Lineární algebra - I. část (vektory, matice a jejich využití)

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární algebra - I. část (vektory, matice a jejich využití)"

Transkript

1 Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40

2 Obsah 1 Vektory 2 Matice Michal Fusek (fusekmi@feec.vutbr.cz) 2 / 40

3 Skaláry a vektory Vektory Veličiny popisující svět kolem nás lze rozdělit do dvou skupin: Skalární veličiny jediné číslo udávající jejich velikost - množství - vzdálenost - čas - hmotnost - teplota Vektorové veličiny více čísel v určeném pořadí - poloha částice v prostoru (3 souřadnice) - orientovaná síla (velikost a směr) - stav populace (počet a čas) Michal Fusek (fusekmi@feec.vutbr.cz) 3 / 40

4 Vektory Vektor Necht n N. Uspořádanou n-tici reálných čísel v 1, v 2,..., v n nazýváme (reálným) vektorem. v 1 v v = 2. Rn n...dimenze (rozměr) vektoru v v 1, v 2,..., v n...složky (souřadnice) vektoru v Vektory často (kvůli úspoře místa) zapisujeme do řádku, tj. v n v = (v 1, v 2,..., v n ). Michal Fusek (fusekmi@feec.vutbr.cz) 4 / 40

5 Vektory Operace s vektory Sčítání vektorů definujeme po složkách, tj. pro v, w R n máme v + w = (v 1, v 2,..., v n ) + (w 1, w 2,..., w n ) = (v 1 + w 1, v 2 + w 2,..., v n + w n ) R n. Násobení vektoru v R n skalárem α R definujeme tak, že každou složku vektoru v vynásobíme skalárem α, tj. α v = α(v 1, v 2,..., v n ) = (αv 1, αv 2,..., αv n ) R n. Michal Fusek (fusekmi@feec.vutbr.cz) 5 / 40

6 Vektory Vektor 0 = (0, 0,..., 0) nazýváme nulový vektor. Pro libovolné α R, v R n platí: v + 0 = v, α 0 = 0. Vektor v = 1 v nazýváme opačný vektor k vektoru v. Platí v + ( v) = v v = 0. Michal Fusek (fusekmi@feec.vutbr.cz) 6 / 40

7 Vektory Vektorový prostor Pro všechny vektory v, w R n a skaláry α, β R platí: (1) v + w = w + v, (2) α v = vα, (3) α( v + w) = α v + α w, (4) (α + β) v = α v + β v, (5) α(β v) = (αβ) v, (6) 1 v = v. Množinu všech n-rozměrných vektorů splňující operace (1)-(6), tj. sčítání vektorů a násobení vektoru skalárem, nazýváme n-rozměrný vektorový prostor. Značíme jej V n či jednoduše R n. Michal Fusek (fusekmi@feec.vutbr.cz) 7 / 40

8 Vektory Vektorový prostor je uzavřen na operace sčítání vektorů a násobení vektoru reálným číslem. Je-li V n vektorový prostor, v, w V n, a, b R, pak v + w V n, a v V n, a v + b w V n. Vektory lze zobrazit jako orientované průvodiče bodů (v R 2, R 3 ): Michal Fusek (fusekmi@feec.vutbr.cz) 8 / 40

9 Vektory Vektor lze zadat pomocí počátečního a koncového bodu (orientovaná úsečka z A do B): w = AB = B A Vektor je dán velikostí a směrem zelené šipky jsou různá umístění téhož vektoru w. Michal Fusek (fusekmi@feec.vutbr.cz) 9 / 40

10 Vektory Necht v 1, v 2,..., v m R n a α 1, α 2,..., α m R. Vektor w = α 1 v 1 + α 2 v α m v m = m α i v i i=1 nazýváme lineární kombinací vektorů v 1, v 2,..., v m. Příklad Vektor w = ( 1, 5, 4) je lineární kombinací vektorů u = (1, 2, 3) a v = ( 3, 1, 2). Skutečně: 2 u + v = 2 (1, 2, 3) + ( 3, 1, 2) = ( 1, 5, 4) = w Michal Fusek (fusekmi@feec.vutbr.cz) 10 / 40

11 Vektory Lineární závislost a nezávislost vektorů Řekneme, že vektory v 1, v 2,..., v m R n jsou lineárně závislé, jestliže platí alespoň jedna z podmínek: Jeden z vektorů je lineární kombinací ostatních. Existují čísla c 1, c 2,..., c m R taková, že alespoň jedno z nich je nenulové a platí m c i v i = c 1 v 1 + c 2 v c m v m = 0. i=1 V opačném případě řekneme, že vektory jsou lineárně nezávislé: m c i v i = c 1 v 1 + c 2 v c m v m = 0 c 1 = c 2 = = c n = 0 i=1 Michal Fusek (fusekmi@feec.vutbr.cz) 11 / 40

12 Vektory Vektory v 1, v 2,..., v m R n jsou zcela jistě lineárně závislé, jestliže: Příklad je mezi nimi alespoň jeden nulový vektor jsou mezi nimi alespoň dva vektory stejné jeden z daných vektorů je násobkem jiného m > n Vektory u = (1, 2, 3), v = ( 3, 1, 2) a w = ( 1, 5, 4) jsou lineárně závislé. Skutečně: w = 2 u + v Případně: 2 u + v w = 0 Michal Fusek (fusekmi@feec.vutbr.cz) 12 / 40

13 Vektory Příklad Vektory v 1 = (1, 1, 1), v 2 = (1, 1, 1) a v 3 = (1, 0, 1) jsou lineárně závislé. Skutečně: Leží v jedné rovině. v 2 = 2 v 3 v 1 Michal Fusek (fusekmi@feec.vutbr.cz) 13 / 40

14 Vektory Necht u, v R n. Číslo u v = u 1 v 1 + u 2 v u m v m = m u i v i i=1 nazýváme skalární součin vektorů u, v. Dva vektory u a v jsou ortogonální (zobecnění pojmu kolmost) právě tehdy, když u v = 0. Příklad Určete, zda jsou vektory u = ( 3, 7, 2) a v = ( 1, 5, 4) ortogonální. Řešení: u v = 30 nejsou ortogonální Michal Fusek (fusekmi@feec.vutbr.cz) 14 / 40

15 Vektory Báze vektorového prostoru Libovolnou n-tici ( v 1, v 2,..., v n ) lineárně nezávislých vektorů z vektorového prostoru V n nazýváme bází vektorového prostoru V n. Systém vektorů ( e 1, e 2,..., e n ) prostoru V n, kde e 1 = (1, 0, 0,..., 0), e 2 = (0, 1, 0,..., 0),. e n = (0, 0, 0,..., 1), nazýváme kanonickou bází prostoru V n. Necht ( v 1, v 2,..., v n ) je libovolná báze vektorového prostoru V n. Potom každý vektor v z prostoru V n je lineární kombinací vektorů z této báze, tj. existují čísla α 1, α 2,..., α n taková, že platí v = α 1 v 1 + α 2 v α n v n. Michal Fusek (fusekmi@feec.vutbr.cz) 15 / 40

16 Vektory Jestliže pro každý vektor báze platí v i v j = 0 pro i j, pak nazveme tuto bázi ortogonální. Jestliže je báze ortogonální a navíc v i v i = 1 pro i = 1, 2,..., n, pak nazveme tuto bázi ortonormální. Kanonická báze je ortogonální i ortonormální. Příklad Zjistěte, zda vektory u = (1, 1, 1), v = (0, 1, 1) a w = (0, 0, 1) tvoří bázi ( u, v, w) vektorového prostoru V 3. Řešení: Musí platit: a 1 u + a 2 v + a 3 w = 0 a 1 = a 2 = a 3 = 0 (lineární nezávislost) Tedy (a 1, a 1 + a 2, a 1 + a 2 + a 3 ) = (0, 0, 0) a 1 = a 2 = a 3 = 0 Michal Fusek (fusekmi@feec.vutbr.cz) 16 / 40

17 Matice Matice (Reálnou) maticí typu m n rozumíme obdélníkové číselné schéma a 11 a 12 a 1n a A = 21 a 22 a 2n......, a m1 a m2 a mn kde a ij R, i = 1,..., m, j = 1,..., n, nazýváme prvky matice A. Matici A s prvky a ij značíme také A = (a ij ). Množinu všech matic typu m n značíme Mat m n (R). Hlavní diagonála matice typu m n je posloupnost prvků (a 11, a 22,..., a ii ), kde i = min{m, n}. Michal Fusek (fusekmi@feec.vutbr.cz) 17 / 40

18 Matice Typy matic Čtvercová matice řádu n je matice typu n n. Diagonální matice je čtvercová matice, která má všude nuly s výjimkou hlavní diagonály. Nulová matice O je matice, která má všechny prvky nulové. Jednotková matice I (nebo E) je matice, která má na hlavní diagonále jedničky a všude jinde nuly. Schodovitá matice je matice mající pod hlavní diagonálou samé nuly (každý řádek začíná větším počtem nul než předešlý). A T = (a ji ) je transponovaná matice k matici A = (a ij ). Matice A T vznikne záměnou řádků a sloupců v matici A. Necht matice A a B mají stejný počet řádků. Blokově rozšířenou matici (A B) určíme tak, že prvky matic A a B napíšeme vedle sebe a dáme do jedné matice (A B). Michal Fusek (fusekmi@feec.vutbr.cz) 18 / 40

19 Matice Příklad Jsou dány matice ( ) 1 0 A =, B = 0 1 Matice A je - čtvercová řádu 2 - jednotková - schodovitá Matice B je schodovitá. Matice C - je čtvercová řádu 3 - není schodovitá ( ) , C = 0 1 3, D = Matice D je transponovaná k matici B, tedy B = D T a také D = B T. Michal Fusek (fusekmi@feec.vutbr.cz) 19 / 40

20 Sčítání a odčítání matic Matice Sčítání a odčítání matic stejných rozměrů definujeme po složkách, tj. pro A, B Mat m n (R) máme A ± B = (a ij ) ± (b ij ) = (a ij ± b ij ) Mat m n (R). Příklad = Příklad ( ) ( ) = nelze (matice mají různé rozměry) Michal Fusek (fusekmi@feec.vutbr.cz) 20 / 40

21 Matice Násobení matice skalárem Násobení matice A Mat m n (R) skalárem α R definujeme tak, že každou složku matice A vynásobíme skalárem α, tj. αa = α(a ij ) = (αa ij ) Mat m n (R). Příklad = Michal Fusek (fusekmi@feec.vutbr.cz) 21 / 40

22 Matice Násobení matic Necht matice A je typu m p a B je matice typu p n. Součinem matic A a B rozumíme matici C typu m n, pro jejíž prvky platí c ij = a i1 b 1j + a i2 b 2j + a ip b pj = p = a ik b kj, k=1 pro i = 1,..., m, j = 1,..., n. Píšeme C = AB Platí: A m p B p n = C m n Při násobení matic vznikne prvek c ij jako skalární součin i-tého řádku matice A a j-tého sloupce matice B. Michal Fusek (fusekmi@feec.vutbr.cz) 22 / 40

23 Matice Příklad K maticím A = a B = 0 4 určete C = AB a D = BA Řešení: C = = D = = nelze (nemají správné rozměry) Michal Fusek (fusekmi@feec.vutbr.cz) 23 / 40

24 Matice Příklad Jsou dány matice A = 1 3, B = Spočtěte 3A 2B, AB T, A T B. Řešení: 6 7 3A 2B = , AB T = , A T B = ( ) Michal Fusek (fusekmi@feec.vutbr.cz) 24 / 40

25 Příklad Matice Společnost prodává 5 modelů počítačů A, B, C, D, E v prodejnách P 1, P 2, P 3. Velkoobchodní (V) a maloobchodní (M) ceny (v dolarech) a počty kusů každého typu počítače ve skladech jednotlivých obchodů jsou A B C D E P P P V M A B C D E Určete hodnotu skladovaného zboží v jednotlivých prodejnách. Řešení: = Michal Fusek (fusekmi@feec.vutbr.cz) 25 / 40

26 Matice Vlastnosti operací na maticích Pro všechny matice A, B Mat m n (R) a skaláry α, β R platí: (1) A + B = B + A, (2) αa = Aα, (3) α(a + B) = αa + αb, (4) (α + β)a = αa + βa, (5) α(βa) = (αβ)a, (6) 1A = A. Podobně jako vektory, tak i všechny matice typu m n tvoří vektorový prostor V dimenze m n s operacemi sčítání matic a násobení matice skalárem. Tyto operace splňují vlastnosti vektorového prostoru, což odpovídá právě operacím (1)-(6). Michal Fusek (fusekmi@feec.vutbr.cz) 26 / 40

27 Matice Necht A, B, C jsou matice vhodných rozměrů. Pak platí zákony asociativity a distributivity (AB)C = A(BC), A(B + C) = AB + AC, (A + B)C = AC + BC. Součin matic není komutativní, tj. AB BA a obecně tedy nelze zaměňovat pořadí násobení matic. Necht A Mat m n (R). Potom platí A I n = A a I m A = A. Michal Fusek (fusekmi@feec.vutbr.cz) 27 / 40

28 Matice Elementární řádkové úpravy Následující úpravy matice nazýváme elementární řádkové úpravy: výměna dvou řádků matice, vynásobení řádku matice nenulovým číslem, přičtení jednoho řádku matice k jinému řádku, vynechání nulového řádku matice. Řekneme, že matice A a B jsou ekvivalentní a píšeme A B, jestliže lze matici A převést konečným počtem výše uvedených operací na matici B. Každou matici lze konečným počtem elementárních řádkových úprav převést na schodovitý tvar. Tomuto postupu říkáme Gaussova eliminační metoda. Michal Fusek (fusekmi@feec.vutbr.cz) 28 / 40

29 Matice Převod matice na schodovitý tvar (1) V matici najdeme sloupec nejvíce vlevo s alespoň jedním nenulovým prvkem. (2) Zvolíme v tomto sloupci jeden z nenulových prvků (tzv. pivota) a přemístíme řádek, ve kterém se nachází, na pozici prvního řádku (pomocí výměny řádků). (3) Pomocí elementárních řádkových úprav vynulujeme prvky pod pivotem. Vznikne-li nulový řádek, vynecháme ho. (4) Kroky (1)-(3) opakujeme na podmatici, která vznikne z původní matice vynecháním řádku s pivotem. (5) Postup opakujeme, dokud není matice ve schodovitém tvaru. Kdykoliv během postupu můžeme některý řádek vynásobit, nebo vydělit vhodným číslem tak, abychom matici zjednodušili. Michal Fusek (fusekmi@feec.vutbr.cz) 29 / 40

30 Matice Příklad Převed te matici A = na schodovitý tvar. Řešení: A = I II II + III I + III Michal Fusek (fusekmi@feec.vutbr.cz) 30 / 40

31 Matice Hodnost matice Necht A Mat m n (R). Hodností h(a) matice A rozumíme maximální počet lineárně nezávislých řádků v matici A. Příklad Ekvivalentní matice mají stejnou hodnost. Hodnost matice ve schodovitém tvaru je rovna počtu jejích nenulových řádků. Matice transponovaná má stejnou hodnost jako matice původní. V předchozím příkladu jsme zjistili, že tedy h(a) = A = , Michal Fusek (fusekmi@feec.vutbr.cz) 31 / 40

32 Příklad Matice Určete hodnost matice A = Řešení: h(a) = Převodem matice na schodovitý tvar lze zjistit lineární závislost/nezávislost vektorů: Naskládáme vektory do matice po řádcích (či po sloupcích). Jestliže hodnost matice = počet vektorů, pak jsou vektory lineárně nezávislé a můžou tvořit bázi. Michal Fusek (fusekmi@feec.vutbr.cz) 32 / 40

33 Matice Příklad Jsou dány vektory u = (1, 1, 1), v = ( 1, 8, 7), w = (5, 2, 3). Zjistěte, zda tvoří bázi vektorového prostoru R 3. Pokud ano, rozhodněte, zda se jedná o bázi ortogonální či ortonormální. Řešení: Vektory jsou lineárně nezávislé a tvoří ortogonální bázi, která není ortonormální ( u u 1). Michal Fusek (fusekmi@feec.vutbr.cz) 33 / 40

34 Matice Inverzní matice Necht A je čtvercová matice řádu n. Jestliže existuje čtvercová matice A 1 řádu n taková, že platí A A 1 = I = A 1 A, nazýváme matici A 1 inverzní maticí k matici A. Necht A je čtvercová matice řádu n a h(a) = n (matice A má lineárně nezávislé řádky). Pak řekneme, že matice A je regulární. V opačném případě řekneme, že matice A je singulární. Ke čtvercové matici A existuje inverzní matice A 1 právě tehdy, když je matice A regulární. Michal Fusek (fusekmi@feec.vutbr.cz) 34 / 40

35 Výpočet inverzní matice Matice (1) Matici A blokově rozšíříme o jednotkovou matici stejné velikosti, čímž získáme blokově rozšířenou matici (A I). (2) Pomocí elementárních řádkových úprav převedeme matici A na schodovitý tvar (pracujeme s celými řádky rozšířené matice). (3) Stejným způsobem vynulujeme prvky nad pivoty (směrem zprava doleva) dokud nezískáme diagonální matici. (4) Každý řádek matice vydělíme diagonálním prvkem. (5) Tím jsme matici A převedli na matici I a matici I na matici A 1. Výsledná rozšířená matice je tedy (I A 1 ). Michal Fusek (fusekmi@feec.vutbr.cz) 35 / 40

36 Matice Příklad Najděte inverzní matice k maticím A, B a C A = 3 4, B = 1 0 4, C = Michal Fusek (fusekmi@feec.vutbr.cz) 36 / 40

37 (B I) = Matice I + II, II + III /5 1/5 6/ /5 1/5 1/5 2 I + III /5 1/5 1/5 2 III + I, /5 2/5 2/5 II + I 6 III + II Michal Fusek (fusekmi@feec.vutbr.cz) 37 / 40

38 Matice Tedy /5 1/5 4/ /5 1/5 6/ /5 1/5 1/ /5 1/5 4/ /15 1/15 6/ /5 1/5 1/5 1 3 = (I B 1 ) 4/5 1/5 4/5 B 1 = 11/15 1/15 6/15 = /5 1/5 1/ Michal Fusek (fusekmi@feec.vutbr.cz) 38 / 40

39 Matice (C I) = I + II, II + III I + III Matice C není regulární (h(c) = 2), tedy k ní neexistuje inverzní matice. Michal Fusek (fusekmi@feec.vutbr.cz) 39 / 40

40 Matice Příklad Najděte inverzní matici k maticím A = 2 2 1, B = Řešení: A 1 = , B 1 = Michal Fusek (fusekmi@feec.vutbr.cz) 40 / 40

Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Vektory a matice Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného

Více

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule. Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

7. Lineární vektorové prostory

7. Lineární vektorové prostory 7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ). Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

VEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru.

VEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru. VEKTOROVÝ PROSTOR Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru. Soubor n-složkových vektorů je libovolná skupina vektorů,

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

15 Maticový a vektorový počet II

15 Maticový a vektorový počet II M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)

Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u) Hodnost matice Vektorový prostor Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání vektorů a reálný násobek vektoru, přičemž platí: a) V n je uzavřenou množinou vůči

Více

Drsná matematika I 5. přednáška Vektory a matice

Drsná matematika I 5. přednáška Vektory a matice Drsná matematika I 5. přednáška Vektory a matice Jan Slovák Masarykova univerzita Fakulta informatiky 20. 3. 2007 Obsah přednášky 1 Literatura 2 Vektory 3 Matice nad skaláry 4 Ekvivalentní úpravy matic

Více

Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců

Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant matice Čtvercové matice Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant je zobrazení, které přiřadí každé čtvercové matici A skalár (reálné číslo).

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

ftp://math.feld.cvut.cz/pub/olsak/linal/

ftp://math.feld.cvut.cz/pub/olsak/linal/ Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

z textu Lineární algebra

z textu Lineární algebra 2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

Úvodní informace Soustavy lineárních rovnic. 12. února 2018

Úvodní informace Soustavy lineárních rovnic. 12. února 2018 Úvodní informace Soustavy lineárních rovnic Přednáška první 12. února 2018 Obsah 1 Úvodní informace 2 Soustavy lineárních rovnic 3 Matice Frobeniova věta Úvodní informace Olga Majlingová : Na Okraji, místnost

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

Determinant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet

Determinant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet Řešené příklady z lineární algebry - část 2 Příklad 2.: Určete determinant matice A: A = 4 4. Řešení: Determinant matice řádu budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

AVDAT Vektory a matice

AVDAT Vektory a matice AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u. Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,

Více

Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),

Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád), 1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci

Více

rozumíme obdélníkovou tabulku

rozumíme obdélníkovou tabulku Přednáška : Matice Matice poskytují velmi účinný způsob jak úsporně zapisovat mnoho lineárních problémů. Navíc je tento způsob velmi vhodný pro jejich zadání do počítačových programů, které dokáží tyto

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b, Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární

Více

ALGEBRA A TEORETICKÁ ARITMETIKA. 1. část - Lineární algebra. doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc.

ALGEBRA A TEORETICKÁ ARITMETIKA. 1. část - Lineární algebra. doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc. ALGEBRA A TEORETICKÁ ARITMETIKA 1. část - Lineární algebra doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc. Obsah 1 Aritmetické vektory 2 1.1 Základní pojmy............................ 2 1.2

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

Gymnázium, Brno, třída Kapitána Jaroše 14. Matice. Konzultant: Mgr. Aleš Kobza Ph.D.

Gymnázium, Brno, třída Kapitána Jaroše 14. Matice. Konzultant: Mgr. Aleš Kobza Ph.D. Gymnázium, Brno, třída Kapitána Jaroše 4 Závěrečná maturitní práce Matice Konzultant: Mgr. Aleš Kobza Ph.D. Brno 20 Jakub Juránek Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně a

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x). Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

Matice. a m1 a m2... a mn

Matice. a m1 a m2... a mn Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x 1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.

Více

6.1 Vektorový prostor

6.1 Vektorový prostor 6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

2. ZÁKLADY MATICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY

2. ZÁKLADY MATICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY 2. ZÁKLADY MAICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY V této kapitole se dozvíte: jak je definována reálná nebo komplexní matice a co rozumíme jejím typem; co jsou to prvky matice, co vyjadřují jejich indexy

Více

Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy

Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

ALGEBRA. Téma 1: Matice a determinanty

ALGEBRA. Téma 1: Matice a determinanty SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1 746 01 Opava tel (553 684 611 DENNÍ STUDIUM Téma 1: Matice a determinanty 1 Přehled základních pojmů a tvrzení Základní pojmy Číselná

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici [1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

prvního semestru oboru odborná informatika. Látka je rozložena do deseti kapitol, které jsou uspořádány v souladu se skripty [5]

prvního semestru oboru odborná informatika. Látka je rozložena do deseti kapitol, které jsou uspořádány v souladu se skripty [5] 1 ÚVOD Cílem mé práce je sestavit sbírku úloh z lineární algebry. Ta je určena především pro posluchače prvního semestru oboru odborná informatika. Látka je rozložena do deseti kapitol, které jsou uspořádány

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Matice. Martina Šimůnková. 9. března Katedra aplikované matematiky. Martina Šimůnková (KAP) Matice 9. března / 20

Matice. Martina Šimůnková. 9. března Katedra aplikované matematiky. Martina Šimůnková (KAP) Matice 9. března / 20 Matice Martina Šimůnková Katedra aplikované matematiky 9. března 28 Martina Šimůnková (KAP) Matice 9. března 28 1/ 2 Základní pojmy 1 Základní pojmy Matice, řád matice, prvky matice, řádky a sloupce matice

Více