2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

Rozměr: px
Začít zobrazení ze stránky:

Download "2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21"

Transkript

1 2 ANALYTICKÁ GEOMETRIE V PROSTORU Vektory 21 Úlohy k samostatnému řešení Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému řešení Vzdálenosti a odchylky 28 Úlohy k samostatnému řešení Kolmost 3 Úlohy k samostatnému řešení

2 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 Vektory Úlohy k samostatnému řešení 1 Vypočítejte souřadnice vektoru x pro který platí: a) x+ 2a 4 b = o a = ( 8711 ) b = ( 93 5) 4x 8a 2 b = o a = b = ( ) ( ) 2 Je dán vektor u a bod A Najděte souřadnice bodu B je-li A počáteční a B koncový bod vektoru u Vypočítejte velikost vektoru u a) u = ( 21 2 ) A[ 31 ] u = ( 3 4 ) A[ 25 1] u = A 95 4 u = 65 4 A c) ( ) [ ] d) ( ) [ ] 3 Vypočítejte směrové úhly vektoru a : a = a = c) a) ( ) ( ) a = ( 12 5) 4 Vypočítejte odchylku vektorů: a) a = ( 2 41 ) b = ( 31 2) a = 2 48 b = c) ( ) ( = = u ( 31 4 ) v ( 6 8) ) d) u = ( 3 4 ) v = ( 5 55) 5 Najděte vektor c který je kolmý k vektorům a b : a) a = ( 21 6 ) b = ( 7311) a = ( 251 ) b = ( 43 2) c) a = ( 76 2 ) b = ( 6 6) d) a = ( 1 2 ) b = ( 5 4) 6 Najděte souřadnice vektoru x pro který platí: a) x a = 4 x b = 2 x c a = ( ) b = ( 3 23 ) c = ( 61 4) x a = 15 x b = 7 x c a = ( 4 7 ) b = ( 235 ) c = ( 5 211) x a = 23 x b = 6 x c a = 255 b = c = 75 6 c) ( ) ( ) ( ) 7 Vypočítejte obsah trojúhelníka ABC a) c) A[ ] B[ ] C[ ] A[ 111 ] B [ 3 43 ] C[ 3 5 7] A[ 2 45 ] B[ 25 2 ] C[ 68 1] d) A[ 75 3 ] B[ 71 ] C[ 65 6]

3 8 Pomocí smíšeného součinu rozhodněte zda jsou vektory kompalnární: a) a = ( 231 ) b = ( 4 68 ) c = ( 21511) a = ( 68 ) b = ( ) c = ( 987) a = 43 b = c = 679 c) ( ) ( ) ( ) 9 Vypočítejte objem tělesa: a) čtyřboký jehlan kde ABCDV A[ 11 ] B[ 26 ] D[ 59 ] V [ ] ABCDEFGH A[ 135 ] B[ 2 46 ] D[ 25 3 ] E[ 1119] rovnoběžnostěn kde 1 Vypočítejte vnitřní úhly trojúhelníka ABC a) A 111 B 3 43 C A[ ] B[ ] C[ ] [ ] [ ] [ ] c) A[ 2 45 ] B[ 25 2 ] C[ 68 1] d) A[ 75 3 ] B[ 71 ] C[ 65 6] 11 Určete konstanty mn tak aby vektory byly: a) kolineární a = ( m46 ) b = ( 32 n) ortogonální (kolmé) a = ( m21 ) b = ( 363m) a = 1 2 m b = m1 c = c) komplanární ( ) ( ) ( ) 22 Přímka a rovina v prostoru Úlohy k samostatnému řešení 12 Napište rovnice přímky která je dána bodem a směrovým vektorem: a) A[ 235 ] s = ( 6 31) A[ 2 4 ] s = ( 8 1 ) A55 2 s = 4 83 A s = 1 3 c) [ ] ( ) d) [ ] ( ) 13 Napište rovnice přímky která prochází dvěma body: A 21 4 B 39 6 A 457 B 57 4 a) [ ] [ ] [ ] [ ] c) A[ 6 23 ] B [ 6 2] d) A[ 5 79 ] B[ ] 14 Napište rovnice přímky která prochází bodem a je rovnoběžná s danou přímkou: A 2 46 p: x= 1 3 t y = t z = 2 5 t t R a) [ ]

4 A 3 21 p: x= t y= 4 3 t z = 2 + t t R [ ] c) [ ] d) [ ] A 27 p: x= 5 y= t z = 3+ 3 t t R A p: x= 7 6 t y= t z = 4 t t R 15 Přímka je dána jako průsečnice dvou rovin napište její parametrické rovnice a kanonickou rovnici: x+ 2y 3z+ 6= y 4z+ 8= a) p : p : 2x 2y+ 4z 9= 2x + 4z 1= 5x+ y+ z+ 6= x+ 5y 3z 4= c) p : d) p : x 3y+ z 2= x 4y + 4z + 1 = 16 Bodem A veďte přímku kolmo k rovině ρ A 3 25 ρ : 6x+ 2 y 5z+ 12 = a) [ ] [ ] c) [ ] d) [ ] A 47 ρ : x+ 6y 4z+ 4 = A 5 87 ρ : 2x 4z+ 11 = A 4812 ρ : 5x+ 9y+ 2 = 17 Napište parametrické rovnice a obecnou rovnici roviny která prochází třemi body: A 111 B 3 43 C a) A[ ] B[ ] C[ ] [ ] [ ] [ ] c) A[ 2 45 ] B[ 25 2 ] C[ 68 1] d) A[ 75 3 ] B[ 71 ] C[ 65 6] 18 Napište obecnou rovnici roviny která je dána bodem normálovým vektorem: a) A[ 261 ] n = ( 21 4) A[ 2 4 ] n = ( 8 1 ) A55 2 n = 4 83 A n = 1 3 c) [ ] ( ) d) [ ] ( ) 19 Napište obecnou rovnici roviny která prochází bodem A a vektory u v jsou s touto rovinou komplanární: a) A[ 35 ] u = ( ) v = ( 1 2 3) A[ 1 48 ] u = ( 11 ) v = ( 25) c) A[ 7 6 ] u = ( 25 3 ) v = ( 418) A 1 1 u = v = 11 ) d) [ ] ( ) (

5 2 Napište parametrické rovnice a obecnou rovnici roviny která je dána rovnoběžkami p q : p: x= 2 + t q: x= 3 r a) y = 1 3t y = 2+ 3r z = 2 t t R z = 1 2 r r R p: x= 4 2 t q: x= 2 4r y = 2 4t y = 2 8r z = 3+ 5 t t R z = 8+ 1 r r R p: x= 7+ 2 t q: x= 3 2r c) y = 11+ t y = 8 r z = 9 4 t t R z = 5+ 4 r r R 21 Napište parametrické rovnice a obecnou rovnici roviny která je dána různoběžkami p q : p: x= 2 t q: x= 2+ 4r a) y = 4+ t y = 4 3r z = 7 3 t t R z = 7+ 5 r r R p: x= 5 q: x= 5+ 3r y = 2+ t y = 2 2r z = 8 + t t R z = 8+ 5 r r R p: x= t q: x= 6r c) y = 1+ t y = 1 4r z = 9 t t R z = 9+ 7 r r R 22 Napište parametrické rovnice a obecnou rovnici roviny která prochází bodem A a je rovnoběžná s přímkami p q: a) [ ] [ ] c) [ ] A 678 p: x= 1+ 2 t y= t z = 3+ 3 t q: x= r y= 3+ 9 r z= 1 4r A 41 3 p: x= 5 + t y= 1 z = 3 t q: x= 2 y= 3 4 r z= 1 + 2r A 56 p: x= t y= 12 3 t z = t q: x= r y= 3 z= 5r 23 Napište parametrické rovnice a obecnou rovnici roviny která prochází přímkou a a je rovnoběžná s přímkou b : a) a: x = 7 + t y = 1 4 t z = 2 t b: x= 2 6 r y = 2 + r z = 2 3r a: x = 9 3 t y = 8 + t z = 6+ 2 t b: x = r y = 2 5 r z =8 c) a: x = 5 t y = 6+ 2 t z = 8 t b: x = 11 + r y = 4 r z =

6 24 Napište obecnou rovnici roviny která prochází bodem A a je kolmá k přímce k : a) A 555 k: x= t y= 3 2 t z = 6 + t [ ] [ ] c) [ ] A 41 3 k: x= 5 + t y= 1 z = 3 t A 56 k: x= t y= 12 3 t z = 4 + 8t 25 Napište obecnou rovnici roviny která prochází bodem A a přímkou p : a) A[ 111 ] 2x y+ 3z+ 6= p: 4x+ 5y 3z+ 2= A[ 23 ] y 4z+ 8= p: 2x + 4z 1= c) A[ ] 5x+ y+ z+ 6= p: x 3y+ z 2= 26 Napište obecnou rovnici roviny která prochází přímkou q a je rovnoběžná s přímkou p : 2x 3z+ 4= a) p : q: x= 1 6 t y = 2+ 5 t z = 1+ 4t x+ y + 7= y 4z+ 8= p: q: x= 3 + t y = 4 t z = 2x + 4z 1= 5x+ y+ z+ 6= c) p : q: x= 5 t y = 1 2 t z = t x 3y+ z 2= 23 Vzájemná poloha přímek a rovin Úlohy k samostatnému řešení 27 Rozhodněte o vzájemné poloze dvou přímek určete souřadnice průsečíku jestliže existuje: p: x= 3 2 t q: x= 1+ 2r a) y = 4+ 3t y = 1 3r z = 5 t t R z = 3 + r r R p: x= 4 2 t q: x= 3 2r y = 5+ 4t y = 3+ 4r z = 7 3 t t R z = 5 3 r r R

