Turingův stroj. Definice Formálně je Turingův stroj definován jako šestice
|
|
- Aneta Hájková
- před 8 lety
- Počet zobrazení:
Transkript
1 Definice Formálně je Turingův stroj definován jako šestice M=(Q,Σ,Γ,δ,q 0,F)kde: Q je konečná množina stavů Γ je konečná množina páskových symbolů Σ Γ,Σ jekonečnámnožinavstupníchsymbolů δ:(q F) Γ Q Γ { 1,0,+1}jepřechodová funkce q 0 Qjepočátečnístav F Qjemnožinakoncovýchstavů
2 Předpokládáme,ževΓ Σjevždyspeciálníprvek označující prázdný znak Konfigurace je dána slovem na pásce, stavem a pozicí čtecí hlavy Konfigurace je počáteční, pokud je hlava na prvním symbolu, stavq 0 anapáscejsousymbolyjenzmnožinyσ Konfigurace je koncová, je-li stav z množiny F Máme-listavqabnavstupu,takpro: δ(q,b)=(q,b,0)změnímestavnaq,změnímenaaktuální pozicibnab δ(q,b)=(q,b,+1)změnímestavnaq,změnímena aktuálnípozicibnab aposunemeaktuálnípozicio1doprava δ(q,b)=(q,b, 1)změnímestavnaq,změnímena aktuálnípozicibnab aposunemeaktuálnípozicio1doleva
3 a a b b c c Ha zacyklí se.
4 A a b b c c Hb zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí.
5 A a b b c c Hb zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí.
6 A a B b c c Hc zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí.
7 A a B b c c Hc zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí.
8 A a B b C c L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA.
9 A a B b C c L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA.
10 A a B b C c L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA.
11 A a B b C c L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA.
12 A a B b C c Ha zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
13 A A B b C c Hb zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
14 A A B b C c Hb zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
15 A A B B C c Hc zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
16 A A B B C c Hc zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
17 A A B B C C L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
18 A A B B C C L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
19 A A B B C C L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
20 A A B B C C L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
21 A A B B C C Ha zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
22 A A B B C C K zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
23 A A B B C C K zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
24 A A B B C C K zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
25 A A B B C C K zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
26 A A B B C C P ANO zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1
27 B,C;+ a,b,c; 0 a,b,c,b,c; ;0 P K,B,b,C,c; 0 A;+ L c C; H a H b H a A;+ b B;+ c a,b;+ c,c, ; 0 b,c;+ ;0
28 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R
29 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R
30 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R
31 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R
32 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R
33 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R
34 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R
35 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R
36 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
37 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
38 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
39 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
40 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
41 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
42 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
43 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
44 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
45 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P
46 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P P ANO
Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b
ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat
Teoretická informatika průběh výuky v semestru 1
Teoretická informatika průběh výuky v semestru 1 Týden 7 Přednáška (Výpočetní) problémy, rozhodovací(ano/ne) problémy,... Připomněli jsme si obecné definice a konkrétní problémy, jako např. SAT[problém
Syntaxí řízený překlad
Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat
Turingovy stroje. Teoretická informatika Tomáš Foltýnek
Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
Deterministický konečný automat
Deterministický konečný utomt Formálně je deterministický konečný utomt definován jko pětice (Q,Σ,δ,q 0,F) kde: Q je konečná množin stvů Σ je konečná eced δ:q Σ Qjepřechodováfunkce q 0 Qjepočátečnístv
NP-úplnost. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května / 32
NP-úplnost M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května 2007 1/ 32 Rozhodovací problémy Definice Rozhodovací problém je takový, kde je množina možných výstupů dvouprvková
Formální jazyky a automaty Petr Šimeček
Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat
Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43
Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným
Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:
1) Syntaktická analýza shora a zdola, derivační strom, kanonická derivace ezkontextová gramatika gramatika typu 2 Nechť G = je gramatika typu 1. Řekneme, že je gramatikou typu 2, platí-li: y
Syntaxí řízený překlad
Syntaxí řízený překlad Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Definice Překlad z jazyka L 1 do jazyka L 2 je definován množinou
(viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu.
Teoretická informatika průběh výuky v semestru 1 Týden 8 Přednáška- první část (viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu. Turingovy stroje,(výpočetní)
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
B A B A B A B A A B A B B
AB ABA BA BABA B AB A B B A A B A B AB A A B B B B ABA B A B A A A A A B A A B A A B A A B A BA B A BA B D A BC A B C A B A B C C ABA B D D ABC D A A B A B C D C B B A A B A B A B A A AB B A AB A B A A
Fakulta informačních technologií. Teoretická informatika
Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme
Univerzální frézy. Délka břitu mm. Počet zubů
ÚSPORA S KAŽDOU TŘÍSKOU Univerzální frézy *Uvedené ceny jsou bez DPH. Změna cen vyhrazena. Platí do 31. 12. 2014. Drážkovací frézy (2-břité na hliník) 45 šroubovice 3 6 57 7 2 HA 3309 3000 256 4 6 57 8
Turingovy stroje. Turingovy stroje 1 p.1/28
Turingovy stroje Turingovy stroje 1 p.1/28 Churchova teze Churchova (Church-Turingova) teze: Turingovy stroje (a jim ekvivalentní systémy) definují svou výpočetní silou to, co intuitivně považujeme za
TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TURINGOVY STROJE Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 12 Evropský sociální fond Praha & EU: Investujeme do vaší
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací
Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem
11 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Uzávěrové vlastnosti v kostce Sjednocení Průnik Průnik s RJ Doplněk Substituce/ homomorfismus Inverzní
NP-úplnost problému SAT
Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x
Formální jazyky a gramatiky Teorie programovacích jazyků
Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory
Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový
Syntetická geometrie I
Kolineace Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Incidence Incidence je základní vztah - nedefinujeme ji. Bod leží na přímce = Přímka prochází bodem = Bod je incidentní s přímkou. Definice
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Univerzální Turingův stroj a Nedeterministický Turingův stroj
27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův
1.4. VEKTOROVÝ SOUČIN
.4. VEKTOROVÝ SOUČIN V této kapitole se dozvíte: definici vektorového (také vnějšího) součinu, jeho vlastnosti a geometrický význam; co rozumíme pravotočivou ortonormální nebo ortogonální bází; definici
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
Vztah jazyků Chomskeho hierarchie a jazyků TS
Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
KFC/SEM, KFC/SEMA Rovnice, nerovnice
KFC/SEM, KFC/SEMA Rovnice, nerovnice Požadované dovednosti: Řešení lineárních rovnic a nerovnic Řešení kvadratických rovnic Řešení rovnic s odmocninou Řešení rovnic s parametrem Řešení rovnic s absolutní
PŘIJÍMACÍ ZKOUŠKY 2008
MATEMATIKA Obor: 79-41-K/401 Součet bodů: Opravil: 1. termín Kontroloval: Vítejte v Omské, v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání, výpočty uvádějte s celým
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,
Konečný automat Teorie programovacích jazyků
Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu
Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a
Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce
METODICKÝ LIST DA34 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník I. obecný trojúhelník Astaloš Dušan Matematika šestý frontální,
Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).
7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené
Jednoznačné a nejednoznačné gramatiky
BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.
AUTOMATY A GRAMATIKY
AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace
Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.
Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w
SIMULÁTOR TURINGOVÝCH STROJŮ POPSANÝCH POMOCÍ KOMPOZITNÍCH DIAGRAMŮ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SIMULÁTOR TURINGOVÝCH
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Pravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1
Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Cvičení 1 Příklad 1: Pro každý z následujících formálních zápisů množin uveďte(svými slovy), jaké prvky daná množina obsahuje: a) {1,3,5,7,...} b)
11 Vzdálenost podprostorů
11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám. registrační číslo projektu:cz.1.07/1.5.00/
Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám registrační číslo projektu:cz.1.07/1.5.00/34.1026 Autor: Mgr. Vladimír Mikel zpracováno: 28.11.2012 ročník (obor) tematická oblast
Matematika I (KMI/5MAT1)
Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.
11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:
IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek
Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi
2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí
je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!
-----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4
2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC
22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SYSTÉMY FORMÁLNÍCH
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Sada 1 Matematika. 01. Množiny - úvod
S třední škola stavební Jihlava Sada 1 Matematika 01. Množiny - úvod Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace a
Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.
9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ
Vyčíslitelné funkce. TIN - Vyčíslitelné funkce p.1/30
Vyčíslitelné funkce TIN - Vyčíslitelné funkce p.1/30 Základy teorie rekurzivních funkcí Budeme se snažit identifikovat takové funkce, které jsou spočitatelné, tj. vyčíslitelné v obecném smyslu (bez ohledu
R 3 R 6 R 7 R 4 R 2 R 5 R 8 R 6. Úvod do elektrotechniky
Metody náhradního zdroje (Théveninova a Nortonova věta) lze využít při částečné analýze elektrického obvodu, kdy máme stanovit proud nebo napětí v určitém místě obvodu. Příklad: Určete v obvodu na obr.
Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například:
ARNP 1 2015 Př. 5 Základní operace s přirozenými čísly Přesná definice přirozeného čísla je složitá spokojíme se s tím, že o libovolném čísle dokážeme rozhodnout, zda je, či není přirozeným číslem (5,
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Soustavy lineárních rovnic
7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí
Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova
Základní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35
1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný
Složitost problémů. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 25. dubna / 23
Složitost problémů Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 25. dubna 2012 1/ 23 Složitost problémů Ukazuje se, že různé(algoritmické) problémy jsou různě těžké. Obtížnější jsou ty problémy, k
1. Základné mocniny Odmocnina Tretia mocnina Tretia odmocnina a
1. Základné mocniny.... Odmocnina... 7. Tretia mocnina... 10. Tretia odmocnina... 1 a a 5. Umocňovanie súčinu a podielu použitím vzorcov: a b a b, b b... 16 a b a b... 1 6. Odmocňovanie súčinu použitím
Královo Pole, nádraží - Kuřim, železniční stanice
Linka 7290: Přepravu zajišťuje: ČSAD Tišnov, spol. s r.o.,červený Mlýn 1538,666 01 Tišnov (spoje 3 až 65) Linka 7380: Přepravu zajišťuje: Dopravní podnik města Brna, a.s.,hlinky 151,656 46 Brno (spoje
Asynchronní vysokonapěťové a nízkonapěťové motory
s Asynchronní vysokonapěťové a nízkonapěťové motory s kotvou nakrátko (řady ARN,1AN3, 1AN4) Čtvrté aktualizované vydání PA0904-373-376 BB Asynchronní vysokonapěťové a nízkonapěťové motory velkých výkonů
Lineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.
Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou
Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32
Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března 2017 1/ 32 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často
Princip rozšíření a operace s fuzzy čísly
Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic
CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
SOUHRNNÉ ODJEZDY ZE ZASTÁVEK A. KRATOCHVÍLA, MODŘÍNOVÁ KARLOVO NÁMĚSTÍ
SOUHRNNÉ ODJEZDY ZE ZASTÁVEK A. KRATOCHVÍLA, MODŘÍNOVÁ KARLOVO NÁMĚSTÍ linky 4, 5, 11, 21 04 22 37 54 56 04 25 30 55 56 04 05 09 12 22 32 41 52 56 05 09 12 26 32 42 52 05 07 34 06 07 15 22 26 30 37 38
Test Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
Permutační grupy Cykly a transpozice Aplikace. Permutace. Rostislav Horčík: Y01DMA 11. května 2010: Permutace 1/17
Permutace Rostislav Horčík: Y01DMA 11. května 2010: Permutace 1/17 Motivace Permutace jsou důležitou částí matematiky viz použití v pravděpodobnosti, algebře (např. determinanty) a mnoho dalších. Jsou
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 1 Kontrukční úlohy Výsledkem tzv.
Syntetická geometrie I
Afinita Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Směr Dvě rovnoběžné přímky mají stejný (neorientovaný) směr. Definice (Samodružný směr) Když se při zobrazení f zobrazí přímka p na přímku
Minimalizace KA - Úvod
Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat