Hodnocení přesnosti výsledků z metody FMECA

Rozměr: px
Začít zobrazení ze stránky:

Download "Hodnocení přesnosti výsledků z metody FMECA"

Transkript

1 Hodnocení přesnosti výsledů z metody FMECA Josef Chudoba 1. Úvod Metoda FMECA je semivantitativní metoda, pomocí teré se identifiují poruchy s významnými důsledy ovlivňující funci systému. Závažnost následů poruchy se popisuje ritičností. Existuje něoli tříd nebo úrovní ritičnosti v závislosti na nebez-pečích a snížení provozuschopnosti systému a nědy též na pravdě-podobnosti výsytu. Při zadávání ritičnosti se dopouštíme dvou záladních chyb. První je, že se špatně odhadne hodnota ritičnosti. Tato chyba vznine, jestliže jednotlivých úrovní ritičnosti je velé množství. Druhá chyba vzniá velou zaorouhlovací chybou vstupů a tím zároveň výstupu. Této chyby se autor dopustí, jestliže jednotlivých úrovní ritičnosti je málo. Omezením veliosti jedné chyby roste vliv druhé. Cílem této práce je popsat způsob zjištění veliosti druhé chyby. Předpoládá se, že autor neudělá chybu při zadávání vstupních dat. K určení celového výsledu riziovosti se využívá jednoduchých matematicých vzorců. Napřílad sčítání nebo násobení jednotlivých riziovostí. Další variantou je určení speciálního vzorce podle fyziálně/eonomico/-bezpečnostní podstaty úlohy. Tento příspěve se bude zabývat určením přesnosti pomocí poslední, třetí varianty. Byla řešena testovací úloha, terá se zabývala finančním zjištěním šody, při uzavření dopravního úseu z nějaé příčiny. Finanční šody jsou dány něolia fatory, napřílad: hustotou dopravy, frevencí událostí, finanční šodou, délou objížďy a zdravotní újmou. Každý tento fator je bodově ohodnocen a podle daného vzorce je přiřazena výsledná disrétní bodová hodnota. 2. Hodnocené fatory Ke aždému objetu a hodnocené události, jejíž výsyt je na objetu reálně možný, se zvažují následující fatory:

2 1. Intenzita výsytu události [h -1 ] 2. Nálady na obnovu [Kč] 3. Vícenálady na objížďu [Kč/h] 4. Hustota dopravy [1] 5. MTTR - doba do obnovy [h] 6. Vliv na bezpečnost / životy [Kč] Ke aždému z výše uvedených fatorů byla vytvořená bodová stupnice v rozsahu 1 až 5. Rozdělení do pětistupňové šály ne-vyžaduje přehnané nároy na hodnotitele a navíc posytuje dostatečnou přesnost výsledů prováděných analýz. 2.1 Intenzita výsytu události Vytvořená stupnice je přibližně logaritmicá s přihlédnutím na běžně používané časové jednoty. X1 Intenzita výsytu události 1 1x za 100 let 2 1x za 10 let 3 1x za ro 4 1x za měsíc 2.2 Nálady na obnovu Nálady na obnovu jsou tzv. jednorázové nálady - tyto nálady nejsou závislé na času, po terý bude obnova probíhat. 5 1x za týden a častěji X2 Nálady na obnovu 1 do Kč 2 do Kč 3 do Kč 4 do Kč 5 nad Kč

3 2.3 Vícenálady na objížďu Vícenálady na objížďu jsou reprezentovány rozdílem déle tras (původní trasa a objížďa) v ilometrech. Spodní hranice (do 10m) se bude vztahovat především na silnice nižších tříd, de je silniční síť hustší, naopa nejvyšší hodnota (nad 100m) bude ve většině případů reprezentovat objížďu po železniční síti. 2.4 Hustota dopravy Hodnotící stupnice hustoty dopravy byla vytvořena na záladě údajů ze statisticých ročene Ministerstva dopravy ČR. 2.5 MTTR - doba do obnovy Doba do obnovy je čas od vzniu nežádoucí události až po plné zprovoznění hodnoceného objetu. X3 Vícenálady na objížďu 1 do 10m 2 do 20m 3 do 50m 4 do 100m 5 nad 100m X4 Hustota dopravy 1 do 5 s/h 2 5 až 50 s/h 3 30 až 150 s/h 4 I.třída (100 až s/h) 5 dálnice (1 000 až s/h) X5 MTTR - doba do obnovy 1 8 hodin 2 den 3 týden 4 měsíc 5 ro

4 2.6 Vliv na bezpečnost / životy Vliv na bezpečnost, případně životy lidí, se hodnotí pro fázi vzniu nežádoucí události. Zdravotní následy způsobené během obnovy/opravy v analýze zanedbáváme X6 Vliv na bezpečnost / životy 1 pošození zdraví bez trvalého následu 2 pošození zdraví s trvalými následy 3 úmrtí jedné osoby 4 úmrtí 2-10 osob 5 úmrtí osob 3. Transformace semivantitativního hodnocení na vantitativní výpočet Sestavení modelu, terý by počítal pouze s bodovým ohodnocením jednotlivých fatorů, by bylo velmi složité. Bylo by nutné správně zvolit váhové fatory a dále taé uvažovat, zda je stupnice zvolena lineárně, logaritmicy atd. Jednodušší a přesnější variantou je převod F1 Intenzita výsytu události F2 Nálady na obnovu F3 Vícenálady na objížďu F4 Hustota dopravy F5 MTTR - doba do obnovy F6 Vliv na bezpečnost / životy 1/h Kč Kč/s s/h h Kč na čistě vantitativní hodnocení. Uvažované fatory tedy vyjádříme v jednotách dle následující tabuly. 3.1 Intenzita výsytu události X1 Pravděpodobnost nastoupení jevu 1/h 1 1x za 100 let 1,0E x za 10 let 1,0E x za ro 1,0E x za měsíc 1,0E x za týden a častěji 1,0E-02

5 3.2 Nálady na obnovu X2 Nálady na obnovu Kč 1 do Kč 5,00E+03 2 do Kč 5,00E+04 3 do Kč 5,00E+05 4 do Kč 5,00E+06 5 nad Kč 5,00E Vícenálady na objížďu X3 Vícenálady na objížďu Kč 1 do 10m 45 2 do 20m do 50m do 100m nad 100m Hustota dopravy X4 Hustota dopravy s/h 1 do 5 s/h až 50 s/h až 150 s/h I.třída (100 až s/h) dálnice (1 000 až s/h) 2500

6 3.5 MTTR doba do obnovy X5 MTTR doba do obnovy h 1 8 hodin 6 2 den 24 3 týden měsíc ro Vliv na bezpečnost / životy X6 Vliv na bezpečnost / životy Kč 1 pošození zdraví bez trvalého následu 2,0E+04 2 pošození zdraví s trvalými následy 2,0E+05 3 úmrtí jedné osoby 2,0E+06 4 úmrtí 2-10 osob 2,0E+07 5 úmrtí osob 2,0E Model výpočtu rizia V případě, že se úspěšně provedl převod na bodové hodnoty viz. ap.3, je již snadné zísat riziové číslo hodnocené nežádoucí události. Součinem jednotových vícenáladů na objížďu (F3) a hustotou dopravy (F4) zísáme hodinové ztráty z objížďy. Po vynásobení dobou do obnovy (F5) již máme celové nálady z objížďy v Kč. F3 * F4 * F5 Jednorázové nálady na obnovu (F2) a vliv na bezpečnost/životy (F6) jsou již v Kč, je tedy možné je pouze přičíst. F2 + F3 * F4 * F5 + F6 V této chvíli jsou již známy finančně ohodnocené důsledy z analyzované události. Tyto důsledy se násobí intenzitou výsytu události, čímž se zísá riziové číslo v Kč/h. R = F1 * (F2 + F3 * F4 * F5 + F6)

7 Ja bylo již zmíněno, e aždému objetu lze analyzovat více nežádoucích událostí. V tomto případě je pa výsledné riziové číslo objetu dáno součtem všech dílčích riziových čísel analyzovaných událostí na příslušném objetu: R v = Σ R i 5. Zpětný přepočet výsledného rizia do bodové stupnice R [Kč/h] R [bod] R [Kč/h] R [bod] 0,025 až 0, až ,1 až 0, až ,4 až 1, až ,6 až 6, až ,4 až 25 5 více než Metodia zjišťování chyby Záladem metodiy je namodelování mnoha fitivních scénářů (pro matlabovsou simulaci jich bylo použito ), de se předpoládá znalost sutečné finanční, hodinové, frevenční hodnoty události. Na záladě těchto přesných vstupů se vypočte výsledná šoda dopravní infrastrutury v orunách za hodinu. Při znalosti šody dopravní infrastrutury v orunách za hodinu se přiřadí události výsledná bodová hodnota dle tabuly 3. Pomocí tohoto postupu se zjistí přesná hodnota rizia ritičnosti dopravní infrastrutury. Dle tabuly 4.1 až 4.6 v [1] se pro aždý scénář finančním, hodinovým, frevenčím vstupním hodnotám přiřadí bodové ohodnocení. Na záladě tohoto bodového ohodnocení se vybere hodnota, terá reprezentuje celý interval. Pomocí této hodnoty se zísá odhad celové šody dopravní infrastrutury v orunách za hodinu. Následně ze znalosti celové šody dopravní infrastrutury se přiřadí odhadovaná bodová hodnota rizia ritičnosti dopravní infrastrutury - tabula 3. Pro aždý scénář se vytvoří rozdíl v absolutní hodnotě přesné hodnoty rizia a odhadované bodové hodnoty rizia. Pro všechny scénáře se vytvoří součet vznilých rozdílů a zjistí se střední hodnota odchyly odhadované a přesné ritičnosti dopravní infrastrutury.

8 6.1 Určení sutečných vstupních dat Odhad hodnot pro aždý fitivní scénář byl řešen na záladě náhodných čísel rovnoměrného rozdělení v rozmezí 0, 1 a příslušné transformace, terá upraví náhodné číslo do reálné hodnoty daného fatoru. Protože všechny fatory mají exponenciální stupnici v rámci jednoho bodu, byla navržena exponenciální transformace. Nálady na údržbu jsou v rámci jednoho bodu v rozmezí 10 3 až 10 4, 10 4 až 10 5, 10 5 až 10 6, 10 6 až 10 7, 10 7 až 10 8 Kč. Příslušná transformace z náhodného čísla má následující vzorec: ( 1 * nahcislo ) + 2 F = 10 1 x 2 = log( nejvyssi nejnizsi = log nejnizsi de nejvyšší/nejnižší označuje maximální/minimální hodnotu, terou lze zadat pro daný parametr. Výhoda této transformace je, že hodnoty jsou náhodné a zároveň respetují exponenciální tvar stupnice. Každý interval je zastoupen přibližně stejným množstvím hodnot. Parametry 1 a 2 jsou uvedeny v následující tabulce: F x 1 2 F x , ,7 5 3,4 0,6 3 1,5 1, ,3 Přílad: Na záladě náhodných čísel z rovnoměrného rozdělení se určí hodnoty parametrů F x. Náhodná čísla jsou napřílad , , , , , Těmto náhodným číslům odpovídají následující hodnoty: F 1 = 0, /h F 2 = Kč F 3 = 284,1 Kč F 4 = 6,210 s/h F 5 = 53,05 h F 6 = Kč Nevýhodou těchto dat je, že se předpoládá nezávislost jednotlivých parametrů F 1 až F 6. Tento předpolad plně nevystihuje reálnou situaci. Systém popisuje všechny scénáře jao stejně pravděpodobné, což není ve sutečnosti pravda. )

9 6.2 Výpočet sutečné ritičnosti dopravní infrastrutury Výsledná sutečná ritičnost se vypočítá podle vzorce (2), terý je již uveden ve zprávě Hodnocení ritičnosti dopravní infrastrutury [1]. R = F 1 * (F 2 + F 3 * F 4 * F 5 + F 6 ) Pomocí vzorce (2) se vypočítají celové šody za hodinu a na záladě veliosti této šody je přidělena ritičnost scénáře. Kritičnost scénáře je označena 1 až 10. V apitole 3.1 bylo uvedeno, že v simulacích vzniají i scénáře, teré jsou silně nepravděpodobné. Sutečná ritičnost něterých scénářů je výrazně vyšší než bodové označení 10, proto byla bodová šála rozšířena na 13 stupňů. Jednotlivé bodové hodnoty ritičnosti jsou uvedeny v tabulce 3. Šody min Šody max Šody min Šody max R=1 0 0,025 Kč R=2 0,025 Kč 0,10 Kč R=3 0,10 Kč 0,40 Kč R=4 0,40 Kč 1,60 Kč R=5 1,60 Kč 6,40 Kč R=6 6,40 Kč 25 Kč R=7 25 Kč 100 Kč R=8 100 Kč 400 Kč R=9 400 Kč 1600 Kč R= Kč 6400 Kč R= Kč Kč R= Kč Kč R= Kč Kč Tab 3.: Kritičnost scénářů při známých šodách za hodinu Z dat v odstavci 3.1 a na záladě vzorce (2) se zjistila celová hodnota šody dopravní infrastrutury za hodinu. Tato šoda je 638,80 Kč za hodinu. Tato částa odpovídá bodové hodnotě 9 ritičnosti dopravní infrastrutury. 6.3 Výpočet odhadované ritičnosti dopravní infrastrutury Z náhodných čísel se po transformaci zjistily hodnoty parametrů F 1 až F 6. Podle [1] lze aždou hodnotu zařadit do bodové stupnice 1 až 5 aždého parametru. Každý tento parametr má stanovenu střední hodnotu. S pomocí této střední hodnoty a vzorce (2) se vypočítá odhadovaná šoda dopravní infrastrutury. Odhadované šody dopravní infrastrutury lze

10 zařadit do tabuly ritičností dopravní infrastrutury. Na záladě vstupních dat příladu je celová odhadovaná šoda: R=F 1 *(F 2 +F 3 *F 4 *F 5 + F 6 )=0,001*( *30* )=1645Kč/hod. Podle výsledu je ritičnost dopravní infrastrutury ohodnocena 10 body. 6.4 Určení výsledů přesnosti ritičnosti Pro aždý scénář byl vypočten v absolutní hodnotě rozdíl odhadované a sutečné ritičnosti. Sečtením těchto rozdílů přes všechny scénáře byla zjištěna střední hodnota rozdílů odhadované a sutečné ritičnosti. Střední hodnota rozdílu byla na záladě 10 7 simulací odhadnuta na 0, Závěr Bylo zjištěno, že sutečná a odhadovaná ritičnost se liší od sebe po vytvoření 10 7 simulací v průměru o 0,6335 bodu. Z tohoto důvodu lze přijmout závěr, že semivantitativní analýza je dostatečně přesná a lze ji použít v praxi. V analýze se neuvažoval případ, že odborní zapíše omylem hodnotu špatně nebo se neumí rozhodnout mezi dvěma bodovými hodnotami. Tento fat může zhoršit výslede analýzy. Literatura [1] Zajíče J.: Hodnocení ritičnosti dopravní infrastrutury, TUL, 2006 Adresa autora: Ing. Josef Chudoba, Technicá univerzita v Liberci, Faulta mechatroniy a mezioborových inženýrsých studií, Katedra modelování procesů, Hálova 6, Liberec 1 Josef.chudoba@tul.cz Tato práce byla vytvořena za podpory projetu MŠMT 1M CQR

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

L. Podéště 1875, Ostrava-Poruba, tel: ,

L. Podéště 1875, Ostrava-Poruba, tel: , VYUŽITÍ MTOD ANALÝZY RIZIK V PRAXI U OBJKTŮ POŠKOZNÝCH POŽÁRM A ŽIVLNOU POHROMOU. USING RISK ANALYSIS MTHODS IN PRACTIC FOR BUILDINGS AND FACILITIS DAMAGD BY FIR OR NATURAL CALAMITIS. Karel Kubeča 1, Silvie

Více

Měření indukčností cívek

Měření indukčností cívek 7..00 Ṫeorie eletromagneticého pole Měření indučností cíve.......... Petr Česá, studijní supina 05 Letní semestr 000/00 . Měření indučností cíve Měření vlastní a vzájemné indučnosti válcových cíve ZAÁNÍ

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND.

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND. Pravděpodobnostn podobnostní charateristiy diagnosticých testů, Bayesův vzorec Prof.RND RND.Jana Zvárov rová,, DrSc. Náhodný pous, náhodný n jev Náhodný pous: výslede není jednoznačně určen podmínami,

Více

χ 2 testy. Test nekorelovanosti.

χ 2 testy. Test nekorelovanosti. χ 2 testy. Test neorelovanosti. Petr Poší Části doumentu jsou převzaty (i doslovně) z Miro Navara: Pravděpodobnost a matematicá statistia, https://cw.fel.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Číselné charateristiy náhodných proměnných Charateristiy náhodných proměnných dělíme nejčastěji na charateristiy polohy a variability. Mezi charateristiy polohy se nejčastěji

Více

Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí

Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí 1 Obsah přednášy 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacing 5. Boosting 6. Shrnutí 2 Meta learning = Ensemble methods Cíl použít predici ombinaci více různých modelů Meta learning (meta

Více

Binomická věta

Binomická věta 97 Binomicá věta Předpolady: 96 Kdysi dávno v prvním ročníu jsme se učili vzorce na umocňování dvojčlenu Př : V tabulce jsou vypsány vzorce pro umocňování dvojčlenu Najdi podobnost s jinou dosud probíranou

Více

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi

Více

(iv) D - vybíráme 2 koule a ty mají různou barvu.

(iv) D - vybíráme 2 koule a ty mají různou barvu. 2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P

Více

zpracování signálů - Fourierova transformace, FFT Frekvenční

zpracování signálů - Fourierova transformace, FFT Frekvenční Digitální zpracování signálů - Fourierova transformace, FF Frevenční analýza 3. přednáša Jean Baptiste Joseph Fourier (768-830) Zálady experimentální mechaniy Frevenční analýza Proč se frevenční analýza

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 02 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Náhodné veličiny Záladní definice Nechť je dán pravděpodobnostní prostor

Více

Testování hypotéz. December 10, 2008

Testování hypotéz. December 10, 2008 Testování hypotéz December, 2008 (Testování hypotéz o neznámé pravděpodobnosti) Jan a Františe mají pytlíy s uličami. Jan má 80 bílých a 20 červených, Františe má 30 bílých a 70 červených. Vybereme náhodně

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

3.3.4 Thaletova věta. Předpoklady:

3.3.4 Thaletova věta. Předpoklady: 3.3.4 Thaletova věta Předpolady: 030303 Př. : Narýsuj ružnici ( ;5cm) a její průměr. Na ružnici narýsuj libovolný bod různý od bodů, (bod zvol jina než soused v lavici). Narýsuj trojúhelní. Má nějaou speciální

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

6 5 = 0, = 0, = 0, = 0, 0032

6 5 = 0, = 0, = 0, = 0, 0032 III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii

Více

Před zahájením vlastních výpočtů je potřeba analyzovat konstrukci a zvolit vhodný návrhový

Před zahájením vlastních výpočtů je potřeba analyzovat konstrukci a zvolit vhodný návrhový 2 Zásady navrhování Před zahájením vlastních výpočtů je potřeba analyzovat onstruci a zvolit vhodný návrhový model. Model musí být dostatečně přesný, aby výstižně popsal chování onstruce s přihlédnutím

Více

ANALÝZA SCHOPNOSTI ČESKÉ DOMÁCNOSTI VYSTAČIT S PŘÍJMY. Pavla Kafková, Jitka Bartošová. Úvod

ANALÝZA SCHOPNOSTI ČESKÉ DOMÁCNOSTI VYSTAČIT S PŘÍJMY. Pavla Kafková, Jitka Bartošová. Úvod ANALÝZA SCHOPNOSTI ČESKÉ DOMÁCNOSTI VYSTAČIT S PŘÍJMY Pavla Kafová, Jita Bartošová Abstrat Většina domácností má v současné době problém platit nejen mimořádné výdaje, ale i ty, teré jsou běžné a nezbytné

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

Mocnost bodu ke kružnici

Mocnost bodu ke kružnici 3.. ocnost bodu e ružnici Předpolady: 03009 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p s ružnicí označ A, B. Průsečíy sečny p s ružnicí označ

Více

Mocnost bodu ke kružnici

Mocnost bodu ke kružnici 3..0 ocnost bodu e ružnici Předpolady: 309 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p,. Průsečíy sečny p,. Změř potřebné vzdálenosti a spočti

Více

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno 7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje

Více

POUŽITÍ CEPSTER V DIAGNOSTICE STROJŮ

POUŽITÍ CEPSTER V DIAGNOSTICE STROJŮ POUŽITÍ CEPSTER V DIAGNOSTICE STROJŮ Jiří TŮMA, VŠB Technicá univerzita Ostrava 1 Anotace: Referát se zabývá použitím cepster analýze signálů jao alternativy frevenční analýze. Jao je frevenční analýza

Více

ÚNOSNOST A SEDÁNÍ MIKROPILOT TITAN STANOVENÉ 3D MODELEM MKP

ÚNOSNOST A SEDÁNÍ MIKROPILOT TITAN STANOVENÉ 3D MODELEM MKP Dr.Ing. Hyne Lahuta VŠB-TU Ostrava, Faulta stavební, atedra geotechniy e-mail: hyne.lahuta@vsb.cz Prof.Ing. Josef Aldorf, DrSc. VŠB-TU Ostrava, Faulta stavební, atedra geotechniy e-mail: josef.aldorf@vsb.cz

Více

Odborná skupina pro spolehlivost. Použití ordinálních a semikvantitativních postupů ve spolehlivosti. Jaroslav Zajíček

Odborná skupina pro spolehlivost. Použití ordinálních a semikvantitativních postupů ve spolehlivosti. Jaroslav Zajíček Odborná skupina pro spolehlivost Použití ordinálních a semikvantitativních postupů ve spolehlivosti Jaroslav Zajíček Obsah 1. Úvod management rizika 2. Výskyt a analýza nekvantitativních postupů - matice

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Aplikované chemické procesy

Aplikované chemické procesy pliované hemié proesy Záladní pojmy, bilanování Rozdělení systému - podle výměny hmoty a energie Otevřený systém může se svým oolím vyměňovat hmotu a energii v průběhu časového období bilanování Uzavřený

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

Geometrická zobrazení

Geometrická zobrazení Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších

Více

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování

Více

rozvahový den:

rozvahový den: PŘÍLOHA V ÚČETNÍ ZÁVĚRCE rozvahový den: 31. 12. 2016 ÚČETNÍ OBDOBÍ 1. 1. 2016-31. 12. 2016 OBECNÉ ÚDAJE (1) Popis účetní jednoty Obchodní firma: QED SYSTEMS a.s. Spisová znača: B 3261 vedená u Městsého

Více

Stanovení nejistot při výpočtu kontaminace zasaženého území

Stanovení nejistot při výpočtu kontaminace zasaženého území Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních

Více

1.5.7 Prvočísla a složená čísla

1.5.7 Prvočísla a složená čísla 17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:

Více

FRP 5. cvičení Skonto, porovnání různých forem financování

FRP 5. cvičení Skonto, porovnání různých forem financování FRP 5. cvičení onto, porovnání různých forem financování onto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše

Více

Fyzikální praktikum č.: 1

Fyzikální praktikum č.: 1 Datum: 5.5.2005 Fyziální pratium č.: 1 ypracoval: Tomáš Henych Název: Studium činnosti fotonásobiče Úol: 1. Stanovte závislost oeficientu seundární emise na napětí mezi dynodami. yneste do grafu závislost

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistia Přílady a otázy Petr Hebá a Hana Salsá GAUDEAMUS 2011 Autoři: prof. Ing. Petr Hebá, CSc. Autoři: prof. RNDr. Hana Salsá, CSc. Recenzenti: doc. RNDr. Tatiana Gavalcová, CSc.

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy: Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je

Více

Makrozátěžové testy sektoru penzijních společností

Makrozátěžové testy sektoru penzijních společností Marozátěžové testy setoru penzijních společností Marozátěžové testy setoru penzijních společností (PS) jsou v ČNB využívány jao nástroj pro hodnocení odolnosti setoru vůči možným nepříznivým šoům. estu

Více

9 Stupně vrcholů, Věta Havla-Hakimiho

9 Stupně vrcholů, Věta Havla-Hakimiho Typicé přílady pro zápočtové písemy DiM 470-301 (Kovář, Kovářová, Kubesa) (verze: November 5, 018) 1 9 Stupně vrcholů, Věta Havla-Haimiho 9.1. Doážete nareslit graf na 9 vrcholech, ve terém mají aždé dva

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti

Více

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ Jan CHOCHOLÁČ 1 THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ BIO NOTE Jan CHOCHOLÁČ Asistent na Katedře dopravního managementu, maretingu

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

S D Ě L E N Í 1. KRITÉRIA HODNOCENÍ ZKOUŠEK A DÍLČÍCH ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY

S D Ě L E N Í 1. KRITÉRIA HODNOCENÍ ZKOUŠEK A DÍLČÍCH ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY V Praze dne 19. března 2013 Č. j.: MSMT-10139/2013-211 S D Ě L E N Í V souladu s 22, odst. 1 vyhlášky č. 177/2009 Sb., o bližších podmínkách ukončování vzdělávání ve středních školách maturitní zkouškou,

Více

Kombinace s opakováním

Kombinace s opakováním 9..3 Kombinace s opaováním Předpolady: 907. 908, 9, 92 Pedagogicá poznáma: Tato hodina zabere opět minimálně 70 minut. Asi ji čeá rozšíření na dvě hodiny. Netradiční začáte. Nemáme žádné přílady, ale rovnou

Více

ÚNOSNOST A PŘETVÁŘENÍ TYČOVÝCH MIKROPILOT TITAN V ZÁVISLOSTI NA VLASTNOSTECH HORNINOVÉHO PROSTŘEDÍ A JEJICH DÉLCE

ÚNOSNOST A PŘETVÁŘENÍ TYČOVÝCH MIKROPILOT TITAN V ZÁVISLOSTI NA VLASTNOSTECH HORNINOVÉHO PROSTŘEDÍ A JEJICH DÉLCE Dr.Ing. Hyne Lahuta, Ing. Josef Mráz VŠB-TU Ostrava, Katedra geotechniy a podzemního stavitelství, L.Podéště 1875, 708 00 Ostrava-Poruba, hyne.lahuta@vsb.cz, nusa@lobou.fsv.cvut.cz ÚNOSNOST A PŘETVÁŘENÍ

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

PÍSEMNÁ ZPRÁVA ZADAVATELE, dle 85 zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění pozdějších předpisů (dále jen zákon ).

PÍSEMNÁ ZPRÁVA ZADAVATELE, dle 85 zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění pozdějších předpisů (dále jen zákon ). STÁTNÍ POZEMKOVÝ ÚŘAD Sídlo: Husinecá 104/11a, 130 00 Praha 3 - Žižov, IČO: 0131774, DIČ: CZ0131774 Krajsý pozemový úřad pro Karlovarsý raj Adresa: Chebsá 73/48, Dvory, 360 06 Karlovy Vary PÍSEMNÁ ZPRÁVA

Více

Kombinace s opakováním

Kombinace s opakováním 9..3 Kombinace s opaováním Předpolady: 907. 908, 9, 92 Pedagogicá poznáma: Časová náročnost této hodiny je podobná hodině předchozí. Netradiční začáte. Nemáme žádné přílady, ale rovnou definici. Definice

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad na rozhodování BPH_ZMAN Základní charakteristiky a značení symbol verbální vyjádření interval C g g-tý cíl g = 1,.. s V i i-tá varianta i = 1,.. m K j j-té kriterium j = 1,.. n v j x ij

Více

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem restart. To oceníme při opakovaném použití dokumentu. Úloha 1 - Koupě nového televizoru SPOTŘEBITELSKÝ ÚVĚR Chceme si oupit nový televizor v hodnotě 000,-Kč. Bana nám půjčí, přičemž její úroová sazba činí 11%. Předpoládejme, že si půjčujeme na jeden ro a

Více

Protokol č. 5. Vytyčovací údaje zkusných ploch

Protokol č. 5. Vytyčovací údaje zkusných ploch Protokol č. 5 Vytyčovací údaje zkusných ploch Zadání: Ve vybraném porostu bylo prováděno zjišťování zásob za použití reprezentativní metody kruhových zkusných ploch. Na těchto zkusných plochách byl zjišťován

Více

Příklady - Bodový odhad

Příklady - Bodový odhad Příklady - odový odhad 5. října 03 Pražské metro Přijdu v pražském metru na nástupiště a tam zjistím, že metro v mém směru jelo před :30 a metro v opačném směru před 4:0. Udělejte bodový odhad, jak dlouho

Více

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005 Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme

Více

Makrozátěžové testy sektoru penzijních společností 1

Makrozátěžové testy sektoru penzijních společností 1 Marozátěžové testy setoru penzijních společností 1 Marozátěžové testy setoru penzijních společností (PS) jsou v ČNB využívány jao nástroj pro hodnocení odolnosti setoru vůči možným nepříznivým šoům. estu

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Zatížení štíhlých konstrukcí větrem podle evropských norem

Zatížení štíhlých konstrukcí větrem podle evropských norem euroódy text: Ing. Jiří Laodný, Ing. Vladimír Janata, CSc., Ing. Stanislav Pospíšil, P.D. graficé podlady: EXCON a.s., ÚTAM AV Č Zatížení štílýc onstrucí větrem podle evropsýc norem Nové evropsé normy

Více

Absorpční vlastnosti plazmatu směsí SF 6 a PTFE

Absorpční vlastnosti plazmatu směsí SF 6 a PTFE Absorpční vlastnosti plazmatu směsí SF 6 a PTFE N. Bogatyreva, M. Bartlová, V. Aubrecht Faulta eletrotechniy a omuniačních technologií, Vysoé učení technicé v Brně, Technicá 10, 616 00 Brno Abstrat Článe

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

MATEMATIKA. O paradoxech spojených s losováním koulí

MATEMATIKA. O paradoxech spojených s losováním koulí MATEMATIKA O paradoxeh spojenýh s losováním oulí PAVEL TLUSTÝ IRENEUSZ KRECH Eonomiá faulta JU, Česé Budějovie Uniwersytet Pedagogizny, Kraów Matematia popisuje a zoumá různé situae reálného světa. Je

Více

VYŠŠÍ ODBORNÁ ŠKOLA A STŘEDNÍ ŠKOLA SLABOPROUDÉ ELEKTROTECHNIKY Novovysočanská 48/280, Praha 9

VYŠŠÍ ODBORNÁ ŠKOLA A STŘEDNÍ ŠKOLA SLABOPROUDÉ ELEKTROTECHNIKY Novovysočanská 48/280, Praha 9 1. Analogové měřicí přístroje Jsou přístroje, teré slouží měření různých eletricých veličin. Např. měření proudu, napětí a výonu. Pro měření těchto veličin nejčastěji používáme tyto soustavy:magnetoeletricá,

Více

Úvod do Kalmanova filtru

Úvod do Kalmanova filtru Kalmanův filtr = odhadovač stavu systému Úvod do Kalmanova filtru KF dává dohromady model systému a měření. Model systému použije tomu, aby odhadl, ja bude stav vypadat a poté stav porovná se sutečným

Více

I. Určete(a nakreslete) definiční obor a vrstevnice funkcí 1. f(x, y)=x+ y 2. f(x, y)= y 3. f(x, y)=x 2 + y 2 4. f(x, y)=x 2 y 2

I. Určete(a nakreslete) definiční obor a vrstevnice funkcí 1. f(x, y)=x+ y 2. f(x, y)= y 3. f(x, y)=x 2 + y 2 4. f(x, y)=x 2 y 2 I. Určete(a nareslete) definiční obor a vrstevnice funcí. f( )=+. f( )=. f( )= +. f( )= 5. f( )=. f( )= 7. f( )= + 8. f( )= ( + )( ) 9. f( )= ( + ) 0. f( )= sin( + ). f( )=sgn(sin sin). f( )= + Rozhodněte

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

Detailní porozumění podstatě měření

Detailní porozumění podstatě měření Nejistoty Účel Zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny Nejčastěji X X [%] X U X U [%] V roce 1990 byl vydán dokument WECC 19/90, který představoval

Více

UKAZATELÉ VARIABILITY

UKAZATELÉ VARIABILITY UKAZATELÉ VARIABILITY VÝZNAM Porovnejte známky dvou studentek ze stejného předmětu: Studentka A: Studentka B: Oba soubory mají stejný rozsah hodnoty, ale liší se známky studentky A jsou vyrovnanější, jsou

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

20 - Číslicové a diskrétní řízení

20 - Číslicové a diskrétní řízení 20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2013 22-4-14 Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou rezistorů/apacitorů v analogové řídicím

Více

ZPRÁVA O POSOUZENÍ A HODNOCENÍ NABÍDEK podle 80 zákona č. 137/2006 Sb. o veřejných zakázkách, v platném znění (dále jen zákon )

ZPRÁVA O POSOUZENÍ A HODNOCENÍ NABÍDEK podle 80 zákona č. 137/2006 Sb. o veřejných zakázkách, v platném znění (dále jen zákon ) ZPRÁVA O POSOUZENÍ A HODNOCENÍ NABÍDEK podle 80 zákona č. 137/2006 Sb. o veřejných zakázkách, v platném znění (dále jen zákon ) Veřejná zakázka: Sdružené dodávky elektrické energie pro FNKV 1. Evidenční

Více

6. Měření Youngova modulu pružnosti v tahu a ve smyku

6. Měření Youngova modulu pružnosti v tahu a ve smyku 6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..

Více

Dynamika populací s oddělenými generacemi

Dynamika populací s oddělenými generacemi Dynamia populací s oddělenými generacemi Tento text chce představit nejjednodušší disrétní deterministicé dynamicé modely populací. Deterministicé nebudeme uvažovat náhodné vlivy na populace působící nebo

Více

a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R

a) formulujte Weierstrassovo kritérium stejnoměrné konvergence b) pomocí tohoto kritéria ukažte, že funkční řada konverguje stejnoměrně na celé R ) ČÍSELNÉ A FUNKČNÍ ŘADY (5b) a) formulujte Leibnitzovo ritérium včetně absolutní onvergence b) apliujte toto ritérium na řadu a) formulujte podílové ritérium b) posuďte onvergenci řad c) oli členů této

Více

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího

Více

Systém rizikové analýzy při sta4ckém návrhu podzemního díla. Jan Pruška

Systém rizikové analýzy při sta4ckém návrhu podzemního díla. Jan Pruška Systém rizikové analýzy při sta4ckém návrhu podzemního díla Jan Pruška Definice spolehlivos. Spolehlivost = schopnost systému (konstrukce) zachovávat požadované vlastnos4 po celou dobu životnos4 = pravděpodobnost,

Více

Návrh vysokofrekvenčních linkových transformátorů

Návrh vysokofrekvenčních linkových transformátorů inové transformátory inové transformátory Při požadavu na transformaci impedancí v široém frevenčním pásmu, dy nelze obsáhnout požadovanou oblast mitočtů ani široopásmovými obvody, je třeba použít široopásmových

Více

Stupnice geomagnetické aktivity

Stupnice geomagnetické aktivity AKADEMIE VĚD ČESKÉ REPUBLIKY Geofyzikální ústav Stupnice geomagnetické aktivity Petr Kubašta Rozbor a zhodnocení předpovědí geomagnetické aktivity Praha, 2011 Abstrakt Tento článek poskytuje kvantitativní

Více

4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá.

4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá. Přílad 1. Řešte v R rovnici x 4x + x 4 0. Výslede vypočtěte s přesností alespoň 0,07. 1) Reálné ořeny rovnice budou ležet v intervalu ( 5,5), protože největší z oeficientů polynomu bez ohledu na znaméno

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

Příklad zatížení ocelové haly

Příklad zatížení ocelové haly 4. Zatížení větrem Přílad haly Zatížení stavebních onstrucí Přílad atížení ocelové haly Zadání Určete atížení a maximální možné vnitřní síly na prostřední rám halového jednolodního objetu (vi obráe). Celová

Více

pracovní verze pren 13474 "Glass in Building", v níž je uveden postup výpočtu

pracovní verze pren 13474 Glass in Building, v níž je uveden postup výpočtu POROVNÁNÍ ANALYTICKÉHO A NUMERICKÉHO VÝPOČTU NOSNÉ KONSTRUKCE ZE SKLA Horčičová I., Netušil M., Eliášová M. Česé vysoé učení technicé v Praze, faulta stavební Anotace Slo se v moderní architetuře stále

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

Systém ČESKÉ VYSOKÉ UČENĺ TECHNICKÉ V PRAZE Směrnice prorektora č. 2 I 2014 Postup při správě a využití duševnĺho vlastnictví ČVUT Čj.: NP

Systém ČESKÉ VYSOKÉ UČENĺ TECHNICKÉ V PRAZE Směrnice prorektora č. 2 I 2014 Postup při správě a využití duševnĺho vlastnictví ČVUT Čj.: NP Systém ČESKÉ VYSOKÉ UČENĺ TECHNICKÉ V PRAZE Směrnice proretora č. 2 I 2014 Postup při správě a využití duševnĺho vlastnictví ČVUT Čj.: 011114151922NP V Praze dne 18.3.2014 PREAMBULE ČVUT je organizací

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více