h p r o f i lo z a p o~ á r u

þÿ Ú n o s n o s t o c e l o v ý c h o t e vy e n ý c h þÿ u z a vy e n ý c h p r o f i lo z a p o~ á r u DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a s t a v e b n í / C i v i l E n g i n e e r i n g S e r i e s þÿx a d a s t a v e b n í. 2 0 0 8, r o. 8 / C i v i l E n g i n e e r i n g þÿ Ú n o s n

Více

Před zahájením vlastních výpočtů je potřeba analyzovat konstrukci a zvolit vhodný návrhový

Před zahájením vlastních výpočtů je potřeba analyzovat konstrukci a zvolit vhodný návrhový 2 Zásady navrhování Před zahájením vlastních výpočtů je potřeba analyzovat onstruci a zvolit vhodný návrhový model. Model musí být dostatečně přesný, aby výstižně popsal chování onstruce s přihlédnutím

Více

VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK

VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK Deformace elastomerových ložisek při zatížení Z hodnot naměřených deformací elastomerových ložisek v jednotlivých měřících místech (jednotlivé snímače deformace) byly

Více

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník. 5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

12.1 Návrhové hodnoty vlastností materiálu

12.1 Návrhové hodnoty vlastností materiálu 12 Prvy za požáru Chování prvů ze dřeva a materiálů na bázi dřeva při požáru není možné jednoduše popsat. Odlišuje se chování při rozhořívání a při plně rozvinutém požáru. Při rozhořívání se uplatní hořlavost

Více

ÚNOSNOST A PŘETVÁŘENÍ TYČOVÝCH MIKROPILOT TITAN V ZÁVISLOSTI NA VLASTNOSTECH HORNINOVÉHO PROSTŘEDÍ A JEJICH DÉLCE

ÚNOSNOST A PŘETVÁŘENÍ TYČOVÝCH MIKROPILOT TITAN V ZÁVISLOSTI NA VLASTNOSTECH HORNINOVÉHO PROSTŘEDÍ A JEJICH DÉLCE Dr.Ing. Hyne Lahuta, Ing. Josef Mráz VŠB-TU Ostrava, Katedra geotechniy a podzemního stavitelství, L.Podéště 1875, 708 00 Ostrava-Poruba, hyne.lahuta@vsb.cz, nusa@lobou.fsv.cvut.cz ÚNOSNOST A PŘETVÁŘENÍ

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

Namáhání ostění kolektoru

Namáhání ostění kolektoru Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných

Více

Výpočet svislé únosnosti a sedání skupiny pilot

Výpočet svislé únosnosti a sedání skupiny pilot Inženýrský manuál č. 17 Aktualizace: 04/2016 Výpočet svislé únosnosti a sedání skupiny pilot Proram: Soubor: Skupina pilot Demo_manual_17.sp Úvod Cílem tohoto inženýrského manuálu je vysvětlit použití

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

Lineární činitel prostupu tepla

Lineární činitel prostupu tepla Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel

Více

Část 5.7 Částečně obetonovaný spřažený ocelobetonový nosník

Část 5.7 Částečně obetonovaný spřažený ocelobetonový nosník Část 5.7 Částečně obetonovaný spřažený oelobetonový nosník P. Shaumann T. Trautmann University o Hannover J. Žižka České vysoké učení tehniké v Prae ZADÁNÍ Řešený příklad ukauje posouení spřaženého nosníku

Více

1 TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU

1 TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU ÚVOD Předmětem tohoto statického výpočtu je návrh opěrných stěn, které budou realizovány v rámci projektu Chodník pro pěší Pňovice. Statický výpočet je zpracován

Více

Statika 2. Excentrický tlak za. Miroslav Vokáč 6. prosince ČVUT v Praze, Fakulta architektury. Statika 2. M.

Statika 2. Excentrický tlak za. Miroslav Vokáč 6. prosince ČVUT v Praze, Fakulta architektury. Statika 2. M. 6. přednáška Miroslav Vokáč miroslav.vokac@cvut.c ČVUT v Prae, akulta architektury 6. prosince 2018 Průběh σ x od tlakové síly v průřeu ávisí na její excentricitě k těžišti: e = 0 e < j e = j e > j x x

Více

ŽELEZNIČNÍ STAVBY II

ŽELEZNIČNÍ STAVBY II VYSOKÉ UČEÍ TECHICKÉ V BRĚ FAKULTA STAVEBÍ OTTO PLÁŠEK, PAVEL ZVĚŘIA, RICHARD SVOBODA, VOJTĚCH LAGER ŽELEZIČÍ STAVBY II MODUL 6 BEZSTYKOVÁ KOLEJ STUDIJÍ OPORY PRO STUDIJÍ PROGRAMY S KOMBIOVAOU FORMOU STUDIA

Více

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ ZADÁNÍ Navrhněte most z prefabrikovaných předepnutých nosníků IST. Délka nosné konstrukce mostu je 30m, kategorie komunikace na mostě je S 11,5/90.

Více

Řešený příklad: Výpočet zatížení pláště budovy

Řešený příklad: Výpočet zatížení pláště budovy Dokument č. SX016a-CZ-EU Strana 1 8 Eurokód EN 1991-1-3, Připravil Matthias Oppe Datum červen 005 Zkontroloval Christian Müller Datum červen 005 Řešený příklad objasňuje postup výpočtu atížení budovy s

Více

Posouzení za požární situace

Posouzení za požární situace OCELOVÉ KONSTRUKCE Požární odolnost Zdeně Sool 1 Posouzení za požární situace Teplotní analýza požárního úseu Přestup tepla do onstruce Návrhový model ČSN EN 1991-1- ČSN EN 199x-1- ČSN EN 199x-1-1 Úvod

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Postup zadávání základové desky a její interakce s podložím v programu SCIA

Postup zadávání základové desky a její interakce s podložím v programu SCIA Postup zadávání základové desky a její interakce s podložím v programu SCIA Tloušťka desky h s = 0,4 m. Sloupy 0,6 x 0,6m. Zatížení: rohové sloupy N 1 = 800 kn krajní sloupy N 2 = 1200 kn střední sloupy

Více

Interakce ocelové konstrukce s podložím

Interakce ocelové konstrukce s podložím Rozvojové projekty MŠMT 1. Úvod Nejrozšířenějšími pozemními konstrukcemi užívanými za účelem průmyslové výroby jsou ocelové haly. Základní nosné prvky těchto hal jsou příčné vazby, ztužidla a základy.

Více

Kancelář stavebního inženýrství s.r.o. Statický výpočet

Kancelář stavebního inženýrství s.r.o. Statický výpočet 231/2018 Strana: 1 Kancelář stavebního inženýrství s.r.o. Botanická 256, 362 63 Dalovice - Karlovy Vary IČO: 25 22 45 81, mobil: +420 602 455 293, +420 602 455 027, =================================================

Více

Nejnižší vnitřní povrchová teplota a teplotní faktor

Nejnižší vnitřní povrchová teplota a teplotní faktor Nejnižší vnitřní povrchová teplota a teplotní faktor Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.

Více

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie B Autořiúloh:J.Thomas(1,4,7),M.Jarešová(3),I.ČápSK(2),J.Jírů(5) P.

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie B Autořiúloh:J.Thomas(1,4,7),M.Jarešová(3),I.ČápSK(2),J.Jírů(5) P. Řešení úloh. ola 53. ročníu fyziální olympiády. Kategorie B Autořiúloh:J.Thomas(,,7),M.Jarešová(3),I.ČápSK(),J.Jírů(5) P. Šedivý(6).a) Objem V ponořenéčástiválečuje63%objemu V celéhováleču.podle Archimedova

Více

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010 1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení

Více

Detail nadpraží okna

Detail nadpraží okna Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

list číslo Číslo přílohy: číslo zakázky: stavba: Víceúčelová hala Březová DPS SO01 Objekt haly objekt: revize: 1 OBSAH

list číslo Číslo přílohy: číslo zakázky: stavba: Víceúčelová hala Březová DPS SO01 Objekt haly objekt: revize: 1 OBSAH revize: 1 OBSAH 1 Technická zpráva ke statickému výpočtu... 2 1.1 Úvod... 2 1.2 Popis konstrukce:... 2 1.3 Postup při výpočtu, modelování... 2 1.4 Použité podklady a literatura... 3 2 Statický výpočet...

Více

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( ) Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a

Více

Řešený příklad: Prostě uložený a příčně nedržený nosník

Řešený příklad: Prostě uložený a příčně nedržený nosník Dokument č. SX001a-CZ-EU Strana 1 8 Eurokód Připravil Alain Bureau Datum prosinec 004 Zkontroloval Yvan Galéa Datum prosinec 004 Řešený příklad: Prostě uložený a příčně nedržený Tento příklad se týká detailního

Více

Sedání vrtané piloty. Cvičení 3

Sedání vrtané piloty. Cvičení 3 Sedání vrtané piloty Cvičení 3 Postup prací při provádění vrtané piloty Postup prací při provádění vrtané piloty Postup prací při provádění vrtané piloty Postup prací při provádění vrtané piloty Postup

Více

Normálová napětí v prutech namáhaných na ohyb

Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

Výpočet sedání kruhového základu sila

Výpočet sedání kruhového základu sila Inženýrský manuál č. 22 Aktualizace 06/2016 Výpočet sedání kruhového základu sila Program: MKP Soubor: Demo_manual_22.gmk Cílem tohoto manuálu je popsat řešení sedání kruhového základu sila pomocí metody

Více

Hodnocení přesnosti výsledků z metody FMECA

Hodnocení přesnosti výsledků z metody FMECA Hodnocení přesnosti výsledů z metody FMECA Josef Chudoba 1. Úvod Metoda FMECA je semivantitativní metoda, pomocí teré se identifiují poruchy s významnými důsledy ovlivňující funci systému. Závažnost následů

Více

IBRIDGE 1.0 UŽIVATELSKÝ MANUÁL

IBRIDGE 1.0 UŽIVATELSKÝ MANUÁL IBRIDGE 1.0 UŽIVATELSKÝ MANUÁL Jaromír Křížek OBSAH 1 ÚVOD... 3 2 INSTALACE... 4 2.1 SYSTÉMOVÉ POŽADAVKY... 5 2.2 SPUŠTĚNÍ IBRIDGE 1.0... 5 3 HLAVNÍ MENU... 6 3.1 MENU FILE... 6 3.2 MENU SETTINGS... 6

Více

PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK

PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK - - 20,00 1 [0,00; 0,00] 2 [0,00; 0,38] +z 2,00 3 [0,00; 0,72] 4 [0,00; 2,00] Geometrie konstrukce

Více

Libor Kasl 1, Alois Materna 2

Libor Kasl 1, Alois Materna 2 SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Inženýrský manuál č. 37 Aktualizace: 9/2017 Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Soubor: Demo_manual_37.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Konsolidace

Více

Vnitřní síly v prutových konstrukcích

Vnitřní síly v prutových konstrukcích Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m

Více

Statika 2. Smyk za ohybu a prostý smyk. Miroslav Vokáč 12. listopadu ČVUT v Praze, Fakulta architektury.

Statika 2. Smyk za ohybu a prostý smyk. Miroslav Vokáč 12. listopadu ČVUT v Praze, Fakulta architektury. 4. přednáška a prostý smyk Miroslav Vokáč miroslav.vokac@cvut.c ČVUT v Prae, Fakulta architektury 12. listopadu 2018 Věta o vájemnosti tečných napětí x B τ x (B) x B τ x (B) Věta o vájemnosti tečných napětí:

Více

Návrh rozměrů plošného základu

Návrh rozměrů plošného základu Inženýrský manuál č. 9 Aktualizace: 04/2018 Návrh rozměrů plošného základu Program: Soubor: Patky Demo_manual_09.gpa V tomto inženýrském manuálu je představeno, jak jednoduše a efektivně navrhnout železobetonovou

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

Výpočet konsolidace pod silničním náspem

Výpočet konsolidace pod silničním náspem Inženýrský manuál č. 11 Aktualizace: 02/2016 Výpočet konsolidace pod silničním náspem Program: Soubor: Sedání Demo_manual_11.gpo V tomto inženýrském manuálu je vysvětlen výpočet časového průběhu sedání

Více

RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn

RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn Zdivo zadní stěny suterénu je namáháno bočním zatížením od zeminy (lichoběžníkovým). Obecně platí, že je výhodné, aby bočně namáhaná

Více

6. Měření Youngova modulu pružnosti v tahu a ve smyku

6. Měření Youngova modulu pružnosti v tahu a ve smyku 6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..

Více

Výpočet sedání osamělé piloty

Výpočet sedání osamělé piloty Inženýrský manuál č. 14 Aktualizace: 06/2018 Výpočet sedání osamělé piloty Program: Pilota Soubor: Demo_manual_14.gpi Cílem tohoto inženýrského manuálu je vysvětlit použití programu GEO 5 PILOTA pro výpočet

Více

4. ZKOUŠENÍ CIHELNÉHO ZDIVA V KONSTRUKCI

4. ZKOUŠENÍ CIHELNÉHO ZDIVA V KONSTRUKCI 4. ZKOUŠENÍ CIHELNÉHO ZDIVA V KONSTRUKCI 4.1. Stanovení pevnosti v tlaku zdicích prvků 4.1.1. Pevnost v tlaku zjištěná nedestruktivně Schmidt LB Tvrdoměrné metody zkoušení cihel jsou modifikací metod používaných

Více

6 PŘÍKLAD VÝPOČTU TLAČENÉHO OCELOBETONOVÉHO SLOUPU

6 PŘÍKLAD VÝPOČTU TLAČENÉHO OCELOBETONOVÉHO SLOUPU 6 PŘÍKLAD VÝPOČTU TLAČENÉHO OCELOBETONOVÉHO SLOUPU 6.1 Struktura ČSN EN 1994-1- Norma ČSN EN 1994-1-, viz [6.1], je členěna následovně: Národní předmluva 1 Všeobecně Zásady navrhování Vlastnosti materiálu

Více

Ocelobetonové konstrukce

Ocelobetonové konstrukce Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce 5 Úvod do zatížení stavebních konstrukcí terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce 5.1 Terminologie stavebních konstrukcí nosné konstrukce

Více

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017 Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

Výpočet konsolidace pod silničním náspem

Výpočet konsolidace pod silničním náspem Inženýrský manuál č. 11 Aktualizace: 06/2018 Výpočet konsolidace pod silničním náspem Program: Soubor: Sedání Demo_manual_11.gpo V tomto inženýrském manuálu je vysvětlen výpočet časového průběhu sedání

Více

ZDM RÁMOVÉ KONSTRUKCE

ZDM RÁMOVÉ KONSTRUKCE ioš Hüttner SR D rámové onstruce cvičení 0 adání D RÁOVÉ KONSTRUKCE Příad č. Vyresete průběhy vnitřních si na onstruci zobrazené na Obr.. Příad převzat z atedrové wiipedie (originá e stažení zde http://mech.fsv.cvut.cz/wii/images/d/de/dm_.pdf).

Více

4 Opěrné zdi. 4.1 Druhy opěrných zdí. 4.2 Navrhování gravitačních opěrných zdí. Opěrné zd i

4 Opěrné zdi. 4.1 Druhy opěrných zdí. 4.2 Navrhování gravitačních opěrných zdí. Opěrné zd i Opěrné zd i 4 Opěrné zdi 4.1 Druhy opěrných zdí Podle kapitoly 9 Opěrné konstrukce evropské normy ČSN EN 1997-1 se z hlediska návrhu opěrných konstrukcí rozlišují následující 3 typy: a) gravitační zdi,

Více

studentská kopie 7. Hala návrh sloupu

studentská kopie 7. Hala návrh sloupu 7. Hala návrh sloupu Va s vetnutými sloup a louově připojenými vaní představují stati neurčitou soustavu. Při výpočtu le použít ja jednodušený, ta i podroný model, terý osahuje všehn prut vaníu i sloupu.

Více

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Kontaktní prvky Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Základní myšlenka Modelování posunu po smykové ploše, diskontinuitě či na rozhraní konstrukce a okolního

Více

Posouzení za požární situace

Posouzení za požární situace ANALÝZA KONSTRUKCE Zdeněk Sokol 1 Posouzení za požární situace Teplotní analýza požárního úseku Přestup tepla do konstrukce Návrhový model ČSN EN 1991-1-2 ČSN EN 199x-1-2 ČSN EN 199x-1-2 2 1 Princip posouzení

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

5 SLOUPY. Obr. 5.1 Průřezy ocelových sloupů. PŘÍKLAD V.1 Ocelový sloup

5 SLOUPY. Obr. 5.1 Průřezy ocelových sloupů. PŘÍKLAD V.1 Ocelový sloup SLOUPY. Obecné ponámk Sloup jsou hlavními svislými nosnými element a přenášejí atížení vodorovných konstrukčních prvků do ákladové konstrukce. Modulové uspořádání načně ávisí na unkci objektu a jeho dispoičním

Více

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in

Více

Téma 8 Příčně zatížený rám a rošt

Téma 8 Příčně zatížený rám a rošt Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Téma 7 Smyková napětí v ohýbaných nosnících

Téma 7 Smyková napětí v ohýbaných nosnících Pružnost a plasticita,.ročník bakalářského studia Téma 7 Smková napětí v ohýbaných nosnících Základní vtah a předpoklad řešení Výpočet smkového napětí vbraných průřeů Dimenování nosníků namáhaných na smk

Více

Sypaná hráz výpočet ustáleného proudění

Sypaná hráz výpočet ustáleného proudění Inženýrský manuál č. 32 Aktualizace: 3/2016 Sypaná hráz výpočet ustáleného proudění Program: MKP Proudění Soubor: Demo_manual_32.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Proudění při analýze

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Stavební mechanika, 2.ročník bakalářského studia AST Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava Osnova přednášky

Více

Ing. Jaromír Křížek INTEGROVANÉ MOSTY

Ing. Jaromír Křížek INTEGROVANÉ MOSTY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ Doktorský studijní program: STAVEBNÍ INŽENÝRSTVÍ Studijní obor: KONSTRUKCE A DOPRAVNÍ STAVBY Ing. Jaromír Křížek INTEGROVANÉ MOSTY INTEGRAL BRIDGES

Více

8.2 Přehledná tabulka mostních objektů Přehledné výkresy mostních objektů... 16

8.2 Přehledná tabulka mostních objektů Přehledné výkresy mostních objektů... 16 ZAK. Č.: 11 028 LIST Č.: AKCE : KUŘIM - JIŽNÍ OBCHVAT AKTUALIZACE TECHNICKÉ STUDIE STUPEŇ: SCHÉMATA MOSTNÍCH OBJEKTŮ 1 TS OBSAH: 8.1 Technická zpráva... 2 201 Most na sil. II/386 přes R43... 2 202 Most

Více

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME 1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se

Více

Výpočet přetvoření a dimenzování pilotové skupiny

Výpočet přetvoření a dimenzování pilotové skupiny Inženýrský manuál č. 18 Aktualizace: 04/2016 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu

Více

Studentská kopie ZATÍŽE Í TROJKLOUBOVÁ HALA

Studentská kopie ZATÍŽE Í TROJKLOUBOVÁ HALA ZATÍŽE Í TROJKLOUBOVÁ HALA Určete atížení a axiální ožné vnitřní síly na nejatíženější rá halového jednolodního objetu (vi obráe). Celová déla budovy je 48, a příčná vdálenost ráů s F 4,8. S odvolání na

Více

TECHNICKÁ ZPRÁVA + STATICKÝ VÝPOČET

TECHNICKÁ ZPRÁVA + STATICKÝ VÝPOČET TECHNICKÁ ZPRÁVA + STATICKÝ VÝPOČET realizačního projektu Akce: Investor: Místo stavby: Stupeň: Projektant statiky: KANALIZACE A ČOV TŘEBENICE - ČOV sdružený objekt obec Třebenice, 675 52 Lipník u Hrotovic

Více