Turingův stroj. Definice Formálně je Turingův stroj definován jako šestice

Rozměr: px
Začít zobrazení ze stránky:

Download "Turingův stroj. Definice Formálně je Turingův stroj definován jako šestice"

Transkript

1 Definice Formálně je Turingův stroj definován jako šestice M=(Q,Σ,Γ,δ,q 0,F)kde: Q je konečná množina stavů Γ je konečná množina páskových symbolů Σ Γ,Σ jekonečnámnožinavstupníchsymbolů δ:(q F) Γ Q Γ { 1,0,+1}jepřechodová funkce q 0 Qjepočátečnístav F Qjemnožinakoncovýchstavů

2 Předpokládáme,ževΓ Σjevždyspeciálníprvek označující prázdný znak Konfigurace je dána slovem na pásce, stavem a pozicí čtecí hlavy Konfigurace je počáteční, pokud je hlava na prvním symbolu, stavq 0 anapáscejsousymbolyjenzmnožinyσ Konfigurace je koncová, je-li stav z množiny F Máme-listavqabnavstupu,takpro: δ(q,b)=(q,b,0)změnímestavnaq,změnímenaaktuální pozicibnab δ(q,b)=(q,b,+1)změnímestavnaq,změnímena aktuálnípozicibnab aposunemeaktuálnípozicio1doprava δ(q,b)=(q,b, 1)změnímestavnaq,změnímena aktuálnípozicibnab aposunemeaktuálnípozicio1doleva

3 a a b b c c Ha zacyklí se.

4 A a b b c c Hb zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí.

5 A a b b c c Hb zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí.

6 A a B b c c Hc zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí.

7 A a B b c c Hc zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí.

8 A a B b C c L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA.

9 A a B b C c L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA.

10 A a B b C c L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA.

11 A a B b C c L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA.

12 A a B b C c Ha zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

13 A A B b C c Hb zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

14 A A B b C c Hb zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

15 A A B B C c Hc zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

16 A A B B C c Hc zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

17 A A B B C C L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

18 A A B B C C L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

19 A A B B C C L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

20 A A B B C C L zacyklí se. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

21 A A B B C C Ha zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

22 A A B B C C K zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

23 A A B B C C K zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

24 A A B B C C K zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

25 A A B B C C K zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

26 A A B B C C P ANO zacyklíse. Pokudužanení,zkontroluje,zdaužjsoujenvelká písmena. 2 Čtedoprvníhob,nahradíjejB.Na nebocsezacyklí. 3 Čtedoprvníhoc,nahradíjejC.Na sezacyklí. 4 VracísedolevananejbližšíA. 5 Pokračuje bodem 1

27 B,C;+ a,b,c; 0 a,b,c,b,c; ;0 P K,B,b,C,c; 0 A;+ L c C; H a H b H a A;+ b B;+ c a,b;+ c,c, ; 0 b,c;+ ;0

28 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R

29 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R

30 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R

31 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R

32 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R

33 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R

34 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R

35 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P R

36 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

37 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

38 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

39 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

40 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

41 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

42 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

43 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

44 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

45 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P

46 - násobení třemi 0,1;+ 0; 1; 1; 1 0; ; 1 R ; 0, 1; 0, 0; P P ANO

Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b

Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat

Více

Teoretická informatika průběh výuky v semestru 1

Teoretická informatika průběh výuky v semestru 1 Teoretická informatika průběh výuky v semestru 1 Týden 7 Přednáška (Výpočetní) problémy, rozhodovací(ano/ne) problémy,... Připomněli jsme si obecné definice a konkrétní problémy, jako např. SAT[problém

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat

Více

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Turingovy stroje. Teoretická informatika Tomáš Foltýnek Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,

Více

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému

Více

Deterministický konečný automat

Deterministický konečný automat Deterministický konečný utomt Formálně je deterministický konečný utomt definován jko pětice (Q,Σ,δ,q 0,F) kde: Q je konečná množin stvů Σ je konečná eced δ:q Σ Qjepřechodováfunkce q 0 Qjepočátečnístv

Více

NP-úplnost. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května / 32

NP-úplnost. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května / 32 NP-úplnost M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května 2007 1/ 32 Rozhodovací problémy Definice Rozhodovací problém je takový, kde je množina možných výstupů dvouprvková

Více

Formální jazyky a automaty Petr Šimeček

Formální jazyky a automaty Petr Šimeček Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat

Více

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43

Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43 Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným

Více

Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:

Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva: 1) Syntaktická analýza shora a zdola, derivační strom, kanonická derivace ezkontextová gramatika gramatika typu 2 Nechť G = je gramatika typu 1. Řekneme, že je gramatikou typu 2, platí-li: y

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Definice Překlad z jazyka L 1 do jazyka L 2 je definován množinou

Více

(viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu.

(viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu. Teoretická informatika průběh výuky v semestru 1 Týden 8 Přednáška- první část (viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu. Turingovy stroje,(výpočetní)

Více

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T. BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné

Více

B A B A B A B A A B A B B

B A B A B A B A A B A B B AB ABA BA BABA B AB A B B A A B A B AB A A B B B B ABA B A B A A A A A B A A B A A B A A B A BA B A BA B D A BC A B C A B A B C C ABA B D D ABC D A A B A B C D C B B A A B A B A B A A AB B A AB A B A A

Více

Fakulta informačních technologií. Teoretická informatika

Fakulta informačních technologií. Teoretická informatika Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme

Více

Univerzální frézy. Délka břitu mm. Počet zubů

Univerzální frézy. Délka břitu mm. Počet zubů ÚSPORA S KAŽDOU TŘÍSKOU Univerzální frézy *Uvedené ceny jsou bez DPH. Změna cen vyhrazena. Platí do 31. 12. 2014. Drážkovací frézy (2-břité na hliník) 45 šroubovice 3 6 57 7 2 HA 3309 3000 256 4 6 57 8

Více

Turingovy stroje. Turingovy stroje 1 p.1/28

Turingovy stroje. Turingovy stroje 1 p.1/28 Turingovy stroje Turingovy stroje 1 p.1/28 Churchova teze Churchova (Church-Turingova) teze: Turingovy stroje (a jim ekvivalentní systémy) definují svou výpočetní silou to, co intuitivně považujeme za

Více

TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze TURINGOVY STROJE Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 12 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací

Více

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem

Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem 11 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Uzávěrové vlastnosti v kostce Sjednocení Průnik Průnik s RJ Doplněk Substituce/ homomorfismus Inverzní

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory

Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový

Více

Syntetická geometrie I

Syntetická geometrie I Kolineace Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Incidence Incidence je základní vztah - nedefinujeme ji. Bod leží na přímce = Přímka prochází bodem = Bod je incidentní s přímkou. Definice

Více

Složitost Filip Hlásek

Složitost Filip Hlásek Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Univerzální Turingův stroj a Nedeterministický Turingův stroj

Univerzální Turingův stroj a Nedeterministický Turingův stroj 27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův

Více

1.4. VEKTOROVÝ SOUČIN

1.4. VEKTOROVÝ SOUČIN .4. VEKTOROVÝ SOUČIN V této kapitole se dozvíte: definici vektorového (také vnějšího) součinu, jeho vlastnosti a geometrický význam; co rozumíme pravotočivou ortonormální nebo ortogonální bází; definici

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

KFC/SEM, KFC/SEMA Rovnice, nerovnice

KFC/SEM, KFC/SEMA Rovnice, nerovnice KFC/SEM, KFC/SEMA Rovnice, nerovnice Požadované dovednosti: Řešení lineárních rovnic a nerovnic Řešení kvadratických rovnic Řešení rovnic s odmocninou Řešení rovnic s parametrem Řešení rovnic s absolutní

Více

PŘIJÍMACÍ ZKOUŠKY 2008

PŘIJÍMACÍ ZKOUŠKY 2008 MATEMATIKA Obor: 79-41-K/401 Součet bodů: Opravil: 1. termín Kontroloval: Vítejte v Omské, v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání, výpočty uvádějte s celým

Více

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce

Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce METODICKÝ LIST DA34 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník I. obecný trojúhelník Astaloš Dušan Matematika šestý frontální,

Více

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g). 7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené

Více

Jednoznačné a nejednoznačné gramatiky

Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.

Více

AUTOMATY A GRAMATIKY

AUTOMATY A GRAMATIKY AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace

Více

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.

Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w

Více

SIMULÁTOR TURINGOVÝCH STROJŮ POPSANÝCH POMOCÍ KOMPOZITNÍCH DIAGRAMŮ

SIMULÁTOR TURINGOVÝCH STROJŮ POPSANÝCH POMOCÍ KOMPOZITNÍCH DIAGRAMŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SIMULÁTOR TURINGOVÝCH

Více

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1

Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Cvičení 1 Příklad 1: Pro každý z následujících formálních zápisů množin uveďte(svými slovy), jaké prvky daná množina obsahuje: a) {1,3,5,7,...} b)

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám. registrační číslo projektu:cz.1.07/1.5.00/

Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám. registrační číslo projektu:cz.1.07/1.5.00/ Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám registrační číslo projektu:cz.1.07/1.5.00/34.1026 Autor: Mgr. Vladimír Mikel zpracováno: 28.11.2012 ročník (obor) tematická oblast

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. 11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ 11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu! -----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR

BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SYSTÉMY FORMÁLNÍCH

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Sada 1 Matematika. 01. Množiny - úvod

Sada 1 Matematika. 01. Množiny - úvod S třední škola stavební Jihlava Sada 1 Matematika 01. Množiny - úvod Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace a

Více

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. 9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ

Více

Vyčíslitelné funkce. TIN - Vyčíslitelné funkce p.1/30

Vyčíslitelné funkce. TIN - Vyčíslitelné funkce p.1/30 Vyčíslitelné funkce TIN - Vyčíslitelné funkce p.1/30 Základy teorie rekurzivních funkcí Budeme se snažit identifikovat takové funkce, které jsou spočitatelné, tj. vyčíslitelné v obecném smyslu (bez ohledu

Více

R 3 R 6 R 7 R 4 R 2 R 5 R 8 R 6. Úvod do elektrotechniky

R 3 R 6 R 7 R 4 R 2 R 5 R 8 R 6. Úvod do elektrotechniky Metody náhradního zdroje (Théveninova a Nortonova věta) lze využít při částečné analýze elektrického obvodu, kdy máme stanovit proud nebo napětí v určitém místě obvodu. Příklad: Určete v obvodu na obr.

Více

Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například:

Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například: ARNP 1 2015 Př. 5 Základní operace s přirozenými čísly Přesná definice přirozeného čísla je složitá spokojíme se s tím, že o libovolném čísle dokážeme rozhodnout, zda je, či není přirozeným číslem (5,

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí

Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Složitost problémů. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 25. dubna / 23

Složitost problémů. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 25. dubna / 23 Složitost problémů Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 25. dubna 2012 1/ 23 Složitost problémů Ukazuje se, že různé(algoritmické) problémy jsou různě těžké. Obtížnější jsou ty problémy, k

Více

1. Základné mocniny Odmocnina Tretia mocnina Tretia odmocnina a

1. Základné mocniny Odmocnina Tretia mocnina Tretia odmocnina a 1. Základné mocniny.... Odmocnina... 7. Tretia mocnina... 10. Tretia odmocnina... 1 a a 5. Umocňovanie súčinu a podielu použitím vzorcov: a b a b, b b... 16 a b a b... 1 6. Odmocňovanie súčinu použitím

Více

Královo Pole, nádraží - Kuřim, železniční stanice

Královo Pole, nádraží - Kuřim, železniční stanice Linka 7290: Přepravu zajišťuje: ČSAD Tišnov, spol. s r.o.,červený Mlýn 1538,666 01 Tišnov (spoje 3 až 65) Linka 7380: Přepravu zajišťuje: Dopravní podnik města Brna, a.s.,hlinky 151,656 46 Brno (spoje

Více

Asynchronní vysokonapěťové a nízkonapěťové motory

Asynchronní vysokonapěťové a nízkonapěťové motory s Asynchronní vysokonapěťové a nízkonapěťové motory s kotvou nakrátko (řady ARN,1AN3, 1AN4) Čtvrté aktualizované vydání PA0904-373-376 BB Asynchronní vysokonapěťové a nízkonapěťové motory velkých výkonů

Více

Lineární algebra - I. část (vektory, matice a jejich využití)

Lineární algebra - I. část (vektory, matice a jejich využití) Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory

Více

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic 1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března / 32 Formální jazyky Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 2. března 2017 1/ 32 Abeceda a slovo Definice Abeceda je libovolná neprázdná konečná množina symbolů(znaků). Poznámka: Abeceda se často

Více

Princip rozšíření a operace s fuzzy čísly

Princip rozšíření a operace s fuzzy čísly Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic

Více

CZ.1.07/1.5.00/34.0527

CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

SOUHRNNÉ ODJEZDY ZE ZASTÁVEK A. KRATOCHVÍLA, MODŘÍNOVÁ KARLOVO NÁMĚSTÍ

SOUHRNNÉ ODJEZDY ZE ZASTÁVEK A. KRATOCHVÍLA, MODŘÍNOVÁ KARLOVO NÁMĚSTÍ SOUHRNNÉ ODJEZDY ZE ZASTÁVEK A. KRATOCHVÍLA, MODŘÍNOVÁ KARLOVO NÁMĚSTÍ linky 4, 5, 11, 21 04 22 37 54 56 04 25 30 55 56 04 05 09 12 22 32 41 52 56 05 09 12 26 32 42 52 05 07 34 06 07 15 22 26 30 37 38

Více

Test Zkušební přijímací zkoušky

Test Zkušební přijímací zkoušky Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)

Více

Permutační grupy Cykly a transpozice Aplikace. Permutace. Rostislav Horčík: Y01DMA 11. května 2010: Permutace 1/17

Permutační grupy Cykly a transpozice Aplikace. Permutace. Rostislav Horčík: Y01DMA 11. května 2010: Permutace 1/17 Permutace Rostislav Horčík: Y01DMA 11. května 2010: Permutace 1/17 Motivace Permutace jsou důležitou částí matematiky viz použití v pravděpodobnosti, algebře (např. determinanty) a mnoho dalších. Jsou

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 1 Kontrukční úlohy Výsledkem tzv.

Více

Syntetická geometrie I

Syntetická geometrie I Afinita Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Směr Dvě rovnoběžné přímky mají stejný (neorientovaný) směr. Definice (Samodružný směr) Když se při zobrazení f zobrazí přímka p na přímku

Více

Minimalizace KA - Úvod

Minimalizace KA - Úvod Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat

Více