7 c) d) e) f) p: x= 2+ 4 t q: x= 3+ 9r y = 2+ t y = 1+ 3r z = 3 t R z = 7 4 r r R p: x= 2+ 4 t q: x= 1 2r y = 2 + t y = r z = 3 t R z = 3 4 r r R p: x= 2 2t x+ y z + 7= y = 3 + t q: 2x y+ 3z 69= z = 4 3 t t R p: x= t x+ 2y 3z+ 7= y = 2 t q: 3x+ y+ z 9= z = 3 + t t R p: x= 4+ 5t 2x+ 2y 2z + 7= g) y = 6 3 t q: x+ 3y+ 2z 2 = z = 7+ 2 t t R 28 Rozhodněte o vzájemné poloze dvou rovin určete parametrické rovnice průsečnice jestliže existuje: α :6x+ 4y+ 12z 18= α :6x+ 4y+ 12z 18= a) β :3x + 2y+ 6z 9 = β :3x + 2y+ 6z+ 9 = c) d) e) f) α :6x+ 4y+ 12z 18= β :2x+ 5y+ 5z+ 3 = α : x= 1+ 2u 4 v β : x+ y+ z+ 1= y = 1 u+ 4v z = 2+ 3 u v u v R α : x= 1+ 2u 4 v β :11x+ 1y 4z+ 7= y = 1 u+ 4v z = 2+ 3 u v u v R α : x= 4 + u v β : x= 3+ t r y = 5 u+ 4v y = 6 2t+ 5r z = 6+ 2u+ 4 v u v R z = 1+ 6 t t r R

8 α : x= 4 + u v β : x= 5 r g) y = 5 u+ 3v y = 7+ t+ 5r z = 6+ 2u+ 4 v u v R z = 3+ 3t+ 1 r t r R 29 Rozhodněte o vzájemné poloze přímky a roviny určete souřadnice průsečíku jestliže existuje: a: x= 6+ 2 t ρ :2x+ 3y+ 5z+ 2= a) y = 5 3t z = 4 + t t R c) d) e) a: x= 6+ 2 t ρ : x 3y 11z+ 53= y = 5 3t z = 4 + t t R a: x= 6+ 2 t ρ :3x+ y 4z 3= y = 5 3t z = 4 + t t R a: x= 2 + t ρ : x= 4+ 2u v y = 4 2t y = 4+ 4u 6v z = 8 3 t t R z = 4+ u 4 v u v R a: x= 2 + t ρ : x= 2+ 3u 2v y = 4 2t y = 1+ u 3v z = 8 3 t t R z = 8 3 u u v R a: x= 2 + t ρ : x= 5 u+ 2v f) y = 4 2t y = 7+ 4u+ v z = 8 3 t t R z = 5 5u+ 4 v u v R 3 Rozhodněte o vzájemné poloze tří rovin: a) α :3x + 2y+ 6z 9= α : x y+ 3z 2= β : 3x 2y 6z+ 13= β :2x 2y+ 6z 9= γ :6x + 4y+ 12z+ 3= γ :5x 4y+ 3z 7= c) α :2x 2y+ 6z 8= d) α : x 4y+ 5z 3= β : 3x 6y+ z+ 1= β :3x 3y+ z 11= γ : x + 8y 7z+ 13= γ : 5x 11y+ 11z 15 =

9 e) α :2x+ y 4z 1= f) α : x y+ z 4= β : x+ y 2z 1= β : 2x 2y+ 6z = γ :4x+ 4y 5z 7= γ : x + 2z 11= 31 Najděte obecnou rovnici roviny která prochází bodem M a patří danému svazku: x+ 2y z+ 4= x+ y z+ 3= a) M [ 1 2 ] M [ 1 4 7] 2x y+ z 5= 2x 2y+ z = 32 Najděte obecnou rovnici roviny která je rovnoběžná s přímkou p a patří danému svazku: x+ 1 y 1 z+ 5 x+ 2y z+ 4= a) p : = = x y+ z 5= x 4 y 3 z+ 6 p : = = 3 4 x+ 2y z+ 4= 2x y+ z 5= 24 Vzdálenosti a odchylky Úlohy k samostatnému řešení 33 Vypočtěte vzdálenost dvou bodů: A 21 4 B 39 6 a) [ ] [ ] A[ 45 7 ] B[ 5 7 4] c) A[ 6 23 ] B [ 6 2] d) A[ 5 79 ] B[ ] 34 Vypočtěte vzdálenost bodu od roviny: a) A[ 21 4 ] ρ : 3x 2y+ 8z+ 12 = A[ 4 4 ] ρ : 3x+ 4y 12z+ 12 = A 1253 ρ :6x+ 8z 18= c) [ ] 35 Vypočtěte vzdálenost rovnoběžných rovin: a) α :2x+ 5y 4z+ 7 = β :4x+ 1y 8z+ 28 = α :5x 4y+ 7z 14= β :5x 4y+ 7z+ 21= c) α : 3x+ 5y z+ 13= β :3x 5y+ z+ 19= 36 Vypočtěte vzdálenost bodu od přímky: x 1 y z 1 a) A[ 2 46 ] p: = =

10 A 555 p: x= t y= 2 t z = 3 t R [ ] x+ 7 y+ 3 z p: = = c) A[ ] 37 Vypočtěte vzdálenost rovnoběžných přímek: x 1 y z 1 x 3 y 4 z 5 a) p: = = q: = = p: x = 5 y = 7+ 3 t z = 9 4 t t R q: x = 1 y = 8+ 6 r z = 3 8 r r R x + 9 y+ 6 z 1 x 3 y z+ 1 c) p: = = q: = = Vypočtěte vzdálenost mimoběžných přímek: a) : x y z + : x y z + 2 p = = q = = x+ 1 y+ 8 z 3 p: x = 5 y = 7+ 3 t z = 9 4 t t R q: = = x 7 y+ 3 z+12 c) p: x = 4 + t y = 3 z = t t R q: = = Vypočtěte odchylku dvou přímek: p: x= 3+ 2 t q: x= 2+ 4r a) y = 4 3t y = 1+ 9r z = 5+ 7 t t R z = 3 11 r r R p: x= 1+ 3 t q: x= 5+ 4r y = 1 4t y = 4 9r z = 2 + t t R z = 3 2 r r R p: x= 7+ 6 t q: x= 3+ r c) y = 3t y = 2 r z = 3+ 9 t t R z = 4 r r R 4 Vypočtěte odchylku dvou rovin: α : 5x 4y+ 6z 1= a) β : 3x+ 8y+ 9z+ 6= α : x+ 5y+ 2z+ 3= c) β : x + 2y+ 3z+ 1= α :6x+ 4y+ 2z 4= β :3x 2y 5z+ 9=

11 41 Vypočtěte odchylku přímky a roviny: x 1 y+ 1 z 1 a) p: = = ρ : 3x+ 8y+ 9z 5= x 1 y+ 3 z+ 8 p: = = ρ : 4x+ 2y z+ 8= c) p: x = 1+ 5 t y = t z = 7 t R ρ : x 5y+ 6z 13= 25 Kolmost Úlohy k samostatnému řešení 42 Najděte pravoúhlý průmět bodu K do roviny ρ : K 536 ρ : 2x+ 4y z+ 5 = a) [ ] [ ] c) [ ] K ρ : 3x+ 2 y 3z 11 = K 5 55 ρ : 5x 4y+ 4z+ 49 = 43 Najděte pravoúhlý průmět bodu K na přímku p : x 5 y 4 z 5 a) K[ ] p: = = x 3 y 2 z+ 1 K[ 1 ] p: = = x 1 y 2 z+ 5 c) K[ 987 ] p: = = Najděte pravoúhlý průmět přímky m do roviny σ : x 1 y 2 z+ 8 a) m: = = σ :2x+ y 4z + 6= x 19 y 21 z+ 19 m: = = σ :3x+ 4y 4z 12= x 12 y+ 7 z+ 1 c) m: = = σ :5x 4y+ z 3=

12 1 a) x = ( u = 5 B[ ] u = 3 ) x = ( ) 2 a) B[ ] u = 5 5 c) B[ ] d) B[ ] 59 6 u = 77 3 a) α = β = γ = 6 59 α = β = γ = c) α = β = 9 γ = a) ϕ = 9 ϕ = c) ϕ = d) ϕ = a) c = a b = (29 213) c = a b = ( 7 14) c) c = a b = ( ) d) c = a b = ( a) x = 1 21 x = c) x = 67 7 a) S ) ( ) ( ) 2 = 29 j S = 15 j 2 c) S = 1 j 2 d) 13 2 ( ) 2 S = j 8 a) jsou komplanární nejsou kompalnární c) nejsou kompalnární 9 a) V = j V = 45 j 3 1 a) α = β = γ = α = β = 88 5 γ = c) α = 1 29 β = γ = 9 1 d) α = β = 2 55 γ = a) m = 6 n = 3 m = 2 c) m = 1 12 a) x + 2 y 3 z 5 a: x = 2+ 6 t y = 3 3 t z = 5 + t t R a: = = a: x = 8 t y = 2 t z = 4 t R c) x 5 y 5 z 2 a: x= 5+ 4 t y = 5 8 t z = 2+ 3 t t R a: = = d) a: x = 6 t y = 5 z = 4+ 3 t t R 13 a) x 2 y 1 z+4 a: x = 2 + t y = 1+ 8 t z = 4+ 1 t t R a: = = x+ 4 y 5 z 7 a: x = 4+ 9 t y = 5+ 2 t z = 7 11 t t R a: = = c) a: x = 6 y = 2 z = 3 3 t t R d) x 5 y+ 7 z 9 a: x = 5+ 6 t y = 7 5 t z = 9 1 t t R a: = = a) x 2 y 4 z 6 a: x= 2 3 r y = 4+ 4 r z = 6 5 r r R a: = = x 3 y 2 z 1 a: x = 3+ 2 r y = 2 3 r z = 1 + r r R a: = = c) a: x = y = 2 + r z = 7+ 3 r r R

13 d) c) d) x+ 3 y 4 z 7 a: x = 3 6 r y = 4+ 5 r z = 7+ 4 r r R a: = = a) 7 y + 7 x 1 : : 2 z p x= + r y = r z = r r p 2 R = = x 1 2 y + 8 z p: x= + 4 r y = 8 8 r z = 2 r r p: 2 R = = x y+ 2 z+ 4 p: x = 4 r y = 2 4 r z = 4 16 r r R p: = = x+ 2 y z+ 2 p: x= 2+ 8 r y = 7 r z = 2 9 r r R p: = = a) x 3 y+ 2 z 5 p: x = 3+ 6 r y = 2+ 2 r z = 5 5 r r R p: = = x 4 y z 7 p: x = 4 r y = 6 r z = 7 4 r r R p: = = c) p: x = 5+ 2 r y = 8 z = 7 4 r r R d) p: x = 4+ 5 r y = 8+ 9 r z = 12 r R 17 a) α : x = 1+ t 2 r y = 2 2 t z = 1 + t+ r t r R α :2x+ 3y+ 4z 12= α : x = 1+ 2t 4 r y = 1+ 3t+ 4 r z = 1+ 2t+ 6 r t r R α : x 2y+ 2z 1= c) α : x = 2+ 4t+ 8 r y = 4+ t+ 4 r z = 5 3t 6 r t r R α :3x+ 4z 14= d) α : x = 7 + r y = 5 4 t z = 3+ 3t 3 r t r R α :12x+ 3y+ 4z+ 81= 18 a) α : 2x+ y+ 4z 6= α :8x y+ 2= c) α :4x 8y+ 3z+ 14= d) α : x+ 3z+ 18= 19 a) α : 18x+ 15y+ 4z+ 25= α :2x+ 5y 2z+ 34= c) α :5x 2y 35= d) α : 3x+ 3y+ 4z 1= 2 a) α : x = 2 + u+ v y = 1 3 u+ v z = 2 u+ v u v R α : 5x+ y+ 4z+ 9= α : x = 4 2u 2 v y = 2 4 u z = 3+ 5u+ 5 v u v R α :5x+ 2z 26= c) α : x = 7+ 2u 4 v y = 11+ u 3 v z = 9 4u 4 v u v R α :8x 12y+ z+ 67= 21 a) α : x = 2 u+ 4 v y = 4+ u 3 v z = 7 3u+ 5 v u v R α :4x+ 7y+ z 43= α : x = 5+ 3 v y = 2+ u 2 v z = 8+ u+ 5 v u v R α :7x+ 3y 3z 5= c) α : x = u 6 v y = 1+ u 4 v z = 9 u+ 7 v u v R α :3x y+ 2z 17= 22 a) α : x = 6+ 2u+ 3 v y = 7+ 6u+ 9 v z = 8+ 3u 4 v u v R α : 3x+ y+ 11= α : x = 4 + u y = 1 4 v z = 3 u+ 2 v u v R α :2x+ y+ 2z 3= c) α : x = u v y = 5 3 u z = 6+ 8u 5 v u v R α :5x y z+ 1=

14 23 a) α : x = 7 + u 6 v y = 1 4 u+ v z = 2 u 3 v u v R α :13x+ 9y 23z 54 = α : x = 9 3 u+ v y = 8+ u 5 v z = 6+ 2 u u v R α :5x+ y+ 7z 95= c) α : x = 5 u+ v y = 6 + u 4 v z = 8 u u v R α : 4x+ y 18z+ 138 = 24 a) α :3x 2y+ z 1= α : x y 7 = c) α : x 3y+ 8z 63= 25 a) α :12x+ 29y 27z 14 = α : 36x+ 11y+ 28z 16 = c) α :13x 7y+ 5z+ 6 = 26 a) α :22x+ 24y+ 3z 73= α :4x+ y+ 4z 12= c) α :3x y+ z 14= 27 a) přímky jsou totožné přímky jsou rovnoběžné c) přímky jsou různoběžné průsečík je R [ 6 43] d) přímky jsou mimoběžné e) přímky jsou různoběžné průsečík je R[ 1 116] f) přímky jsou mimoběžné g) přímky jsou rovnoběžné 28 a) roviny jsou totožné roviny jsou rovnoběžné c) roviny jsou různoběžné průsečnice je r: x = 21 4 t y = 6 t z = t t R d) roviny jsou různoběžné průsečnice je r: x = t y = t z = 1 t t R e) roviny jsou totožné f) roviny jsou různoběžné průsečnice je 7 r: x= y = 5+ 3 s z = 4+ 6 s s R 2 g) roviny jsou rovnoběžné 29 a) přímka je s rovinou rovnoběžná přímka leží v rovině c) přímka je s rovinou různoběžná průsečík je R[ 14 78] d) přímka je s rovinou rovnoběžná e) přímka leží v rovině f) přímka je s rovinou různoběžná průsečík je R [ 2] 3 a) roviny jsou rovnoběžné nemají žádný společný bod dvě roviny jsou rovnoběžné třetí je s nimi různoběžná nemají žádný společný bod c) roviny jsou různoběžné nemají žádný společný bod tvoří střechu d) roviny jsou různoběžné mají společnou přímku x = t y = 14 t z = 9t e) roviny jsou různoběžné mají společný jeden bod R [ 211] f) roviny jsou různoběžné mají společný jeden bod [ 5 43] R 31 a) 23x+ y+ 4z 25 = x+ y 2z+ 9= 32 a) 7x+ 6y 5z+ 24= 4x 4y+ 3z 6= 33 a) AB = 128 j AB = 14 4 j c) AB = 3 j d) AB = 127 j 34 a) Aρ = 5 47 j Aρ = 185 j c) Aρ = 66 j 35 a) αβ = 1 4 j αβ = 3 69 j c) αβ = 5 41 j 36 a) Ap = 634 j Ap = 755 j c) Ap = 288 j 37 a) pq = 6 j pq = 744 j c) pq = 119 j 38 a) pq = 1 42 j pq = 45 j c) pq = 158 j 39 a) ϕ = 34 2 ϕ = 26 9 c) ϕ = 9 4 a) ϕ = ϕ = 9 c) ϕ =

15 41 a) ϕ = ϕ = 9 c) ϕ = 42 a) K [ 3 1 7] [ 4 8 5] K c) K [ 53 3] 43 a) K [ 453] K [ 1 3 ] c) [ 5 1 4] K 44 a) m : x = 3 16 s y = 4 s z = 7 s s R m : x = 4 s y = 2 s z = 1+ 2 s s R c) m : x = 1 + s y = 1 z = 1 5 s s R

3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.

3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0. M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ 11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

Rovnice přímky v prostoru

Rovnice přímky v prostoru Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při . VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Analytická geometrie (AG)

Analytická geometrie (AG) Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

Kolmost rovin a přímek

Kolmost rovin a přímek Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:

Více

Metrické vlastnosti v prostoru

Metrické vlastnosti v prostoru Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii

Více

Analytická geometrie. přímka vzájemná poloha přímek rovina vzájemná poloha rovin. Název: XI 3 21:42 (1 z 37)

Analytická geometrie. přímka vzájemná poloha přímek rovina vzájemná poloha rovin. Název: XI 3 21:42 (1 z 37) Analytická geometrie přímka vzájemná poloha přímek rovina vzájemná poloha rovin Název: XI 3 21:42 (1 z 37) Název: XI 3 21:42 (2 z 37) Rovnice přímky a) parametrická A B A B C A X Název: XI 3 21:42 (3 z

Více

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU 36. Je dán pravidelný čtyřboký jehlan V. Určete průsečíky přímky s hranicí jehlanu. Pro body, platí: = S, = S SV, bod S je střed podstavy.. TRIÉ VSTOSTI ÚTVRŮ V PROSTORU.1 Odchylky přímek a rovin V odchylka

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ07/500/34080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím ICT

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

s p nazýváme směrový vektor přímky p, t je parametr bodu

s p nazýváme směrový vektor přímky p, t je parametr bodu MATE ZS 2013 KONZ 3A Analytická geometrie lineárních útvarů v rovině a v rostoru Přímka v rovině 1 Parametrická rovnice římky v rovině: t R s o : X = A + t s, kde, Vektor s nazýváme směrový vektor římky,

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,... STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...

Více

9.6. Odchylky přímek a rovin

9.6. Odchylky přímek a rovin 9 Stereometrie 96 Odchylky přímek rovin Odchylku dvou přímek, dvou rovin přímky od roviny převádíme n určení velikosti úhlu dvou různoběžek Odchylk dvou přímek Odchylk dvou přímek splývjících nebo rovnoběžných

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

Stereometrie metrické vlastnosti

Stereometrie metrické vlastnosti Stereometrie metrické vlstnosti Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY 3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy. strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek

Více

9.5. Kolmost přímek a rovin

9.5. Kolmost přímek a rovin 9.5. Kolmost přímek a rovin Pro kolmost přímek a rovin platí následující věty, které budeme demonstrovat na krychli ABCDEFGH se středy podstav S, Q. Přímka kolmá k rovině je kolmá ke všem přímkám této

Více

8. Parametrické vyjádření a. Repetitorium z matematiky

8. Parametrické vyjádření a. Repetitorium z matematiky 8. Parametrické vyjádření a obecná rovnice přímky a roviny Repetitorium z matematiky Podzim 2012 Ivana Medková Osnova: 1 Geometrie v rovině 1. 1 Parametrické vyjádření přímky 1. 2 Obecná rovnice přímky

Více

AB = 3 CB B A = 3 (B C) C = 1 (4B A) C = 4; k ]

AB = 3 CB B A = 3 (B C) C = 1 (4B A) C = 4; k ] 1. část 1. (u 1, u 2, u, u 4 ) je kladná báze orientovaného vektorového prostoru V 4. Rozhodněte, zda vektory (u, 2u 1 + u 4, u 4 u, u 2 ) tvoří kladnou, resp. zápornou bázi V 4. 0 2 0 0 0 0 0 1 0 2 0

Více

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků. FOTLOÝ MÍČ Popis aktivit ýpočt odchlek přímek a rovin v tělese, resp. velikostí úhlů, které svírají stěn a hran v mnohostěnu. Předpokládané znalosti Odchlka rovin a přímk, odchlka dvou rovin. Definice

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK

VZÁJEMNÁ POLOHA DVOU PŘÍMEK VZÁJEMNÁ POLOHA DVOU PŘÍMEK VZÁJEMNÁ POLOHA DVOU PŘÍMEK p: a x b y c 0 q: a x b y c 0 ROVNOBĚŽNÉ PŘÍMKY (RŮZNÉ) nemají žádný společný bod, můžeme určit jejich vzdálenost, jejich odchylka je 0. Normálové

Více

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4;

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4; 1 BUAnlytická geometrie - bod, souřdnice bodu, vzdálenost bodů 11 1BRozhodněte, zd trojúhelník s vrcholy A [ ; ], B [ 1; 1] C [ 11; 6] je prvoúhlý 1 1BN ose y njděte bod, který je vzdálený od bodu A [

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

Maturitní nácvik 2008/09

Maturitní nácvik 2008/09 Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],

Více

SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru

SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI

Více

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] 1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,

Více

Stereometrie metrické vlastnosti 01

Stereometrie metrické vlastnosti 01 Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Analytická geometrie. c ÚM FSI VUT v Brně

Analytická geometrie. c ÚM FSI VUT v Brně 19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =

Více

1. MONGEOVO PROMÍTÁNÍ

1. MONGEOVO PROMÍTÁNÍ Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Pravoúhlá axonometrie - řezy hranatých těles

Pravoúhlá axonometrie - řezy hranatých těles Pravoúhlá axonometrie - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Pravoúhlá axonometrie - řezy hranatých těles 1 / 1 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN

VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN Brno 2014 Verze 30. listopadu 2014 1 Volné a vázané vektory v rovině a prostoru 1.1 Kartézská soustava souřadnic, souřadnice bodu, vzdálenost

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

Analytická geometrie ( lekce)

Analytická geometrie ( lekce) Analytická geometrie (5. - 6. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 20. června 2011 Vektory Vektorový součin Vektorový

Více

Analytická geometrie

Analytická geometrie Analytická geometrie Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Vektory - opakování 2 1.1 Teorie........................................... 2 1.1.1 Pojem vektor a jeho souřadnice, umístění

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol STEREOMETRIE

Více

VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)

VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C) VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114 STEREOMETRIE Odchylky přímek Mgr. Jakub Němec VY_32_INOVACE_M3r0114 ODCHYLKA DVOU PŘÍMEK V PROSTORU Další typy příkladů, v nichž budeme počítat vzdálenost dvou objektů, by bylo velmi složité počítat bez

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Dvěma různými body prochází právě jedna přímka.

Dvěma různými body prochází právě jedna přímka. Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma

Více

Euklidovský prostor. Parametrické rovnice roviny. Obecná rovnice roviny. . p.1/25

Euklidovský prostor. Parametrické rovnice roviny. Obecná rovnice roviny. . p.1/25 n 3 GeometrievÊ zvláštěvê Euklidovský prostor n Ê Norma, úhel vektorů, skalární a vektorový součin Parametrické rovnice přímky Parametrické rovnice roviny Obecná rovnice roviny. p.1/25 Euklidovskýprostor

Více

Zadání domácích úkolů a zápočtových písemek

Zadání domácích úkolů a zápočtových písemek Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační

Více

Mongeova projekce - úlohy polohy

Mongeova projekce - úlohy polohy Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5.2.4 Kolmost přímek a rovin II Předpoklady: 5203 Př. 1: Zformuluj stereometrické věty analogické k planimetrické větě: aným bodem lze v rovině k dané přímce vést jedinou kolmici. Věta: aným bodem lze

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Geometrie v R n. student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2

Geometrie v R n. student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2 Geometrie v R n Začněme nejjednodušší úlohou: Vypočtěme vzdálenost dvou bodů v rovině. Použijeme příkaz distance z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje.

Více

Geometrie v R n. z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2

Geometrie v R n. z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2 Geometrie v R n Začněme nejjednodušší úlohou: Vypočtěme vzdálenost dvou bodů v rovině. Použijeme příkaz distance z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje.

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60

Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60 Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS 2008 1 / 60 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. na PřF UP v Olomouci o formu kombinovanou CZ.1.07/2.2.00/ Stereometrie. Marie Chodorová

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. na PřF UP v Olomouci o formu kombinovanou CZ.1.07/2.2.00/ Stereometrie. Marie Chodorová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Rozšíření akreditace učitelství matematiky a učitelství deskriptivní geometrie na PřF UP v Olomouci o formu kombinovanou CZ.1.07/2.2.00/18.0013 Stereometrie Marie Chodorová

Více

Slovní úlohy 1. 2,42cm; 7cm; 11,58cm; 2. původní cena; dní; 4. 2,3*10 15 kg; 5. 2,8*10 14 ; ; 27325; 7. 3, 9, 27; -3, 9, -27;

Slovní úlohy 1. 2,42cm; 7cm; 11,58cm; 2. původní cena; dní; 4. 2,3*10 15 kg; 5. 2,8*10 14 ; ; 27325; 7. 3, 9, 27; -3, 9, -27; 1. Posloupnosti 1.1. Úvod geometrické znázornění, monotonie posloupnosti, rekurentní vzorec a vzorec pro n-tý člen. 1.A) 15, 17, 19; B) 128, 256, 512; C) 45, 51, 57; D) 6, 2, 4; E) 32768, 131072, 524288;

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Mgr. Zora Hauptová ANALYTICKÁ GEOMETRIE PŘÍMKY TEST VY_32_INOVACE_MA_3_20 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti

Více

5.2.1 Odchylka přímek I

5.2.1 Odchylka přímek I 5..1 Odchylka přímek I Předpoklady: 5110 Metrické vlastnosti určování měřitelných veličin (délky a velikosti úhlů) Výhoda metrické vlastnosti jsme už určovali v planimetrii můžeme si brát inspiraci Všechny

Více

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

Více

Analytická geometrie v prostoru

Analytická geometrie v prostoru Analytická geometrie v prostoru Jméno autora: Ivana Dvořáková Období vytvoření: prosinec 2012 Ročník: 4. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět: Matematika 4. ročník

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y

Více

AXONOMETRIE - 2. část

AXONOMETRIE - 2. část AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.

Více

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Sada 7 odchylky přímek a rovin I

Sada 7 odchylky přímek a rovin I Sada 7 odchylky přímek a rovin I Odchylky přímek 1) Je dána krychle ABCDEFGH. Určete odchylku daných přímek a) AB, AE b) AB, AD c) AE, AF d) AB, BD e) CD, GH f) AD, FG g) AB, SAEF h) ED, FC 2) Je dána

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT

Více

Kulová plocha, koule, množiny bodů

Kulová plocha, koule, množiny bodů Kulová plocha, koule, množiny bodů 1.Metodou souřadnic vyšetřete množinu všech bodů X roviny, které mají stejnou vzdálenost od dvou rovnoběžek p, q ležících v rovině. Zvolím p...osa x y =, q... y = 4,

Více