Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník
|
|
- Mária Tomanová
- před 6 lety
- Počet zobrazení:
Transkript
1 EVROPSKÝ SOCIÁLNÍ FOND Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky Posílení vazby teoretických předmětů a profesní orientace v prvních dvou ročnících bakalářského studijního programu Stavební inženýrství
2 Obyčejné diferenciální rovnice s okrajovými podmínkami Uvažujeme nosník délky L s konstantním průřezem z homogenního pružného materiálu, např. oceli. Průhyb nosníku je. Ocelový nosník je na obou koncích volně podepřen a je rovnoměrně zatížen. Intenzita zatížení f() je tedy konstantní a je rovna q.
3 Pokud na nosník ve směru jeho osy působí tlaková síla (F > ) popř. tahová síla F <, řešíme obyčejnou diferenciální rovnici s okrajovými podmínkami EIu (4) ()+Fu () = q (1) u() = u () = u(l) = u (L) =, (2) kde E je Youngův modul pružnosti a I je moment setrvačnosti průřezu nosníku vzhledem k ohybové ose. Po dvojí integraci rovnice (1) a dosazení okrajových podmínek (2) odvodíme diferenciální rovnici (viz [3, str. 57]) EIu ()+F = q 2 ( 2 L). (3)
4 Poznámka. Výraz F q 2 ( 2 L) v rovnici (3) odpovídá momentu sil, který působí na bod[, ]. Pro lineárně pružný materiál je křivost prohnutého nosníku (aproimovaná druhou derivací průhybu u ()) úměrná momentu sil nosníku. Okrajová úloha 1. Nezatížený volně podepřený nosník. Odvod te průhyb volně podepřeného ocelového nosníku, který není zatížený. Uvažujte tlakovou sílu F >, tahovou sílu F < i F =. Dokažte, že pro F < a F = eistuje pouze triviální řešení. Protože nosník není zatížený, položíme v rovnici (3) q = a řešíme okrajovou úlohu s okrajovými podmínkami u + F EI u = (4) u() = u(l) =. (5)
5 Zaprvé budeme uvažovat tlakovou sílu F >. Zavedením označení ω 2 = F EI v rovnici (4) dostaneme rovnici u +ω 2 u =. (6) Obecné řešení rovnice (6) potom je, viz např. prezentace [1], = C 1 cosω + sinω. Dosazením okrajových podmínek (5) vypočteme C 1 =, sinωl =.
6 Pokud délka L nosníku bude taková, že ωl = kπ, k Z, čemuž odpovídá tlaková síla F = k 2 π 2 EI, bude řešení okr. úlohy 1 L2 = sin kπ L. (7) Grafy průhybů nosníku pro okrajovou úlohu 1 [L = 2, ω = π ] [L = 2, ω = π] =1 = =1 =3 3 3
7 Grafy průhybů nosníku pro okrajovou úlohu 1 [L = 2, ω = 3π ] [L = 2, ω = 2π] =1 = =1 =3 3 Ze vztahu (7) i z grafů vyplývá, že pro některé hodnoty součinu ωl (tedy pro některé hodnoty síly F ) má okrajová úloha nekonečně mnoho řešení. Náš matematický model nám neřekne, které z nich je nejblíže realitě.
8 Pokud ωl kπ, k Z, okrajová úloha 1 má pouze triviální řešení. Zadruhé uvažujeme, že F =. Řešením rovnice u = je = C 1 +. Dosazením okrajových podmínek (5) vypočteme =, C 1 L =. Tedy. V posledním případě uvažujeme tahovou sílu F <. Pokud F ω =, rovnice (4) přejde na EI u ω 2 u =. (8)
9 Obecné řešení rovnice (8) je, viz např. prezentace [1], = C 1 e ω + e ω. Dosazením okrajových podmínek (5) řešíme soustavu dvou rovnic pro neznámé C 1, C 1 + = C 1 e ωl + e ωl =. Tedy C 1 = = a řešení okrajové úlohy 1 je. Poznámka. Náš model neuvažuje podélné prodloužení nosníku, na nějž působí osová síla.
10 Okrajová úloha 2. Narozdíl od okrajové úlohy 1 počítejte s okrajovými podmínkami u() = u (L) =. (9) Uvažujte tlakovou sílu F >, tahovou sílu F < i F =. Dokažte, že pro F < a F = eistuje pouze triviální řešení. Stejně jako v okrajové úloze 1 vyjdeme z rovnice (4) u + F u =, ale s novými okrajovými podmínkami (9). EI
11 Zaprvé uvažujeme tlakovou sílu F >. Jako v okrajové úloze 1 řešíme rovnici (6) u +ω 2 u =. Obecným řešením rovnice (6) je = C 1 cosω + sinω. Dosazením okrajových podmínek (9) vypočteme C 1 =, ω cosωl =. Pokud délka L nosníku bude taková, že ωl = (k )π, k Z, čemuž odpovídá tlaková síla F = (k+ 1 2 )2 π 2 EI, bude řešení L 2 okrajové úlohy 2 = sin (k )π. (1) L
12 Grafy průhybů nosníku pro okrajovou úlohu 2 [L = 2, ω = π 4 ] [L = 2, ω = 3π 4 ].5 =1 =3 3 2 =1 =
13 Grafy průhybů nosníku pro okrajovou úlohu 2 [L = 2, ω = 5π 4 ] [L = 2, = 1] =1 =3 1.5 ω=5π/4 ω=3π/4 ω=π/ Ze vztahu (1) i z grafů vyplývá, že pro některé hodnoty součinu ωl (tedy pro některé hodnoty síly F ) má okrajová úloha nekonečně mnoho řešení.
14 Pokud ωl (k )π, k Z, okrajová úloha 2 má pouze triviální řešení. Zadruhé uvažujeme, že F =. Řešením rovnice u = je = C 1 + (stejně jako v okrajové úloze 1). Dosazením okrajových podmínek (9) obdržíme C 1 =, =. Tedy. Nakonec uvažujeme tahovou sílu F <. Tak jako v okrajové úloze 1, řešíme rovnici (8) u ω 2 u =. Jejím řešením je = C 1 e ω + e ω. Po dosazení okrajových podmínek (9) dostaneme soustavu rovnic C 1 + = C 1 e ωl e ωl =. Tedy C 1 = = a řešení okrajové úlohy 2 je.
15 Okrajová úloha 3. Rovnoměrně zatížený volně podepřený nosník. Určete průhyb rovnoměrně zatíženého nosníku. Uvažujte jen tahovou sílu F <. Okrajová úloha pro tlakovou sílu je vyřešena v [3, str. 58]. F Pokud uvažujeme ω =, diferenciální rovnice (3) přejde na EI u ω 2 u = q 2EI ( 2 L). (11) Okrajové podmínky (5) u() = u(l) = jsou stejné jako v okrajové úloze 1.
16 Homogenní řešení rovnice (11) je u h () = C 1 e ω + e ω. Partikulární řešení rovnice (11) hledáme pomocí metody speciální pravé strany, viz např. prezentace [2] nebo [3, str. 31] u p = A 2 + B + C, u p = 2A. (12) Partikulární řešení (12) dosadíme do rovnice (11) a obdržíme 2A Aω 2 2 Bω 2 ω 2 C = q 2 2EI ql 2EI.
17 Z toho vyplývá, že A = q 2EIω 2, B = ql 2EIω 2, C = q EIω 4 a u p () = q 2EIω 2( 2 L) q EIω 4. Obecné řešení rovnice (11) je součet homogenního a partikulárního řešení = C 1 e ω + e ω q 2EIω 2( 2 L) q EIω 4. Po dosazení okrajových podmínek (5) do obecného řešení pak řešíme soustavu dvou rovnic pro hledané neznámé C 1,
18 C 1 + q EIω 4 = C 1 e ωl + e ωl q EIω 4 =. Jejím řešením jsou C 1 = q(1 e ωl ) EIω 4 (e ωl e ωl ), = Obecné řešení okrajové úlohy 3 je tedy = q(e ωl 1) EIω 4 (e ωl e ωl ). q EIω 4 (e ωl e ωl ) [(1 e ωl )e ω +(e ωl 1)e ω ] q 2EIω 2( 2 L) q EIω 4. Narozdíl od výsledků okrajových úloh 1 a 2, které obsahovaly konstantu, je rešení jednoznačné.
19 Grafy průhybů nosníku pro okrajovou úlohu 3 [L = 2, q/ei = 1, ω = π ] [L = 2, q/ei = 1, ω = π]
20 Grafy průhybů nosníku pro okrajovou úlohu 3 [L = 2, q/ei = 1, ω = 3π ] [L = 2, q/ei = 1] ω=3π/2.1 ω=π ω=π/2.12 Na posledním obrázku je nejlépe vidět, že pokud se zvětšuje ω (a tedy i F pro tahovou sílu), průhyb nosníku u se zmenšuje.
21 Okrajová úloha 4. Narozdíl od volně podepřeného ocelového nosníku v okrajové úloze 3 počítejte s okrajovými podmínkami (9) u() = u (L) =. Uvažujte pouze tlakovou sílu F >. Rovnici (3) upravíme se zavedením ω 2 = F EI na u +ω 2 u = q 2EI ( 2 L), (13) ale s okrajovými podmínkami (9) jako v úloze 2.
22 Obecné řešení rovnice (13) je odvozeno v [3, str. 33 a 58] = C 1 cosω + sinω + q 2EIω 2( 2 L) q EIω 4, [u () = ωc 1 sinω +ω cosω + q 2EIω2(2 L)]. Po dosazení okrajových podmínek (9) do obecného řešení odvodíme a C 1 = q EIω 4 q EIω 3 sinωl+ω cosωl+ ql 2EIω 2 =. Pokud délka L nosníku je taková, že ωl = (k )π, k Z, okrajová úloha 4 nemá řešení, nebot sinωl ωl 2.
23 Pokud ωl (k )π, k Z, = q EIω 4 tgωl ql 2EIω 3 cosωl. Grafy průhybů nosníku pro okrajovou úlohu 4 [L = 2, q/ei = 1, ω = π 4 ] [L = 2, q/ei = 1, ω = 3π 4 ]
24 Grafy průhybů nosníku pro okrajovou úlohu 4 [L = 2, q/ei = 1, ω = 5π ] [L = 2, q/ei = 1] ω=3π/4 ω=π/4 ω=5π/ Poznámka. Tento matematický model neodpovídá realitě, nebot nosník délky 2 vykazuje body s posunutím 1 15.
25 [1] Harmonický pohyb tělesa na pružině. České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky. Posílení vazby teoretických předmětů a profesní orientace v prvních dvou ročnících bakalářského studijního programu Stavební inženýrství [2] Kmitání tělesa s danou budicí frekvencí. České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky. Posílení vazby teoretických předmětů a profesní orientace v prvních dvou ročnících bakalářského studijního programu Stavební inženýrství [3] Zindulka O.: Matematika 3, České vysoké učení technické v Praze. Nakladatelství ČVUT. Praha, 27
Harmonický pohyb tělesa na pružině
EVROPSKÝ SOCIÁLNÍ FOND Harmonický pohyb tělesa na pružině PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky Posílení vazby teoretických
Kmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)
NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou
Ztráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
4.1 Řešení základních typů diferenciálních rovnic 1.řádu
4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
8. Okrajový problém pro LODR2
8. Okrajový problém pro LODR2 A. Základní poznatky o soustavách ODR1 V kapitole 6 jsme zavedli pojem lineární diferenciální rovnice n-tého řádu, která je pro n = 2 tvaru A 2 (x)y + A 1 (x)y + A 0 (x)y
Literatura: Text o lineární algebře na webových stránkách přednášejícího (pro opakování). Kapitoly 4 a 5 ze skript Ondřej Zindulka: Matematika 3,
Předmět: MA4 Dnešní látka Motivační úloha: ztráta stability nosníku Obyčejné diferenciální rovnice s okrajovými podmínkami a jejich řešitelnost Vlastní čísla a vlastní funkce Obecnější pohled na řešitelnost
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
Diferenciální rovnice
Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích
Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).
Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace
Šesté cvičení bude vysvětlovat tuto problematiku:
Šesté cvičení bude vysvětlovat tuto problematiku: Řešení jednoduché separovatelné diferenciální rovnice Diferenciální rovnice průhybové čáry Analytická metoda vedoucí k určení obecné rovnice průhybové
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
8.1. Separovatelné rovnice
8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina
1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu
Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr
y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
9.7. Vybrané aplikace
Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
Diferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
Obsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
Příklad 7 Průhyb nosníku - složitější případ
Příklad 7 Průhyb nosníku - složitější případ Zadání Nosník s proměnným průřezem je na obrázku. Průřezy a jsou obdélníkové, výška prvního průřezu je, násobkem výšky druhého průřezu. a) Pomocí metody integrace
K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní carakter a bude v průběu semestru postupně doplňován. Autor: Jan Vyčicl E mail:
Obyčejné diferenciální rovnice
Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH
ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady
Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
Kapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
9.5. Soustavy diferenciálních rovnic
Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li
Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.
OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010
Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Autor: Vladimír Švehla
Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta
Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )
1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
VÝPOČET VLASTNÍCH FREKVENCÍ RÁMU
VÝPOČET VLASTNÍCH FREKVENCÍ RÁMU MODELOVÁNÍ MECHANICKÝCH SOUSTAV Martin Bílek 0.3.05 Brdový list Náběh Horní činek Krajnice Nosný drát Nítěnka Dolní činek Závěs 5.5.05 Výpočet vlastních frekvencí pružně
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...
. Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.
(Poznámka: V MA 43 je věta formulována trochu odlišně.)
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy: zúplnění prostoru funkcí přibližné řešení minim. úlohy metoda konečných prvků jiný pohled na zobecněné řešení stejný způsob numerické aproximace
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt
SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting
Vliv okrajových podmínek na tvar ohybové čáry
Vliv okrajových podmínek na tvar ohybové čáry Petr Havlásek 213 1 Co budeme zkoumat? Tvar deformované střednice při zatížení osamělou silou v polovině rozpětí o prostě podepřeného nosníku (KK) o oboustranně
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
Příklad oboustranně vetknutý nosník
Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,
Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky
Statika staveních konstrukcí II., 3.ročník akalářského studia Téma 3, Úvod do dynamiky staveních konstrukcí dynamiky Úvod Vlastní kmitání Vynucené kmitání Tlumené kmitání Podmínky dynamické rovnováhy konstrukcí
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení
.. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému
ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání
iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:
Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální
11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
(test version, not revised) 9. prosince 2009
Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
ANALÝZA KONSTRUKCÍ. 5. přednáška
ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Lineární stabilita a teorie II. řádu
Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,
Nauka o Kmitání Přednáška č. 4
Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená
Extremální úlohy ve stavitelství
Zadání: Minimálně smáčený sklon příkopu. Jaký musí být sklon příkopu, jehož průřez má tvar rovnoramenného lichoběžníka o daném obsahu S a hloubce příkopu h, aby jeho dno a stěny byly minimálně smáčeny?
METODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH
Téma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Diferenciální rovnice separace proměnných verze 1.1
Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na
PŘECHODOVÝ JEV V RC OBVODU
PŘEHODOVÝ JEV V OBVOD Pracovní úkoly:. Odvoďte vztah popisující časovou závislost elektrického napětí na kondenzátoru při vybíjení. 2. Měřením určete nabíjecí a vybíjecí křivku kondenzátoru. 3. rčete nabíjecí
Sedmé cvičení bude vysvětlovat tuto problematiku:
Sedmé cvičení bude vysvětlovat tuto problematiku: Velmi stručně o parciálních derivacích Castiglianova věta k čemu slouží Castiglianova věta jak ji použít Castiglianova věta staticky určité přímé nosníky
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Příklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
Lineární diferenciální rovnice 1. řádu verze 1.1
Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku
ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky
Úvod do analytické mechaniky
Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.
em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda
Zápočtové problémy Na následujících stránkách naleznete druhou sérii zápočtových problémů věnovanou nosníkům. Ti, co ještě nemají žádný problém přidělený, si mohou vybrat libovolný z nich. Řešení můžete
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje
NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
Literatura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5)
Předmět: MA03 Opakování: formulace okrajové úlohy (OÚ), skalární součin funkcí, ortogonalita funkcí Nová látka: vlastní čísla a vlastní funkce OÚ ortogonalita vlastních funkcí řešitelnost OÚ Literatura: