Měření indukčností cívek
|
|
- Jozef Beran
- před 8 lety
- Počet zobrazení:
Transkript
1 7..00 Ṫeorie eletromagneticého pole Měření indučností cíve Petr Česá, studijní supina 05 Letní semestr 000/00
2 . Měření indučností cíve Měření vlastní a vzájemné indučnosti válcových cíve ZAÁNÍ ) Změřte vlastní indučnost vzduchové válcové cívy v závislosti na její délce. ) Zapište do tabuly a vyneste graficy závislost vlastní indučnosti na její délce. ) Naměřené hodnoty ověřte výpočtem. Zapište do tabuly a uveďte odchylu v %. ) Změřte metodou přímého měření indučností postupně vzájemnou indučnost cíve: a) a b) a c) a d) a e) a 5) Nareslete schéma zapojení cíve pro měření vzájemné indučnosti dle bodů a) až e). 6) Naměřené hodnoty zapište do tabuly. 7) Naměřené hodnoty ověřte výpočtem. Petr Česá,
3 Petr Česá, Úvod Výpočet vlastní indučnosti válcové vzduchové cívy zanedbatelné tloušťy obr. Vlastní indučnost válcové vzduchové cívy, terá má průměr, délu h a počet závitů N, viz. obr., je možno určit podle vztahu: 0 K N L µ de 0 sin, d F K je úplný elipticý integrál prvního druhu modulu 0 sin, d je úplný elipticý integrál druhého druhu modulu. Pro modul elipticých integrálů platí: h Pro modul elipticých integrálů není možno určit analyticy, je nutno použít něterou z numericých metod. Rozvojem do mocninné řády a integrací člen po členu zísáme napřílad:!
4 Petr Česá, ! K Výpočet podle výše uvedených řad je jednoduchý, tyto řady vša nevyniají zvláště rychlou onvergencí. xistuje celá řada doonalejších metod výpočtu. Vztah pro výpočet vlastní indučnosti válcové cívy je možno jednoduše řešit pomocí graficých průběhů, teré se v literatuře speciálně tomuto účelu často uvádějí. Přílad taových průběhů je i na onci tohoto úvodu, de jsou vyneseny hodnoty funce φ v závislosti na parametru. Parametr je definován pomocí vztahu: h Vztah pro výpočet modulu elipticých integrálů přejde potom na: Funce φ je definována pomocí vztahu: Φ 0 ) ( K µ a výpočet vlastní indučnosti válcové cívy přejde do tvaru: N L Φ() Hodnoty funce Φ jsou graficy vyneseny (viz. onec úvodu) pro různé hodnoty parametru. Uvedené grafy neslouží pouze výpočtu indučnosti cíve zanedbatelné tloušťy. Tloušťa cívy je zohledněna parametrem ρ, terý je dán jao poměr tloušťy vrstvy vinutí cívy a jejího průměru. U cívy zanedbatelné tloušťy je třeba odečítat hodnoty funce Φ pro ρ0. Pro onrétní hodnoty funce Φ v uvedených grafech platí pro výpočet indučnosti vztah: [ ] mh N L 0 ) ( Φ de je N počet závitů a průměr cívy.
5 Výpočet vzájemné indučnosti oaxiálních válcových vzduchové cíve stejného průměru o zanedbatelné tloušťce obr. Výpočet vzájemné indučnosti dvou oaxiálních válcových cíve A a C, teré mají stejný průměr a stejnou lineární hustotu závitů (počet závitů na jednotu dély), se dá převést na výpočet dílčích vlastních indučností soustavy, terá vznine pomyslným doplněním o třetí cívu B. Cíva B má délu o veliosti mezery mezi cívami A, C a má stejný počet závitů na jednotu dély. Pro vzájemnou indučnost cíve A a C potom platí: M A, C A B C A B B C ( L L L L ) Určení vzájemné indučnosti měřením vlastní indučnosti Při sériovém zapojení cíve je výsledná indučnost L v dána vztahem: L V LA LB ± M A, B B Vzájemnou indučnost M vyhodnotíme ze vztahu na záladě dvou měření výsledných indučností L V a L V. Při tomto měření jsou rozhodující směry magneticých indučních toů Φ a Φ oběma cívami. Ty jsou dány vzájemným zapojením obou cíve: a) obě cívy zapojené v souhlasném smyslu vzhledem e směrům magneticých toů Φ a Φ cívami (platí znaméno, indučnost L V ) obr. a) b) obě cívy zapojené v opačném smyslu vzhledem e směrům magneticých toů Φ a Φ cívami (platí znaméno -, indučnost L V ) obr. b) Cívy budeme postupně zapojovat podle bodů a) až e), viz. obecné schéma zapojení a změříme vždy hodnotu L V a L V a vzájemnou indučnost určíme podle vztahu: M ( L ) L V Petr Česá,
6 Obecné schéma zapojení pro měření M a) b) obr. Schéma a popis přípravu obr. Příprave se sládá ze na sobě nezávislých válcových cíve ( až ), teré lze ombinovaně propojovat a měřit jejich indučnosti vlastní nebo vzájemné. Cívy jsou vzduchové a jsou rovnoměrně vinuty těsně za sebou. Každá má tři vzájemně propojené sece. Parametry cíve: N c N 60 závitů...aždá cíva má 90 záv., aždá sece má 0 záv. h c 00mm...celová déla cívy mm...průměr cívy Petr Česá,
7 Petr Česá,
8 Naměřené a vypočtené hodnoty Změřili jsme závislost indučnosti vzduchové valcové cívy v závislosti na její délce. Výsledy měření jsou v následující tabulce (graf je na onci tohoto protoolu). Provedli jsme též ověření této závislosti výpočtem. déla[mm] L nam [mh] 0,8 0,55,0,5,0,68,9,9,56 5,0 5,85 6,8 L vyp [mh] 0,8 0,5,00,5,09,69,6,87,57 5, 5,85 6,9 chyba[%] -0,79,0 0,9-0,0 0,0-0,0 0,9,7-0,7,5-0,08,6 Přílad: L( l 7mm) Φ( ) N , 0 0, 8mH Komb. L [mh] L [mh] M[mH] M vyp [mh] L abc [mh] L ab [mh] L bc [mh] L b [mh] a) 6,7,6 0,6 0 6,9,00 5,9 0 b) 6,7,6 0,55 c),95, 0, d),08,9 0,0 e),69,5 0, Přílad: M ( L LV ) ( 6,,6) 0, 6mH Schéma zapojení pro měření M a) L L b) L L Petr Česá,
9 c) L L d) e) L L L L Vlastní indučnost vzduchové válcové cívy 7,00 6,00 5,00,00 L[mH],00,00,00 0, l[mm] Závěr Naměřené hodnoty indučnosti jsme ověřili výpočtem. Chyba byla menší než,5% a byla zřejmě nejvíce způsobena nepřesným odečtením hodnot funce Φ z grafu. Vzájemnou indučnost se nám nepodařilo ověřit analyticým způsobem. Petr Česá,
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
Měření na 1-fázovém transformátoru. Schéma zapojení:
Číslo úlohy: Jméno a příjmení: Třída/Supina: Měřeno dne: Název úlohy: / Měření na 1-fázovém transformátoru Spolupracovali ve supině.. Zadání úlohy: Na zadaném 1-fázovém transformátoru proveďte následující
β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:
GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového
Návrh vysokofrekvenčních linkových transformátorů
inové transformátory inové transformátory Při požadavu na transformaci impedancí v široém frevenčním pásmu, dy nelze obsáhnout požadovanou oblast mitočtů ani široopásmovými obvody, je třeba použít široopásmových
Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka
Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní
4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá.
Přílad 1. Řešte v R rovnici x 4x + x 4 0. Výslede vypočtěte s přesností alespoň 0,07. 1) Reálné ořeny rovnice budou ležet v intervalu ( 5,5), protože největší z oeficientů polynomu bez ohledu na znaméno
MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno
7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje
f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12
a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R
) ČÍSELNÉ A FUNKČNÍ ŘADY (5b) a) formulujte Leibnitzovo ritérium včetně absolutní onvergence b) apliujte toto ritérium na řadu a) formulujte podílové ritérium b) posuďte onvergenci řad c) oli členů této
7.3.9 Směrnicový tvar rovnice přímky
7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:
Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)
Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,
Hodnocení přesnosti výsledků z metody FMECA
Hodnocení přesnosti výsledů z metody FMECA Josef Chudoba 1. Úvod Metoda FMECA je semivantitativní metoda, pomocí teré se identifiují poruchy s významnými důsledy ovlivňující funci systému. Závažnost následů
VYŠŠÍ ODBORNÁ ŠKOLA A STŘEDNÍ ŠKOLA SLABOPROUDÉ ELEKTROTECHNIKY Novovysočanská 48/280, Praha 9
1. Analogové měřicí přístroje Jsou přístroje, teré slouží měření různých eletricých veličin. Např. měření proudu, napětí a výonu. Pro měření těchto veličin nejčastěji používáme tyto soustavy:magnetoeletricá,
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava
LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika
VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.
ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT 2-1
ELEKTOTECHNCKÁ MĚŘENÍ PACOVNÍ SEŠT 2-1 Název úlohy: Cejchování a ontrola ampérmetru Listů: 5 List: 1 Zadání: Proveďte ověření předloženého ampérmetru. Změřte a stanovte: a, Absolutní chybu, relativní chybu
Analýza a zpracování signálů. 5. Z-transformace
nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná
6. Měření Youngova modulu pružnosti v tahu a ve smyku
6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..
ELEKTRICKÉ STROJE. Laboratorní cvičení LS 2013/2014. Měření ztrát 3f transformátoru
Fakulta elektrotechnická KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY ELEKTRICKÉ STROJE Laboratorní cvičení LS 2013/2014 Měření ztrát 3f transformátoru Cvičení: Po 11:10 12:50 Měřící tým: Petr Zemek,
Systé my, procesy a signály I - sbírka příkladů
Systé my, procesy a signály I - sbíra příladů Ř EŠEÉPŘ ÍKLADY r 6 Urč ete amplitudu, opaovací periodu, opaovací mitoč et a počáteč ní fázi disrétních harmonicých signálů a) s( ) = cos π, b) s ( ) 6 = π
Těleso na nakloněné rovině Dvě tělesa spojená tyčí Kyvadlo
TEORETICKÁ MECHANIKA INTEGRÁLNÍ PRINCIPY MECHANIKY Záladní pojmy z mechaniy Mechanicý systém: jaáoli soustava částic nebo těles teré se rozhodneme popisovat (eletron atom Zeměoule planetární systém ).
MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
Opakování k maturitě matematika 4. roč. STR 2 <
8.. Otáza číslo Mocniny a odmocniny. b.) Zjednodušte: b. b Opaování maturitě matematia. roč. STR :.) Zjednodušte:.) Vypočtěte: a. y : ( a. y ) =.) Umocněte: 7 7.. Otáza číslo Lineární a vadraticé rovnice.)
9 Stupně vrcholů, Věta Havla-Hakimiho
Typicé přílady pro zápočtové písemy DiM 470-301 (Kovář, Kovářová, Kubesa) (verze: November 5, 018) 1 9 Stupně vrcholů, Věta Havla-Haimiho 9.1. Doážete nareslit graf na 9 vrcholech, ve terém mají aždé dva
I. Určete(a nakreslete) definiční obor a vrstevnice funkcí 1. f(x, y)=x+ y 2. f(x, y)= y 3. f(x, y)=x 2 + y 2 4. f(x, y)=x 2 y 2
I. Určete(a nareslete) definiční obor a vrstevnice funcí. f( )=+. f( )=. f( )= +. f( )= 5. f( )=. f( )= 7. f( )= + 8. f( )= ( + )( ) 9. f( )= ( + ) 0. f( )= sin( + ). f( )=sgn(sin sin). f( )= + Rozhodněte
Elektronické praktikum EPR1
Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008
13 Měření na sériovém rezonančním obvodu
13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do
3. Mocninné a Taylorovy řady
3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole
Měření výkonu jednofázového proudu
Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.
Měření magnetické indukce elektromagnetu
Měření magnetické indukce elektromagnetu Online: http://www.sclpx.eu/lab3r.php?exp=1 V tomto experimentu jsme využili digitální kuchyňské váhy, pomocí kterých jsme určovali sílu, kterou elektromagnet působí
Fyzikální praktikum č.: 1
Datum: 5.5.2005 Fyziální pratium č.: 1 ypracoval: Tomáš Henych Název: Studium činnosti fotonásobiče Úol: 1. Stanovte závislost oeficientu seundární emise na napětí mezi dynodami. yneste do grafu závislost
Experimentální ověření metody pro výpočet indukčností koaxiálních válcových vzduchových cívek různých tvarů
Rok / Year: Svazek / Volume: Číslo / Number: 00 5 Experimentální ověření metody pro výpočet indukčností koaxiálních válcových vzduchových cívek různých tvarů Experimental verification of the method for
Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005
Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme
Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.
Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
Fyzikální praktikum...
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
Korekční křivka měřícího transformátoru proudu
5 Přesnost a korekční křivka měřícího transformátoru proudu 5.1 Zadání a) Změřte hodnoty sekundárního proudu při zvyšujícím se vstupním proudu pro tři různé transformátory. b) U všech naměřených proudů
6 Impedanční přizpůsobení
6 Impedanční přizpůsobení edení optimálně přenáší eletromagneticou energii, je-li zatěžovací impedance rovna charateristicé impedanci. Říáme, že zátěž je impedančně přizpůsobená. e stavu impedančního přizpůsobení
1.5.7 Prvočísla a složená čísla
17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:
6 5 = 0, = 0, = 0, = 0, 0032
III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii
ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK
Úloha č. 11 ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK ÚKOL MĚŘENÍ: 1. Zjistěte činný, jalový a zdánlivý příon, odebíraný proud a účiní asynchronního motoru v závislosti na zatížení motoru. 2. Vypočítejte výon,
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáša 02 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Náhodné veličiny Záladní definice Nechť je dán pravděpodobnostní prostor
SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.
Úloha 1 - Koupě nového televizoru SPOTŘEBITELSKÝ ÚVĚR Chceme si oupit nový televizor v hodnotě 000,-Kč. Bana nám půjčí, přičemž její úroová sazba činí 11%. Předpoládejme, že si půjčujeme na jeden ro a
Měření vlastností střídavého zesilovače
Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. Měření vlastností střídavého zesilovače Datum měření: 1. 11. 011 Datum
22. Mechanické a elektromagnetické kmity
. Mechanicé a eletromagneticé mity. Mechanicé mity Mechanicé mitání je jev, při terém se periodicy mění fyziální veličiny popisující mitavý pohyb. Oscilátor těleso, teré je schopné mitat, (mitání způsobuje
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Obr.1 Princip Magnetoelektrické soustavy
rincipy měřicích soustav: 1. Magnetoeletricá (depreszý) 2. Eletrodynamicá 3. Induční 4. Feromagneticá 1.ANALOGOVÉ MĚŘICÍ ŘÍSTROJE Magnetoeletricá soustava: Založena na působení sil v magneticém poli permanentního
Geometrická zobrazení
Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších
Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí
1 Obsah přednášy 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacing 5. Boosting 6. Shrnutí 2 Meta learning = Ensemble methods Cíl použít predici ombinaci více různých modelů Meta learning (meta
Testování hypotéz. December 10, 2008
Testování hypotéz December, 2008 (Testování hypotéz o neznámé pravděpodobnosti) Jan a Františe mají pytlíy s uličami. Jan má 80 bílých a 20 červených, Františe má 30 bílých a 70 červených. Vybereme náhodně
1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tematická sada:
Viz též stavová rovnice ideálního plynu, stavová rovnice reálného plynu a van der Waalsova stavová rovnice.
5.1 Stavová rovnice 5.1.1 Stavová rovnice ideálního plynu Stavová rovnice pro sěs ideálních plynů 5.1.2 Stavová rovnice reálného plynu Stavové rovnice se dvěa onstantai Viriální rovnice Stavové rovnice
6 Měření transformátoru naprázdno
6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte
Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení
Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici
ORIENTOVANÝ ÚHEL. Popis způsobu použití:
2014 RIENTVANÝ ÚHEL opis způsobu použití: teorie samostudiu (i- earning) pro 3. roční střední šo technicého zaměření, teorie e onzutacím dáového studia Vpracovaa: Ivana ozová Datum vpracování: 4. edna
Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou:
Funční měniče. Zadání: A. Na předloženém aproximačním funčním měniči s operačním zesilovačem realizujícím funci danou tabulou: proveďte: U / V / V a) pomocí oscilosopu měnič nastavte b) změřte na něm jeho
1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:
1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor
a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.
Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako
1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.
Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. IV Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky
3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.
1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření
Název: Měření paralelního rezonančního LC obvodu
Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:
3.5 Ověření frekvenční závislosti kapacitance a induktance
3.5 Ověření frekvenční závislosti kapacitance a induktance Online: http://www.sclpx.eu/lab3r.php?exp=10 I tento experiment patří mezi další původní experimenty autora práce. Stejně jako v předešlém experimentu
Pracovní list žáka (SŠ)
Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +
1 Gaussova kvadratura
Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte
Otázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
Teorie elektromagnetického pole Laboratorní úlohy
Teorie elektromagnetického pole Laboratorní úlohy Martin Bruchanov 31. května 24 1. Vzájemná induktivní vazba dvou kruhových vzduchových cívek 1.1. Vlastní indukčnost cívky Naměřené hodnoty Napětí na primární
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu
MAACZMZ07DT MATURITA NANEČISTO 007 MATEMATIKA didaticý test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do záznamového archu. Používejte rýsovací
2. STAVBA PARTPROGRAMU
Stavba partprogramu 2 2. STAVBA PARTPROGRAMU 2.1 Slovo partprogramu 2.1.1 Stavba slova Elementárním stavebním prvem partprogramu je tzv. slovo (instruce programu). Každé slovo sestává z písmene adresy
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
Studium ultrazvukových vln
Číslo úlohy: 8 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 12. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Studium ultrazvukových
Operační zesilovač, jeho vlastnosti a využití:
Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost
Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení
Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi
Měření permitivity a permeability vakua
Měření permitivity a permeability vakua Online: http://www.sclpx.eu/lab3r.php?exp=2 Permitivita i permeabilita vakua patří svojí hodnotou měřenou v základních jednotkách SI mezi poměrně malé fyzikální
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:
Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina:
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Pracovní list - Laboratorní práce č. 7 Jméno: Třída:
Binomická věta
97 Binomicá věta Předpolady: 96 Kdysi dávno v prvním ročníu jsme se učili vzorce na umocňování dvojčlenu Př : V tabulce jsou vypsány vzorce pro umocňování dvojčlenu Najdi podobnost s jinou dosud probíranou
Godunovovy metody pro 1D-Eulerovy rovnice
Godunovovy metody pro D-Eulerovy rovnice Řešte Eulerovy rovnice w t + f(w) w(0, t) = = o, x (0, l), t (0, T ), w(l, 0) w(x, 0) = w 0 (x), = 0, t (0, T ), x (0, l), w = (ϱ, ϱu, E) T, f(w) = (ϱu, ϱu + p,
Měření odporu ohmovou metodou
ěření odporu ohmovou metodou Teoretický rozbor: ýpočet a S Pro velikost platí: Pro malé odpory: mpérmetr však neměří pouze proud zátěže ale proud, který je dán součtem proudu zátěže a proudu tekoucího
Metoda konjugovaných gradientů
0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá
Úlohy domácího kola kategorie B
54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny
VY_52_INOVACE_2NOV43. Autor: Mgr. Jakub Novák. Datum: 4. 10. 2012 Ročník: 7., 8.
VY_52_INOVACE_2NOV43 Autor: Mgr. Jakub Novák Datum: 4. 10. 2012 Ročník: 7., 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Látky a tělesa, Mechanické vlastnosti tekutin
OPTIMALIZACE PARAMETRŮ PID REGULÁTORU POMOCÍ GA TOOLBOXU
OPTMALZACE PARAMETRŮ PD REGULÁTORU POMOCÍ GA TOOLBOXU Radomil Matouše, Stanislav Lang Department of Applied Computer Science Faculty of Mechanical Engineering, Brno University of Technology Abstrat Tento
pracovní verze pren 13474 "Glass in Building", v níž je uveden postup výpočtu
POROVNÁNÍ ANALYTICKÉHO A NUMERICKÉHO VÝPOČTU NOSNÉ KONSTRUKCE ZE SKLA Horčičová I., Netušil M., Eliášová M. Česé vysoé učení technicé v Praze, faulta stavební Anotace Slo se v moderní architetuře stále
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
Stacionární magnetické pole
Stacionární magnetické pole Magnetické pole se nachází v okolí planety Země, v okolí permanentních magnetů a také v okolí vodičů s proudem. Všechna tato pole budeme v laboratorní práci studovat za pomoci
7 Měření transformátoru nakrátko
7 7.1 adání úlohy a) změřte charakteristiku nakrátko pro proudy dané v tabulce b) vypočtěte poměrné napětí nakrátko u K pro jmenovitý proud transformátoru c) vypočtěte impedanci nakrátko K a její dílčí
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. F3240 Fyzikální praktikum 2
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM F340 Fyzikální praktikum Zpracoval: Dvořák Martin Naměřeno: 0. 0. 009 Obor: B-FIN Ročník: II. Semestr: III. Testováno: