INTERVALOVÉ ODHADY PARAMETRŮ ZÁKLADNÍHO SOUBORU
|
|
- Vendula Vávrová
- před 8 lety
- Počet zobrazení:
Transkript
1
2
3 INTERVALOVÉ ODHADY PARAMETRŮ ZÁKLADNÍHO SOUBORU Interval spolehlivosti pro parametr τ při hladině významnosti α (0,1) je určen statistikami T 1 a T 2 :. P T τ T =1-α ( ) 1 2 X toto je bodový odhad neznámé střední hodnoty μ vypočítaný zprvků výběru nevíme nic o jeho vztahu ke skutečné střední hodnotě T 1 T 2 toto je intervalový odhad neznámé střední hodnoty - předpokládáme, že s pravděpodobností P =1-α leží μ kdekoli v tomto úseku číselné osy
4
5
6 Gosset, William Sealy ("Student"), The probable error of a mean [Paper on the t-test], Biometrika 6 (1908), pp. 1-25
7
8
9
10
11
12
13 INTERVALOVÉ ODHADY PARAMETRŮ ZÁKLADNÍHO SOUBORU α 1 a α 2 představují statistické riziko, že skutečná hodnota parametru τ bude ležet mimo hranice T 1 a T 2 T α 1 P = 1 - α = 1 (α 1 + α 2 ) α 2 τ τ T 1 T 2
14 JEDNOSTRANNÉ INTERVALOVÉ ODHADY Levostranný odhad Pravostranný odhad P(τ >T)=1 -α P(τ <T)=1 -α 1 2
15 POROVNÁNÍ JEDNOSTRANNÉHO A OBOUSTRANNÉHO ODHADU T α T 1 jednostranný intervalový odhad P = 1 - α α 1 α 2 τ T 1 oboustranný intervalový T 2 odhad P = 1 - α = 1 (α 1 + α 2 )
16 HLADINA VÝZNAMNOSTI α V INTERVALOVÝCH ODHADECH μ tento interval spolehlivosti neobsahuje střední hodnotu (je tedy chybný ), těchto intervalů se objeví nejvýše (100α) % x 2 x 1 x 2 tyto intervaly spolehlivosti obsahují střední hodnotu (jsou tedy správné ), těch (při opakovaných výběrech) bude nejméně (1- α).100 %
17 INTERVAL SPOLEHLIVOSTI STŘEDNÍ HODNOTY μ je známa směrodatná odchylka σ základního souboru nebo je používán velký výběr (nad 30 prvků) x-z σ μ x+zα n α/2 /2 σ n v případě velkého výběru lze použít místo σ výběrovou směrodatnou odchylku S dolní hranice horní hranice z α/2 je kvantil normovaného normálního rozdělení pro hladinu významnosti α/2
18 INTERVAL SPOLEHLIVOSTI STŘEDNÍ HODNOTY μ není známa směrodatná odchylka σ základního souboru a je používán pouze malý výběr (do 30 prvků) X-μ Platí, že veličina má t-rozdělení s k = ( n 1) stupni volnosti S n x-t α/2,n-1 S μ x+t α/2,n-1 n S n t α/2,n-1 je kvantil Studentova t-rozdělení pro hladinu významnosti α/2 a (n -1) stupňů volnosti
19 INTERVAL SPOLEHLIVOSTI STŘEDNÍ HODNOTY μ velikost základního souboru je známa (N) a výběrový soubor je relativně velký (n > 5 % N) Používá se korekce na konečný základní soubor: S n S n x tα/2.. 1 μ x+ tα/2.. 1 n N n N Účelem korekce je zmenšit standardní chybu x.
20 INTERVAL SPOLEHLIVOSTI STŘEDNÍ HODNOTY μ jednostranné intervaly Jednostranné intervaly se počítají podle stejných vztahů jako oboustranné, pouze hladina významnosti je α místo α/2, (veškeré statistické riziko chybného intervalu je na jedné straně)
21 FAKTORY OVLIVŇUJÍCÍ VELIKOST INTERVALU SPOLEHLIVOSTI (IS) Velikost výběru (čím větší výběr, tím užší IS). Hladina významnosti α (čím vyšší hodnota α, tím užší interval nižší hladina významnosti (např. 0,01 místo 0,05) znamená požadavek vyšší spolehlivosti určení IS. Pokud určíme α = 0.01, požadujeme spolehlivost IS P = 99%. Pokud určíme α = 0.05, požadujeme spolehlivost IS P = 95%, IS musí být širší pro P = 99% než pro P = 95%, protože musíme zaručit vyšší spolehlivost. Variabilita (čím vyšší hodnota směrodatné odchylky, tím širší IS). Použitý vzorec (pokud používáme t-rozdělení, je IS širší než při použití N(0,1), rozdíl je markantnější u malých výběrů).
22 FAKTORY OVLIVŇUJÍCÍ VELIKOST INTERVALU SPOLEHLIVOSTI (IS) ;10;T 0.05;10;Z 0.01;10;T 0.01;10;Z 0.05;50;T 0.05;50;Z 0.01;50;T 0.01;50;Z
23 INTERVAL SPOLEHLIVOSTI SMĚRODATNÉ ODCHYLKY σ pro malé výběry Výpočet intervalu spolehlivosti směrodatné odchylky využívá χ 2 - rozdělení a je nesouměrný nesouměrnost je vyšší u odhadů vycházejících z malých výběrů. ns χ 2 2 σ ns 2 χ 2 α α 1-2 2
24 INTERVAL SPOLEHLIVOSTI SMĚRODATNÉ ODCHYLKY σ pro velké výběry (nad 30 prvků) Výpočet intervalu spolehlivosti směrodatné odchylky pro velké výběry využívá normovaného normálního rozdělení a je souměrný. σ =S±z. α/2 S 2n
25 INTERVALY SPOLEHLIVOSTI PROVEDENÍ V EXCELU interval spolehlivosti střední hodnoty a) pomocí doplňku Analýza dat rozsah dat výběru musí být zatrženo!! hodnota 100.(1-α)%
26 INTERVALY SPOLEHLIVOSTI PROVEDENÍ V EXCELU pomocí funkce CONFIDENCE hodnota α směrodatná odchylka (např. vypočítaná pomocí modulu Popisná statistika velikost výběru Způsob počítá interval spolehlivosti podle vzorce Způsob počítá interval spolehlivosti podle vzorce t α /2,n-1 z α /2 σ n S n
27 VELIKOST VÝBĚRU Obecně platí čím větší tím lepší. Nejlepší je žádný výběr a použít základní soubor. Obvyklá otázka: Jakou minimální velikost výběru potřebuji vzhledem k účelu analýzy a k požadované vypovídací schopnosti o základním souboru? Které kritérium použít? Jedním ze základních kritérií velikosti výběru je požadovaná přesnost a spolehlivost určení stanoveného parametru (obvykle střední hodnoty).
28 VELIKOST VÝBĚRU Jaká bude maximální povolená vzdálenost mezi odhadem parametru a vlastním parametrem? Odpovědí je přesnost odhadu, značená D. Jakou požadujeme spolehlivost, že skutečná vzdálenost mezi odhadem a skutečným parametrem bude menší nebo nejvýše rovna D? Odpovědí je spolehlivost odhadu daná hodnotou 100.(1-α). Musíme tedy určit hladinu významnosti α. Jaká je variabilita základního souboru (většinou ji neznáme, je nutné použít co nejpřesnější odhad). Určíme ji pomocí rozptylu (S 2 ) nebo variačního koeficientu (S%).
29 VELIKOST VÝBĚRU ZALOŽENÁ NA INTERVALU SPOLEHLIVOSTI μ Jakou velikost výběru n ze základního souboru s variabilitou danou rozptylem S 2 minimálně potřebuji, abych se spolehlivostí 100.(1-α) % zabezpečil, že střední hodnota μ se bude pohybovat v intervalu x ±D (výběrový průměr ± přesnost odhadu)? x +D -D μ
30 n=t VELIKOST VÝBĚRU ZALOŽENÁ NA INTERVALU SPOLEHLIVOSTI μ S 2 2 α/2 2 n=t α/2 2 D D [%] 2 (S%) t α/2 kvantil t-rozdělení pro hladinu významnosti α/2 a pro n - 1 stupňů volnosti. Pro 1. aproximaci n odhadneme, pro 2. počítáme s výsledným (n - 1) z 1. aproximace a pokračujeme tak dlouho, dokud se n mění. Pro velké výběry můžeme použít přímo z α/2. 2 1) Vzorec vlevo se používá, pokud variabilitu (S 2 ) i přesnost odhadu (D 2 ) určujeme absolutně, tj.v jednotkách měřené veličiny. 2) Vzorec vpravo se používá, pokud obé určujeme relativně (v %).
31
32
33
34
35 PŘÍKLAD 1. Určení koncentrace nečistot v surovině Byla sledována koncentrace nečistot v μg/g: DL, DL, 1.24, 1.49, 1.50, 1.56, 1.61, 1.78, kde DL značí hodnoty pod limitou detekce x D = 1 μg/g. Cíl: odhad střední hodnoty rozptylu a intervalu spolehlivosti za předpokladu normálního rozdělení.
36 Náhodný výběr reprezentovaný N-ticí dat x 1, x 2,, x N. Střední hodnotu, rozptyl a interval spolehlivosti střední hodnoty lze spolehlivě vypočítat jen při znalosti typu rozdělení pravděpodobnostního modelu měření. Existují dvě mezní situace dle rozmezí dat: 1) Rozmezí dat je v rámci jednoho řádu: užijeme standardní statistické metody za konstantního rozptylu a aditivního modelu měření. 2) Rozmezí dat je v rozmezí několika řádů: použijeme logaritmickou transformaci dat nebo multiplikativní model měření. Někdy nelze získat všechny výsledky měření, protože některé jsou pod mezí detekce DL = x D. Náhodný výběr reprezentovaný N-ticí dat x 1, x 2,, x N
37
38 1) Z počtu N je N - n 1 nad limitou detekce a zbytek n 1 je pod limitou detekce, prosté cenzorování zdola. 2) Při omezení shora je maximálně meřitelná hodnota UL = x U a n 2 měření je nad limitou intervalu stanovení, prosté cenzorování shora. 3) U oboustranného cenzorování jsou známy hodnoty pouze pro N - n 1 - n 2 prvků výběru. Cohen definuje u prostého cenzorování zdola tři základní úlohy: 1) Data pod limitou detekce n 1 a ani celkový počet N nejsou známa. Je k dispozici pouze N - n 1 hodnot, jednoduché uřezání. 2) Je znám počet hodnot n 1 pod mezí detekce x D a dále hodnoty N - n 1 prvků výběru celkové velikosti N, cenzorování typu I. 3) Nejmenších n 1 prvků pod mezí detekce nemá hodnotu. Pouze je známa hodnota x D, která je menší než než nejmenší hodnota prvků nad limitou detekce x (n1+1), kde x (n1+1) značí pořádkovou statistiku, cenzorování typu II. Standardně se řeší pouze cenzorování typu I.
39 PŘÍKLAD 2. Určení koncentrace ve stopové analýze Byla sledována koncentrace nečistot v μg/g, kdy řada hodnot je pod limitou detekce x D = 6 μg/g. Cíl: odhad střední hodnoty a intervalu spolehlivosti a) metodou původních nezměněných dat b) metodou cenzorovaného výběru dat, c) metodou uřezaného výběru dat, a d) metodou winsorizovaných dat.
40
41
42 Analýza dat s hodnotami pod LOD Originální data Cenzorovaná data Uřezaná data Winsorizovaná data
43 Originální data Cenzorovaná data Uřezaná data Winsorizovaná data
44
45 Fisher, Sir Ronald Aylmer, Sir Ronald Fisher F.R.S. ( ) was one of the leading scientists of the 20th century; making major contributions to Statistics, Evolutionary Biology and Genetics. This website has information about him and his work. perhaps the most original mathematical scientist of the [twentieth] century Bradley Efron Annals of Statistics (1976) Fisher was a genius who almost single-handedly created the foundations for modern statistical science. Anders Hald A History of Mathematical Statistics (1998) Sir Ronald Fisher could be regarded as Darwin s greatest twentieth-century successor. Richard Dawkins River out of Eden (1995)
46
47
48
49
50
51 Standardizace metodou Z-skóre (u, t, Z jsou transformované proměnné)
52
53
54
55
56
57 Gosset, William Sealy ("Student"), The probable error of a mean [Paper on the t-test], Biometrika 6 (1908), pp. 1-25
58
59
60
61
62
63 Originální data Cenzorovaná data Uřezaná data Winsorizovaná data
64 Odhady parametrů Rozdělení měření pro oba modely obsahuje střední hodnotu μ a rozptyl a odhady získáme: 1) Momentová metoda: pro normální rozdělení: odhadem je aritmetický průměr x A a výběrový rozptyl s 2. 2 σ 2) Metoda maximální věrohodnosti získává odhad maximalizující logaritmus ( xi μ ) 2 i věrohodnostní funkce L, tj. ln( L) = ( N / 2)[ln(2 π) + ln( σ )] 2 2σ Pro první derivace logaritmu věrohodnostní funkce pak platí ln( L ) = 2 xi 2N μ μ, ( x i μ ) ln( L ) i N = σ [ σ 2 ] 2σ maximálně věrohodné odhady střední hodnoty a rozptylu jsou totožné s průměrem a výběrovým rozptylem. i 2 2.
65 1) Stanovení typu rozdělení: pro výpočet F 1 t (P i ) je třeba znát obecně parametry teoretickéh rozdělení. V řadě případů je však možná standardizace s = ( x Q) / R, kde R je parame rozptýlení. Standardizované kvantilové funkce Q s (P i ) = Fs t 1 (P i ) obsahují jen tvarové faktory. V případě shody obou rozdělení pak resultuje přímková závislost x() i = Q + R. QS( Pi) = a + b. QS( Pi). 2) Odhady parametrů polohy a rozptýlení: odhad střední hodnoty odpovídá absolutnímu členu a odhad směrodatné odchylky směrnicí b regresní přímky. Pro odhad parametrů z Q-Q grafů je možno použít bud MNČ. Transformací z Y σ 1/ = ln[(1 + σ * ) ] má veličina z normované normální rozdělení N(0,1). Pořádková statistika x (i) pak souvisí s pořádkovou statistikou normovaného normálního exp( σ z ( i )) 1 x( i) = μ + τ μ τ g i( σ ) rozdělení z (i) dle + σ
66 V řadě případů je však možná standardizace = ( x Q) R, kde R je parametr rozptýlení. s / V případě shody obou rozdělení pak resultuje přímková závislost x( i) = Q + R. QS( Pi) = a + b. QS( Pi). Odhad střední hodnoty odpovídá absolutnímu členu a odhad směrodatné odchylky směrnicí b regresní přímky. Pro odhad parametrů z Q-Q grafů je možno použít bud MNČ.
67 Cenzorované výběry Pro odhady parametrů v cenzorovaných výběrech lze použít jak metodu maximální věrohodnosti, tak i metody založené a pořádkových statistikách. Cenzorování typu I: známe limitu detekce x L (mez pod kterou se zaznamenává pouze, Přítomnost měření) a předpokládejme, známe rozdělení dat charakterizované hustotou pravděpodobnosti f(x), resp. distribuční funkcí F(x). Pro cenzorovaná měření lze při znalosti distribuční funkce měření určit pouze pravděpodobnost s jakou leží pod mezí detekce, která je rovna F(x L ). Všechny možné kombinace n 1 prvků, které ve výběru velikosti N leží pod limitou detekce jsou dány binomickým koeficientem N!/(n 1! (N - n 1 )!). Věrohodností funkce má pro tento případ tvar N! ln( L) = n!*( N n N n F( X L ) 1 1)! i= n * f ( x( i) ).
68
69 Pro případ normálního rozdělení dat nalezl Cohen vztahy pro odhad střední hodnoty x C a rozptylu s odpovídající maximalizaci věrohodnostní funkce s využitím odhadů z necenzorované části dat Platí, že x N = 1 N x() i N n = +, 1 1 i n 1 s x x. N 2 2 N = ( () i N) N n 1 1 i= n + 1 x = x λ *( x x ) C N N L, 2 = 2 + *( ) 2 C N N L s s λ x x Parametr λ závisí: 1) na odhadnutém podílu cenzorovaných dat h = n1 / N a 2 2 2) na parametru g = sn /( xn xl). Hodnoty λ jsou tabelovány a existují také empirické vztahy. 1 1
70 Postačuje jednokrokový odhad založený na předpokladu, že počet hodnot pod limitou detekce 2 má binomické rozdělení a pro odhad střední hodnoty x CJ a rozptylu s CJ pak platí x = x q* s CJ N N N 2 x() i 2 i= n CJ = N N Φ N n1 ( ) *( * ( ) ) 1 s x s q h q Korekční faktor q má tvar q = ( N N n 1 ) 1 exp( 0.5*[ Φ ( h)] ) 2π. 2 Odhady xcj a 2 s CJ lze tedy určit relativně snadno bez nutnosti použití speciálních tabulek. Pro dvou-parametrové logaritmicko-normální rozdělení stačí místo hodnot x (i) použít jejich logaritmů ln (x (i) ) a logaritmovat i limitu detekce.
71 Originální data Cenzorovaná data Uřezaná data Winsorizovaná data
72 Praktické doplňky Při zpracování experimentálních dat záleží na množství informací, které jsou: I. Víme vše: známe pravděpodobnostní model a stačí pouze ověření předpokladů před konfirmativní statistickou analýzou II. Nevíme nic: postavíme datově závislý pravděpodobnostní model a provede se komplex analýza dat (1. EDA průzkumová, 2. Ověření předpokladů, 3. Transformace, 4. Porovnání výběrovéh rozdělení s teoretickými). III. Něco víme: postavíme empirický model se známými tak i datově závislými informacem pak se provede 1., 2., 3. a 4. analýza dat) Doporučené další postupy: 1) Robustní metody, 2) Využití zešikmených rozdělení, 3) Počítačově intenzivní metody, 4) Generalizovaná lineární regrese.
73 PŘÍKLAD 1. Určení koncentrace nečistot v surovině Koncentrace nečistot v μg/g: DL, DL, 1.24, 1.49, 1.50, 1.56, 1.61, 1.78, kde DL značí pod limitou detekce x D = 1 μg/g. Cílem: odhad střední hodnoty, rozptylu a intervalu spolehlivosti pro normální rozdělení. Řešení: 1. metoda: Postup s vynecháním hodnot pod mezí detekce (nevhodné, chybné!) Průměr = 1.53 a výběrová směrodatná odchylka s = Kvantil t rozdělení t (5) = a 95% interval spolehlivosti UC = 1.72, LC = metoda: Maximalizace věrohodnostní funkce Parametr h = 0.25, parametr g = 0.11 a tabelovaná hodnota λ = Průměr = 1.35 a výběrová směrodatná odchylka s = 0.36 a 95% interval spolehlivosti UC = 1.72, LC = metoda: Jednokroková aproximace maximalizace věrohodnostní funkce Průměr = 1.46 a výběrová směr. odchylka s = 0.20 a 95% interval spolehlivosti UC = 1.67, LC = metoda: Pořádkové statistiky Ze směrnice a úseku určených klasickou MNČ vyšlo: Průměr = 1.43 a výběrová směrodatná odchylka s = 0.24 a 95% interval spolehlivosti UC = 1.68, LC = 1.18.
74 Rankitový graf spolu s regresními přímkami je pro klasickou a robustní MNČ. 1.8 Pořádková statistika Robustní MNČ Kvantil normálního rozdělení Závěr: Je patrné, že postupy beroucí v úvahu limitu detekce vedou k výrazně nižší dolní mezi intervalu spolehlivosti. Formální aparát statistiky resp. přizpůsobení dat potřebám statistické analýzy bez hlubšího rozboru zde může vést ke katastrofálním závěrům.
75
76
77
78
79
80
81
ZÁKLADNÍ POJMY a analýza výběru
ZÁKLADNÍ POJMY a analýza výběru PARAMETR je statistická charakteristika základního souboru (značíse řeckými písmeny, např. střední hodnota μ ). STATISTIKA je statistická charakteristika výběrového souboru
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára
Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Kvantily a písmenové hodnoty E E E E-02
Na úloze ukážeme postup průzkumové analýzy dat. Při výrobě calciferolu se provádí kontrola meziproduktu 3,5 DNB esteru calciferolu metodou HPLC. Sleduje se také obsah přítomného ergosterinu jako nečistoty,
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
TLOUŠŤKOVÁ A VÝŠKOVÁ STRUKTURA A JEJÍ MODELOVÁNÍ
TLOUŠŤKOVÁ A VÝŠKOVÁ STRUKTURA A JEJÍ MODELOVÁNÍ 1 Vlastnosti tloušťkové struktury porostu tloušťky mají vyšší variabilitu než výšky světlomilné dřeviny mají křivku početností tlouštěk špičatější a s menší
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni
BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015
ROZDĚLENÍ NÁHODNÝCH VELIČIN
ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.
Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Jednovýběrové testy. Komentované řešení pomocí MS Excel
Jednovýběrové testy Komentované řešení pomocí MS Excel Vstupní data V dalším budeme předpokládat, že tabulka se vstupními daty je umístěna v oblasti A1:C23 (viz. obrázek) Základní statistiky vložíme vzorce
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Vlastnosti odhadů ukazatelů způsobilosti
Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz
Statistická analýza. jednorozměrných dat
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie icenční studium chemometrie Statistické zpracování dat Statistická analýza jednorozměrných dat Zdravotní ústav se sídlem v
pravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
ZÁKLADNÍ ANALÝZA DAT S OHLEDEM NA LIMITU DETEKCE
ZÁKLDÍ LÝZ DT S OHLEDEM LIMITU DETEKCE JIŘÍ MILITKÝ, Katedra tetilních materiálů, Technická universita v Liberci, 46 7 Liberec MIL MELOU, Katedra analytické chemie, Universita Pardubice, Pardubice Motto:
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Normální rozložení a odvozená rozložení
I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT V OSTRAVĚ 20.3.2006 MAREK MOČKOŘ PŘÍKLAD Č.1 : ANALÝZA VELKÝCH VÝBĚRŮ Zadání: Pro kontrolu
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru