VYUŽITÍ PROGRAMU CABRI PRO ZJIŠŤOVÁNÍ VLASTNOSTÍ OSOVÝCH AFINIT
|
|
- Lukáš Bartoš
- před 8 lety
- Počet zobrazení:
Transkript
1 VYUŽITÍ PROGRAMU CABRI PRO ZJIŠŤOVÁNÍ VLASTNOSTÍ OSOVÝCH AFINIT Naďa Stehlíková 1, Univerzita Karlova v Praze, Pedagogická fakulta Úvod Připomeňme nejdříve, že afinní transformace roviny (nebo afinita) je taková transformace, která zachovává kolinearitu a dělicí poměr. Osová afinita je pak afinní transformace, která má přímku samodružných bodů. Z toho pak plyne konstrukce obrazu libovolného bodu (obr. 1). Osová afinita je dána osou o a párem odpovídajících si různých bodů neležících na ose (vzoru A a obrazu A ). Zapisujeme (o,a,a ). Spojnice bodů A a A určuje tzv. směr afinity. Při hledání obrazu bodu X nejdříve zkonstruujeme průsečík P přímky AX s přímkou o (P = P, což plyne z to, že přímka o je přímka samodružných bodů). Obraz bodu X, tedy bod X, leží na průsečíku přímky A P a přímky rovnoběžné s přímkou AA a procházející bodem X (to plyne z definice afinity). Osové afinity patří mezi geometrické transformace studované v rámci syntetické i analytické geometrie na vysoké škole. Jejich syntetické studium je však značně náročné na rýsování. Chceme-li, by studenti sami některé vlastnosti osových afinit vyvodili, pak je pro ně značně Obr. 1 obtížné vyznat se v náčrtku, kde se brzy objeví změť čar. Proto jsem při výuce tohoto tématu na Pedagogické fakultě UK v Praze začala využívat programu Cabri geometrie II. Program Cabri je využíván ve výuce matematiky na všech úrovních. Řadu námětů je možné najít na českém portálu tohoto programu ( 2 případně na světových stránkách věnovaných Cabri (seznam je na Konkrétní ukázky použití programu zejména na úrovni základní a střední školy jsou častými náměty článků v českých časopisech pro učitele Matematika, fyzika, informatika a Učitel matematiky. Tvorba maker je podrobně prezentována např. v knize Schumann & Green (1994). Tento článek je příspěvkem k využití programu v rámci vysokoškolské přípravy budoucích učitelů. Cíl použití Cabri v přípravě učitelů je tedy dvojí. Za prvé je pro ně prostředkem pro vyvození nových matematických poznatků a za druhé získávají sami zkušenosti, které mohou dále zúročit při vlastní učitelské práci. Osové afinity v kurzu Geometrické transformace Kurz Geometrické transformace, analytický přístup zaujímá v rámci přípravy budoucích učitelů 2. stupně základní školy a střední školy specifické místo tím, že se snaží využívat konstruktivistických přístupů k výuce (Hejný, Kuřina, 2001). Studenti sami si mají prostřednictvím vhodně volených gradovaných úloh vyvodit řadu poznatků, které jsou 1 Příspěvek byl podpořen grantem GAUK 500/2004/A-PP/PedF. 2 Přímo osovými afinitami v programu Cabri se zabývá seminární práce Gabriely Sosnovyjové na stránce 94
2 v tradičním vyučování předány jako hotové (viz také Kuřina, 2002). Kurz byl popsán např. v Stehlíková (2002, 2003). Studium afinit v rovině následuje po studiu shodností v rovině. Osové afinity zaujímají v rámci afinit v rovině důležité místo a jako takovým je jim věnována značná pozornost. Studenti se s nimi setkávají prakticky poprvé (kromě krátkého úvodu v rámci kurzu Elementární geometrie ). Snaha zadat úlohy, které by vedly k samostatnému odhalení základních vlastností osových afinit, zpočátku narážela na výše zmíněný technický nedostatek studenti spotřebovali tolik energie na narýsování obrazů bodů, že jim už příliš nezbývalo na to, aby dokázali z konečného, poměrně chaotického obrázku něco vyčíst. Proto jsem se rozhodla zapojit do výuky program Cabri geometrie. Nejdříve se studenty vyvodíme výše zmíněnou konstrukci obrazu bodu v osové afinitě na základě definice afinity v rovině a osové afinity. Pak vytvoříme makro, s pomocí kterého je možné nalézt obraz bodu, přímky, trojúhelníka a mnohoúhelníka v osové afinitě. Pro involutorní osovou afinitu, která je dána dvěma různoběžkami (jedna z nich je osa, druhá určuje směr afinity), jsou vytvořena zvláštní makra. Tyto makra mají studenti k dispozici, když ve skupinách pracují u počítačů na úlohách zadaných učitelem. S programem Cabri se seznámili již v kurzu Elementární geometrie a jeho ovládání jim většinou nečiní žádné problémy. Kromě použití maker musí umět pracovat s funkcí Stopa a zjišťovat velikost úsečky a obsah útvaru. Sada úloh Cílem níže uvedené sady úloh je objev základních vlastností osové afinity 3 : rovnoběžné přímky se zobrazí do rovnoběžných přímek, čtverec a obdélník se zobrazí do rovnoběžníka, kružnice se zobrazí do elipsy, obsah obrazce se zachovává u elace (podtyp osové afinity, v níž je osa afinity rovnoběžná se směrem afinity) a u involutorní osové afinity 4, samodružné přímky jsou ty, které patří do směru afinity (plus osa), elace má jeden samodružný směr, ostatní osové afinity mají dva samodružné směry, velikost úsečky rovnoběžné s osou afinity se nemění apod. Několik úloh je věnováno problematice skládání osových afinit. Úloha 1: Nadefinujte si osovou afinitu, (a) která není ani elací ani involutorní afinitou, (b) která je elací, (c) která je involutorní osovou afinitou. Pak si mimo osu zvolte bod X a najděte pomocí makra Obraz bodu v osové afinitě jeho obraz. Označte všechny objekty. Pohybujte vzorem, obrazem a osou a sledujte, jak se mění poloha obrazu X. Svá pozorování evidujte. Úloha 2: Jako v úloze 1, jen zkoumejte obraz přímky. Úloha 3: Zjistěte, které přímky jsou v osové afinitě samodružné. Prozkoumejte elaci, involutorní osovou afinitu a ostatní osové afinity. Podobně řešte pro samodružné směry. Úloha 4: Co je obrazem čtverce v osové afinitě? Úloha 5: Co je obrazem kružnice v osové afinitě? Úloha 6: Nadefinujte si nějaký mnohoúhelník a sledujte, které jeho vlastnosti zůstanou v osové afinitě zachovány a které se mění. 3 Díky omezenému rozsahu článku uvádím vlastnosti pouze zkratkovitě, a ne pomocí matematických vět. 4 Často se setkávám s chápáním osové afinity jako analogie osové souměrnosti, což vede k tomu, že studenti automaticky předpokládají, že všechny osové afinity jsou involutorní. 95
3 Úloha 7: Zjistěte, jak mění osová afinita délky. Úloha 8: Zjistěte, zda a jak osová afinita mění obsah. Úloha 9: Co je složením osové afinity (o,x,x 1 ) a osové afinity (o,x 1,X 2 )? (Kuřina, 2002, s. 167) Úloha 10: Zjistěte, co je složením osové afinity (o,x,x 1 ) a posunutí o vektor rovnoběžný s osou o. Úloha 11: Zjistěte, co je složením involutorní osové afinity a posunutí o vektor ležící ve směru afinity. Úloha 12: Jsou dány dvě osové afinity f, g s osami p, q a směry Ω,. Popište geometrický tvar afinity h = g f, kdy (a) p = q, Ω =, (b) p = q, p Ω, Ω, (c) p = q, Ω, žádná z afinit f, g není elací, (d) p q, p je rovnoběžná s q, Ω =, f není elace, (e) p q, p je rovnoběžná s q, Ω =, f je elace, (f) p q, p je rovnoběžná s q, Ω, f ani g není elace, (g) p, q jsou různoběžné, q Ω, p. Úloha 13: Dokažte větu: Nechť je dán trojúhelník ABC a směr s tak, že A = f(a) (f je afinita) leží na rovnoběžce se směrem s vedené bodem A, bod B = f(b) leží na rovnoběžce se směrem s vedené bodem B a obdobně bod C. Pak f je buď posunutí, nebo osová afinita. Úloha 14: Ověřte, že každou afinitu lze napsat jako složení nejvýše dvou osových afinit. Ilustrace studentských prací K úloze 1 a 2: Pomocí těchto dvou úloh se studenti mají seznámit s prostředím a experimentálně si ověřit, jak se asi osové afinity chovají. Evidence poznatků je zatím chaotická (obr. 2). Ukazuje se výhodnost použití Cabri. Zatímco dříve, když si studenti měli klasicky zakreslit nějakou osovou afinitu, často se omezili na ten typ, který jim byl předveden. To znamená, pokud vyučující zakreslil body A a A Obr. 2 v jedné polorovině dané osou o, pak i oni nadále zakreslovali osové afinity takto. Dynamičnost počítačové geometrie je navádí k tomu, aby experimentovali s polohou bodu A a pohybovali jím v obou polorovinách. K úloze 5: Na obr. 3 je zakreslena situace, v níž je nalezen obraz kružnice k v osové afinitě (o,a,a ). Pomocí pohybu bodu A je možné zjistit, v jaké speciální poloze je obrazem kružnice opět kružnice. Obr. 3 K úloze 8: Na obr. 4 je ilustrován postup zjišťování vlivu osové afinity na obsah 96
4 Obr. 4 útvarů. Pohybem obrazu A lze experimentálně zjistit, že elace (obr. 4 vpravo, bod A leží na rovnoběžce s osou, přesnost není zcela stoprocentní ) a involutorní osová afinita zachovávají obsah. Tento poznatek je dokázán v následujících hodinách, kdy studenti odvodí a dokáží větu o souvislosti obsahu obrazu útvaru a determinantu matice afinity (absolutní hodnota determinantu matice elace a involutorní osové afinity je rovna 1). K úloze 13: Nástin důkazu je na obr. 5. Trojúhelník ABC je zobrazen na trojúhelník A B C, směr je dán přímkou s. Výsledná osová afinita je dána osou procházející body P1, P2, P3, které získáme jako průsečíky přímek AC a A C, BC a B C, resp. AB a A B. Pro prezentaci důkazu použijeme funkci Historie, která umožňuje konstrukci provést postupně, krok po kroku. K úloze 14: Na obr. 6 je ilustrován postup práce. Dokazujeme, že Obr. 5 afinitu f(abc)=a B C lze rozložit na dvě osové afinity. Nejprve zvolíme dva různoběžné směry s1 a s2 (je nutné je zvolit tak, aby nevzniklo posunutí). Vzor, tj. trojúhelník ABC, je zobrazen první osovou afinitou do trojúhelníka A*B*C*, a ten je druhou osovou afinitou zobrazen do trojúhelníka A B C. Osy obou osových afinit bychom mohli nalézt pomocí postupu z úlohy 13. Pro prezentaci opět využijeme funkci Historie. Obr. 6 97
5 Závěr V programu Cabri pracují studenti zpravidla dvě vyučovací hodiny a výsledky své práce zpracovávají ve skupinách (nemusejí nutně udělat všechny úlohy, často pracují i doma). V dalších hodinách se řada vlastností, které byly objeveny experimentálně, dokáží analyticky. Studenti si postupně uvědomují i omezení syntetického přístupu. Zjišťují, že např. úlohy, které vedou ke skládání afinit, se dají nejlépe řešit analyticky. Experimentální řešení je v řadě případů nemožné. V loňském roce byla na téma prezentované v tomto článku vypsána diplomová práce. Diplomantka ověřuje některé z výše uvedených úloh a navíc pro použití v programu Cabri rozpracovala úlohy, které se řeší analyticky. K tomu vytvořila makro Souřadnice bodu a Graf přímky. Tak je možné v Cabri řešit i úlohy typu: Analyticky i synteticky najděte osu a dvojici vzor obraz pro osovou afinitu, která převádí přímku p do přímky p a přímku q do přímky q, platí-li p: x y 1=0, p : 2x 3y 7=0, q: y+2=0, q : x 2y 5=0. Literatura [1] Hejný, M., Kuřina, F. (2001). Dítě, škola a matematika. Konstruktivistické přístupy k vyučování. Praha: Portál. [2] Kuřina, F. (2002). 10 geometrických transformací. Praha: Prometheus. [3] Schumann, H., Green, D. (1994). Discovering geometry with a computer using Cabri Géometre. Chartwell Bratt Ltd. [4] Stehlíková, N. (2002). Geometrické transformace konstruktivistický přístup. In Ausbergerová, M., Novotná, J. a Sýkora, V. 8. setkání učitelů matematiky všech typů a stupňů škol. Praha: JČMF, s [5] Stehlíková, N. (2003). Ilustrace konstruktivistických přístupů k vyučování na vysoké škole. In Burjan, V., Hejný, M. a Jány, Š. Zborník príspevkou z letnej školy z teórie vyučovania matematiky Pytagoras. Bratislava: EXAM, s
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů
Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst
Syntetická geometrie I
Afinita Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Směr Dvě rovnoběžné přímky mají stejný (neorientovaný) směr. Definice (Samodružný směr) Když se při zobrazení f zobrazí přímka p na přímku
Mongeovo zobrazení. Osová afinita
Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A
MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po
Shodná zobrazení v rovině osová a středová souměrnost Mgr. Martin Mach
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
SHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky HODNÁ PODOBNÁ ZOBRZENÍ V ROVINĚ Pomocný učební text Petra Pirklová Liberec, září 2013
MATEMATIKA. Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci
MATEMATIKA Úloha o čtverci a přímkách ŠÁRKA GERGELITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci (například podobnosti)
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ
Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.
11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny
Shodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
Obrázek 34: Vznik středové kolineace
6 Středová kolineace Jak naznačuje Obr. 34, středová kolineace (se středem S), jako vzájemně jednoznačné zobrazení Ē 2 na sebe, je výsledkem středového průmětu (se středem S ) středového promítání (se
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.
ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě
- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 12 19 9:02 Kontrukční úlohy Výsledkem
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady
Afinní zobrazení, jeho regularita a (totální) singularita. Asociovaný homomorfismus. Analytické
Slezská univerzita v Opavě Matematický ústav v Opavě Na Rybníčku 1 746 01 Opava Tel. 553 684 661 ANALYTICKÁ GEOMETRIE Téma 3. Afinní zobrazení Opakování Dělicí poměr; Homomorfismus vektorových prostorů,
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra algebry a geometrie Afinní zobrazení v příkladech Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2013 Vypracoval:
Definice 3. Kruhová inverze určená kružnicí ω(s, r) (viz Obr. 6) je zobrazení, které každému bodu X S přiřadí bod X tímto způsobem:
2 Kruhová inverze Definice 3. Kruhová inverze určená kružnicí ω(s, r) (viz Obr. 6) je zobrazení, které každému bodu X S přiřadí bod X tímto způsobem: (1) X SX, (2) SX SX = r 2. Obrázek 6: Kruhová inverze
s dosud sestrojenými přímkami a kružnicemi. Abychom obrázky nezaplnili
Dělení úsečky ŠÁRKA GRGLITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha V tomto článku se budeme zabývat sadou geometrických úloh, které jsou tematicky podobné. Liší se jen hodnotou jednoho
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva
1 Připomenutí vybraných pojmů
1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná
1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Shodné zobrazení v rovině
Gymnázium Cheb Shodné zobrazení v rovině seminární práce Cheb, 2007 Lojza Tran Prohlášení Prohlašuji, že jsem seminární práci na téma: Shodné zobrazení v rovině vypracoval zcela sám za použití pramenů
( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )
6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice
Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr
Geometrické transformace v rovině Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace shodné transformace (shodnosti, izometrie) převádějí objekt
Syntetická geometrie I
Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ
SHODNÁ ZOBRAZENÍ V ROVINĚ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SHODNÁ
Pomocný text. Kruhová inverze
Pomocný text Kruhová inverze Co je to kruhová inverze? Pod pojmem kruhová inverze se rozumí geometrické zobrazení, jehož vlastnostem se nyní budeme věnovat. Nechť je dána rovina, v ní ležící bod O, který
CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Seznam pomůcek na hodinu technického kreslení
Seznam pomůcek na hodinu technického kreslení Sešit bez linek, formát A4 Psací potřeby propiska nebo pero, mikrotužky 2B, H Pravítko s ryskou Rovné pravítko Úhloměr Kružítko Šablona písma 3,5 mm Šablona
3.3.5 Množiny bodů dané vlastnosti II (osa úsečky)
3.3.5 Množiny bodů dané vlastnosti II (osa úsečky) Předpoklady: 030304 Př. 1: Je dána úsečka, = 5,5cm. Narýsuj osu úsečky. Jakou vlastnost mají body ležící na této přímce? Pro všechny body na ose úsečky,
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek
Zajímavé matematické úlohy
Poděkování. Tento článek vznikl v rámci projektu SVV 2014-260105. Výzkum byl podpořen Grantovou agenturou Univerzity Karlovy v Praze (projekt č. 1250213). L i t e r a t u r a [1] Hejný, M. a kol.: Teória
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční
3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
Využití programu MS Excel při výuce vlastností kvadratické funkce
Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,
Syntetická geometrie I
Kolineace Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Incidence Incidence je základní vztah - nedefinujeme ji. Bod leží na přímce = Přímka prochází bodem = Bod je incidentní s přímkou. Definice
Syntetická geometrie I
Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní
Analytická geometrie (AG)
Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie
Výuka geometrie na 2. stupni ZŠ
Výuka geometrie na 2. stupni ZŠ Úspěšnost žáků v geometrii, vytváření vědomostí, zdokonalování dovedností žáků i rozvíjení jejich schopností úzce souvisí s vytvářením postojů žáků k vyučování geometrii,
VYTVÁŘENÍ GEOMETRICKÝCH PŘEDSTAV (u žáků se specifickými poruchami učení) Růžena Blažková
VYTVÁŘENÍ GEOMETRICKÝCH PŘEDSTAV (u žáků se specifickými poruchami učení) Růžena Blažková Geometrie je specifickou oblastí matematiky, která může být pro žáky, kteří mají poruchy v oblasti numerace a operací
5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
Extremální úlohy v geometrii
Extremální úlohy v geometrii Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava 30.4. 2013 Petr
Mongeovo zobrazení. Řez jehlanu
Mongeovo zobrazení Řez jehlanu Středová kolineace Středová kolineace Definice Geometrická příbuznost mezi útvary dvou rovin (různých nebo totožných) splňující následující podmínky Středová kolineace Definice
37. PARABOLA V ANALYTICKÉ GEOMETRII
37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
Michal Zamboj. December 23, 2016
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
P L A N I M E T R I E
M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů
Důkazy vybraných geometrických konstrukcí
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
DIDAKTIKA MATEMATIKY
DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body
Michal Zamboj. January 4, 2018
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Pravoúhlá axonometrie
Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou
Cabri pro začátečníky
Cabri pro začátečníky učební text RNDr. Ludmila Ciglerová 1. C T 1 T 3 O 1 1 A T 2 B H T G E F S D C A B R 1 Rýsování základních geometrických útvarů a) hlavní vodorovná lišta -Soubor, Upravit,Nastavit,
JAK NA HYPERBOLU S GEOGEBROU
Trendy ve vzdělávání 015 JAK NA HYPERBOLU S GEOGEBROU KRIEG Jaroslav, CZ Resumé Článek ukazuje, jak pomocí GeoGebry snadno řešit úlohy, které vedou na konstrukci hyperboly, případně jak lehce zkonstruovat
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
ZÁKLADNÍ PLANIMETRICKÉ POJMY
ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky
Geometrická zobrazení
Geometrická zobrazení Franta Konopecký Geometrická zobrazení jsou nádherná kapitola matematiky, do které když proniknete, tak už neuniknete. Pro lepší představu v tomto příspěvku najdete stručný přehled,
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak
Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová
Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání
CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
6 Samodružné body a směry afinity
6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný
STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...
STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...
2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
Opakování ZŠ - Matematika - část geometrie - konstrukce
Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny
5 Pappova věta a její důsledky
5 Pappova věta a její důsledky Pappos z Alexandrie (?90?350), řecký matematik a astronom. Pod označením Pappova věta je uváděno více vět. Proto je třeba uvést, o jaké z těchto vět hovoříme. Zde se budeme
Matematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3)
list 1 / 8 M časová dotace: 4 hod / týden Matematika 6. ročník (M 9 1 01) (M 9 1 02) (M 9 1 03) provádí početní operace v oboru celých a racionálních čísel; čte, zapíše, porovná desetinná čísla a zobrazí
[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky
Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby
Předmět: MATEMATIKA Ročník: 4. Časová dotace: 4 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Provádí písemné početní operace Zaokrouhluje přirozená čísla, provádí odhady a kontroluje
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
METODICKÉ LISTY Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech
METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech reg. č. projektu: CZ.1.07/1.3.11/02.0003 Sada metodických listů: KABINET MATEMATIKY