Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc.

Rozměr: px
Začít zobrazení ze stránky:

Download "Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc."

Transkript

1 Vyoké učení technické v Bně Fakulta tojního inženýtví Útav tojíenké technologie Odbo obábění Téma: 3. cvičení - Geometie řezného nátoje Okuhy: Učení nátojových úhlů po nátoje ovinnými plochy Aγ, Aα Kontola závitů pofil, toupání, velký a třední půmě závitu Vypacoval: Ing. Aleš Polze Ing. Peta Cihlářová Odboný gaant: Doc. Ing. Miolav Píška, CSc. Technologie výoby II Obah kapitoly

2 Obah kapitoly Téma: 3. cvičení - Geometie řezného nátoje Obah kapitoly Potup kontukce břitového diagamu čela Potup kontukce břitového diagamu hřbetu Zadání příkladu č. Vypacování příkladu č. Zadání příkladu č. Vypacování příkladu č. Zadání příkladu č. 3 Vypacování příkladu č. 3 Technologie výoby II Geometie řezného nátoje

3 Potup kontukce břitového diagamu čela a) naýujeme oy x a y ( tj. oviny P f a P p ) b) pod úhlem κ vyneeme přímku jako topu oviny P v ovině P (velikot cotg λ ) OL m. cotg λ c) etojíme přímku jako topu oviny P o v ovině P (je kolmá na OL - velikot cotg γ o ) OC m. cotg γ o d) pojíme bod C a L a dotaneme topu oviny čela v ovině P e) tato přímka nám potne oy x a y v bodech F a P f) odečteme velikot úeček OP a OF a z nich učíme úhly γ f a γ p podle vztahu: OF m. cotg γ f OP m. cotg γ p g) z bodu O putíme kolmici na přímku LC, dotaneme bod G h) odečteme hodnotu OG a z ní vypočítáme úhel γ g (úhel max. pádu čela) OG m. cotg γ g i) odečteme úhel ve vcholu F (úhel κ χ ) Pozn.: m měřítko (volené čílo, umožňuje naýovat břitový diagam přehledněji) Technologie výoby II Obah kapitoly Geometie řezného nátoje 3

4 Potup kontukce břitového diagamu hřbetu a) nakelíme oy x a y ( tj. oviny P f a P p ) b) pod úhlem κ vyneeme přímku jako topu oviny P v ovině P (velikot cotg λ ) OL m. cotg λ c) etojíme přímku jako topu oviny P o v ovině P (je kolmá na OL - velikot cotg γ o ) OC m. tg α o d) pojíme bod C a L a dotaneme topu oviny čela v ovině P e) tato přímka nám potne oy x a y v bodech F a P f) odečteme velikot úeček OP a OF a z nich učíme úhly χ f a χ p podle vztahu: OF m. tg α f OP m. tg α p g) z bodu O putíme kolmici na přímku LC, dotaneme bod B h) odečteme hodnotu OB a z ní vypočítáme úhel α b (úhel max. pádu hřbetu) OB m. tg α b i) odečteme úhel ve vcholu F (úhel κ α ) Pozn.: m měřítko (volené čílo, umožňuje naýovat břitový diagam přehledněji) Technologie výoby II Obah kapitoly Geometie řezného nátoje 4

5 Zadání příkladu č. Nakelete břitový diagam čela pavého uběacího nože přímého a tanovte úhel čela v nátojové boční ovině γ f, úhel čel v nátojové zadní ovině γ p, hodnotu úhlu max. pádu čela γ g a úhel klonu základní přímky κ χ. Dáno: γ o 9, λ,κ 75. Zadání γ o λ κ cotg γ f γ f cotg γ p γ p cotg γ g γ g κ χ Potup kontukce břitového diagamu čela Obah kapitoly Vypacování příkladu č. 5

6 Vypacování příkladu č. Výpočet úhlů na základě údajů z gafického řešení - Gafické řešení - úhel čela v nátojové boční ovině - OF 0,07 γ f accotg accotg 5 35 m 0 úhel čela v nátojové zadní ovině - OP 40,55 γ p accotg accotg 3 5 m 0 hodnotu úhlu max. pádu čela - OG 37,6 γ g accotg accotg 4 53 m 0 úhel klonu základní přímky - κ χ. acin cotg χ cotg χ g f 3,763 acin 34 0,9 tg κ χ tg γ tg γ Pf f p Po m. cotg κ λ L χ p m. cotg in κ tg γ o co κ tg γ Pp O P P m. cotg χ g o m. cotg G χ f m. cotg co κ in κ χ o tg λ tg λ C κ χ 37 F Zadání γ o λ κ cotg γ f γ f cotg γ p γ p cotg γ g γ g κ χ , , , , , , , , , , , , , ,04 5-6, , , , ,73-7 3, , , , , , , , , , , Potup kontukce břitového diagamu čela Obah kapitoly Zadání příkladu č. 6

7 Zadání příkladu č. Na základě břitového diagamu tanovte úhel hřbetu v nátojové boční ovině α f, úhel hřbetu v nátojové zadní ovině α p, úhel minimálního pádu hřbetu α b a úhel klonu základní přímky κ α. Dáno: α o 9, λ, κ 75. Zadání α o λ κ tg α f α f tg α p α p tg α b α b κ α Potup kontukce břitového diagamu hřbetu Obah kapitoly Vypacování příkladu č. 7

8 Vypacování příkladu č. Výpočet úhlů na základě údajů z gafického řešení - Gafické řešení - úhel hřbetu v nátojové boční ovině α f - OF,65 α f actg actg 9 m 0 úhel hřbetu v nátojové zadní ovině α p - OP 5,44 α p actg actg 8 3 m 0 úhel minimálního pádu hřbetu α b - OB,58 α b actg actg 8 58 m 0 úhel klonu základní přímky κ α - κ α. acin tg α tg α b f 0,58 acin 73 5 nebo 0,65 tg κ α Pf Po m. cotg tg α tg α p f κ O λ L Pp F BC P α p m. tg in κ cotg α o co κ cotg α P κα m. tg m. tg o m. tg α b co κ + in κ α f α o tg λ tg λ 73 7 Zadání α o λ κ tg α f α f tg α p α p tg α b α b κ α , , , , , , , , , , , , , , , , , , , , , , , , , , , ,6 7 0, , Potup kontukce břitového diagamu hřbetu Obah kapitoly Zadání příkladu č. 8

9 Zadání příkladu č. 3 Změřte ozteč a velký půmě závitu, podle ČSN 5 48 tanovte půmě dátku po kontolu tředního půměu závitu. Pomocí mikometu, mikometického tojánku a měřicích dátků poveďte kontolu tředního půměu závitu minimálně ve třech mítech a tanovte jeho půměnou hodnotu. Dáno: mm α 60 (metický závit) d 9 mm K 0 Požadováno: d D? d? ϕ? M d? x? Technologie výoby II Obah kapitoly Vypacování příkladu č. 3 9

10 Vypacování příkladu č. 3 6H 6,73. Výpočet tředního půměu závitu d : H 0,8660 0,8660,73 mm d d 9 7, 70mm 8 8. Učení půměu dátku d D : viz. noma Měření závitu měřícími dátky ČSN 5 408, tabulka t. 5-6 d D,35 mm 3. Úhel toupání šoubovice ϕ tgϕ π d ϕ actg π d o actg 3 π 7,70 4. Koekce K po úhel toupání šoubovice ϕ < 6 (obvykle platí po závity jednochodé) K d D α α, co co cotg cotg π d π 7,70 0,003mm Pozn. Koekce K po měřicí tlak e bee v úvahu jen při přeném měření na měřicích přítojích, kde je možné čít naměřené hodnoty v tiícinách milimetu (µm) 5. Výpočet ozměu pře dátky t M d d d 60 D α + + cotg + K K 7,70+,35 + cotg + 0, , 00mm α 60 in in t Pomocná hodnota x (K 0) α x d,35 D + cotg + K + cotg + 0,003, 39 mm α 60 in in 7. Kontolní výpočet tředního půměu závitu d MD x 0,00,39 7, 70mm 8. Kontola, zda je závit v toleanci - (Stojnické tabulky t. 364) Závit - φ9 x - 6g toleance µm honí mezní úchylka e 0 µm dolní mezní úchylka ei -µm honí mezní ozmě tředního půměu závitu je 7,70 mm dolní mezní ozmě tředního půměu závitu je 7,70-0,0 7,489 mm Skutečný ozmě tředního půměu závitu vychází z naměřených hodnot d MD x MD, mm Technologie výoby II Obah kapitoly Zadání příkladu č. 3 0

GEOMETRIE ŘEZNÉHO NÁSTROJE

GEOMETRIE ŘEZNÉHO NÁSTROJE EduCom Tento mateiál vznikl jako součást pojektu EduCom, kteý je spolufinancován Evopským sociálním fondem a státním ozpočtem Č. GEOMETIE ŘEZNÉHO NÁSTOJE Jan Jesák Technická univezita v Libeci Technologie

Více

4. cvičení z Matematické analýzy 2

4. cvičení z Matematické analýzy 2 4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45

Více

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc.

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Vysoké učení tehniké v Brně Fakulta strojního inženýrství Ústav strojírenské tehnologie Odbor obrábění Téma: 1. vičení - Základní veličiny obrábění Okruhy: Základní pojmy, veličiny, definie, jednotky Volba

Více

Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru

Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru Geometie Zoazovací metody Zoazení kužnice v pavoúhlé axonometii Zoazení kužnice ležící v souřadnicové ovině Výklad v pavoúhlé axonometii lze poměně snadno sestojit půmět kužnice dané středem a poloměem,

Více

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Druhy fréz a jejich upínání Upínání obrobků Síly a výkony při frézování

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Druhy fréz a jejich upínání Upínání obrobků Síly a výkony při frézování Vysoké učení technické v Brně Fakulta strojního inženýrství Ústav strojírenské technologie Odbor obrábění Téma: 6. cvičení - Frézování Okruhy: Druhy frézek Druhy fréz a jejich upínání Upínání obrobků Síly

Více

Malá a miniaturní kuličková ložiska

Malá a miniaturní kuličková ložiska MALÁ A MINIATURNÍ KULIČKOVÁ LOŽISKA Metické ozměy S příubou Palcové ozměy S příubou Půmě díy Stana 9 mm... 40 9 mm... 44,06 9,525 mm... 48,9 9,525 mm... 50 KONSTRUKCE A TYPY Rozsahy velikostí malých a

Více

!!! #!! # % & ()!+ %& #( ) +,,!,!!./0./01 2 34 % 00 (1!#! #! #23 + )!!,,5,!+ 4)!005!! 6 )! %,76!,8, )! 44 %!! #! #236!!1 1 5 6 5+!!1 ( 9 9!5 6 + /+ # % 7 8 % : 4; 2,/! = %

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

Walter Cut prostě zapichování a upichování

Walter Cut prostě zapichování a upichování Kompetentní výobky Zapichování, upichování a dážkování _ZAMĚŘENÍ NA OBRÁBĚNÍ Walte Cut potě zapichování a upichování Walte Cut Jednoduché zapichování Obah 2 Popi pogamu Walte Cut Nátoje Walte Cut 2 Řezné

Více

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.

Více

Optimální trvanlivost nástroje

Optimální trvanlivost nástroje Ústav Strojírenské technologie Speciální technologie výroby Cvičení Optimální trvanlivost nástroje č. zadání: Zadání: Z naměřených hodnot opotřebení vyměnitelné břitové destičky určete optimální trvanlivost

Více

LABORATORNÍ CVIČENÍ Z FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY méno Stanilav Matoušek Datum měření 16. 5. 5 Stud. rok 4/5 Ročník 1. Datum odevzdání 3. 5. 5 Stud. kupina 158/45 Lab. kupina

Více

Syntetická geometrie I

Syntetická geometrie I Podobnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometie RND. Yvetta Batáková Gymnázium, OŠ a VOŠ Ledeč nad ázavou Objemy a povchy těles otační válec a kužel VY_3_INOVACE_05_3_17_M Gymnázium, OŠ a VOŠ Ledeč nad ázavou 1 Objemy a povchy těles A) Rotační

Více

VÝPOČET ŘETĚZOVÝCH PŘEVODŮ ČSN 01 4809

VÝPOČET ŘETĚZOVÝCH PŘEVODŮ ČSN 01 4809 VÝPOČET ŘETĚZOVÝCH PŘEVODŮ ČSN 0 4809 DIAGRAM PRO VOLBU ŘETĚZU Z JMENOVITÉHO VÝONU A OTÁČE PASTORU Js /4 ŘETĚZY_VÝPOČET_04809 SOUČINITEL VÝONU κ Počet zuů pstoku z Převoový pomě i 2 3 5 7 3 0,39 0,50 0,57

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Teorie frézování

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Teorie frézování Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Teorie frézování Geometrie břitu frézy Aby břit mohl odebírat třísky, musí k tomu být náležitě upraven. Každý

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/ Střední půmyslová šola a Vyšší odboná šola technicá Bno, Soolsá 1 Šablona: Inovace a zvalitnění výuy postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechania, pužnost pevnost Záladní duhy namáhání,

Více

Teorie frézování Geometrie břitu frézy zub frézy má tvar klínu ostřejší klín snadněji vniká do materiálu vzájemná poloha ploch břitu nástroje a

Teorie frézování Geometrie břitu frézy zub frézy má tvar klínu ostřejší klín snadněji vniká do materiálu vzájemná poloha ploch břitu nástroje a Geometrie břitu frézy zub frézy má tvar klínu ostřejší klín snadněji vniká do materiálu vzájemná poloha ploch břitu nástroje a obrobku vytváří soustavu úhlů, které říkáme geometrie břitu hodnoty jednotlivých

Více

Poznámky k sestavení diagramu zastínění

Poznámky k sestavení diagramu zastínění Poznámky k sestavení diagramu zastínění pojmy uvedené v tomto textu jsou detailně vysvětleny ve studijních oporách nebo v normách ČSN 73 4301 a ČSN 73 0581 podle ČSN 73 4301 se doba proslunění hodnotí

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:

Více

Návody na výpočty směrových a sklonových poměrů dle zadání do cvičení

Návody na výpočty směrových a sklonových poměrů dle zadání do cvičení Návody na výpočty měrových a klonových poměrů dle zadání do cvičení Kombinované tudium BO01, čát Dopravní tavby Ad 1) Návrh obou měrových oblouků bez přechodnic a) Změřte tředové úhly pomocí tangenty úhlu

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

Zadání. Goniometrie a trigonometrie

Zadání. Goniometrie a trigonometrie GONIOMETRIE A TRIGONOMETRIE Zadání Sestrojte graf funkce. Určete definiční obor R, obor hodnot H, určete interval, v němž funkce roste, v němž klesá. Určete souřadnice průsečíků s osou x a s osou y. )

Více

Přednáška Omezení rozlišení objektivu difrakcí

Přednáška Omezení rozlišení objektivu difrakcí Před A3M38VBM, J. Ficher, kat. měření, ČVUT FL Praha Přednáška Omezení rozlišení objektivu difrakcí v. 2011 Materiál je určen pouze jako pomocný materiál pro tudenty zapané v předmětu: Videometrie a bezdotykové

Více

Délka kružnice (obvod kruhu) II

Délka kružnice (obvod kruhu) II .10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede

Více

Návrh žebrové desky vystavené účinku požáru (řešený příklad)

Návrh žebrové desky vystavené účinku požáru (řešený příklad) Návrh žebrové desky vystavené účinku požáru (řešený příklad) Posuďte spřaženou desku v bednění z trapézového plechu s tloušťkou 1 mm podle obr.1. Deska je spojitá přes více polí, rozpětí každého pole je

Více

Vzdálenosti a východ Slunce

Vzdálenosti a východ Slunce Vzdálenosti a východ Slunce Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Vzdálenosti a východ Slunce Aplikace matem. pro učitele 1 / 8 Osnova Zdeněk Halas (KDM

Více

Válečková ložiska JEDNOŘADÁ VÁLEČKOVÁ LOŽISKA. Průměr díry Strana mm... B mm... B mm... B126

Válečková ložiska JEDNOŘADÁ VÁLEČKOVÁ LOŽISKA. Průměr díry Strana mm... B mm... B mm... B126 Válečková ložiska JEDNOŘADÁ VÁLEČKOVÁ LOŽISKA Příložné koužky po válečková ložiska DVOUŘADÁ VÁLEČKOVÁ LOŽISKA Čtyřřadá válečková ložiska jsou popsána na stanách 322 až 331. Půmě díy Stana 20 55 mm... 110

Více

Statický výpočet postup ve cvičení. 5. Návrh a posouzení sloupu vzpěrné délky

Statický výpočet postup ve cvičení. 5. Návrh a posouzení sloupu vzpěrné délky Statický výpočet postup ve cvičení 5. Návrh a posouzení sloupu vzpěrné délky Statický výpočet postup ve cvičení 5. Návrh a posouzení sloupu např. válcovaný průřez HEB: 5.1. Výpočet osové síly N Ed [stálé

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANAÝZA A KASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Intitut DO biotatitiky OZVOJE VZDĚÁVÁNÍ a analýz III. BAYESŮV KASIFIKÁTO Intitut biotatitiky a analýz Intitut biotatitiky a analýz ZÁKADN KADNÍ

Více

Technická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky KŘIVKY. Pomocný učební text

Technická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky KŘIVKY. Pomocný učební text Technická univezita v Libeci Fakulta příodovědně-humanitní a pedagogická Kateda matematiky a didaktiky matematiky KŘIVKY Pomocný učební text Peta Piklová Libeec, leden 04 V tomto textu si budeme všímat

Více

C Charakteristiky silničních motorových vozidel

C Charakteristiky silničních motorových vozidel C Chaaktetky lnčních otoových vozel Toto téa e zabývá záklaní etoa tanovení někteých povozních chaaktetk lnčních otoových vozel, kteé pak náleně louží k pouzování užtných vlatnotí těchto vozel. Stanovení

Více

Souřadnicové výpočty I.

Souřadnicové výpočty I. Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Syntetická geometrie I

Syntetická geometrie I Podobnost Pedagogická fakulta 2017 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním

Více

Cavendishův pokus: Určení gravitační konstanty,,vážení Země

Cavendishův pokus: Určení gravitační konstanty,,vážení Země Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem

Více

SQUAREWORX. Pro všechny případy: Rohové frézování, frézování drážek a srážení hran frézováním pomocí pouze jedné břitové destičky

SQUAREWORX. Pro všechny případy: Rohové frézování, frézování drážek a srážení hran frézováním pomocí pouze jedné břitové destičky SQUAREWORX Po všechny případy: Rohové fézování, fézování dážek a sážení han fézováním pomocí pouze jedné břitové destičky SQUAREWORX M FRÉZY PRO ROHOVÉ FRÉZOVÁNÍ, FRÉZOVÁNÍ DRÁŽEK A SRÁŽENÍ HRAN FRÉZOVÁNÍM

Více

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef Příkla avrhněte záklaovou esku ze ŽB po sloupy o rozměru 0,6 x 0,6 m a stanovte max. provozní napětí záklaové půy. Zatížení a geometrie le orázku. Tloušťka esky hs = 0,4 m. Zatížení: rohové sloupy 1 =

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT pof. Ing. Jiří Holčík, CSc. INVESTICE Intitut DO biotatitiky OZVOJE VZDĚLÁVÁNÍ a analýz II. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obaz zpacovávaných dat je

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 Podobnost trojúhelníků II Předpoklady: 33 Př. 1: V pravoúhlém trojúhelníku s pravým uhlem při vrcholu sestroj výšku na stranu. Patu výšky označ. Najdi podobné trojúhelníky. Nakreslíme si obrázek:

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Ing. Aleš Polzer Ing. Petra Cihlářová Doc. Ing. Miroslav Píška, CSc. Technologie výroby II Obsah kapitoly

Ing. Aleš Polzer Ing. Petra Cihlářová Doc. Ing. Miroslav Píška, CSc. Technologie výroby II Obsah kapitoly Vysoké učení technické v rně Fakulta strojního inženýrství Ústav strojírenské technologie Odbor obrábění éma: 4. cvičení - Soustružení II Okruhy: Geometrie lamače třísky soustružnického nože Vypracoval:

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

γ α β E k r r ρ ρ 0 θ θ G Θ G U( r, t) w(z) w 0 ω z R z U( r, t) 1 c 2 2 U( r, t) t 2 = 0, U( r, t) U( r, t) = E( r, t) U( r, t) = u( r)e iωt. u( r) + k 2 u( r) = 0, k = ω/c u( r) = A exp( i k r), k

Více

při obrábění Ing. Petra Cihlářová Odborný garant: Doc. Ing. Miroslav Píška, CSc.

při obrábění Ing. Petra Cihlářová Odborný garant: Doc. Ing. Miroslav Píška, CSc. Vysoké učeí tehiké v Brě Fakulta strojího ižeýrství Ústav strojíreské tehologie Odbor obráběí Téa: 5. vičeí - Výočet silové a eergetiké áročosti ři obráběí Okruhy: Výočet řezýh sil ro soustružeí a vrtáí

Více

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního

Více

PODÉLNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ - 1. FÁZE LONGITUDINAL STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS - 1

PODÉLNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ - 1. FÁZE LONGITUDINAL STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS - 1 Ročník 5., Číslo III., listopad 00 PODÉLNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ -. FÁZE LONGITUDINAL STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS - Leopold Habovský Anotace:

Více

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc.

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Vysoké učení technické v Brně Fakulta strojního inženýrství Ústav strojírenské technologie Odbor obrábění Téma: 7. cvičení - Technologická příprava výroby Okruhy: Volba polotovaru Přídavky na obrábění

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Fyzikální koepondenční eminář MFF UK Úloha I.4... něo je tu nakřivo 6 bodů; půmě 3,1; řešilo 6 tudentů Pozoovatel e nahází na lodi na otevřeném moři ve výše h nad hladinou. Je vzdálen d od vodoovného zábadlí

Více

EXPERIMENTÁLNÍ METODY V OBRÁBĚNÍ

EXPERIMENTÁLNÍ METODY V OBRÁBĚNÍ ZÁPADOČESKÁ UNIVERZITA FAKULTA STROJNÍ KATEDRA TECHNOLOGIE OBRÁBĚNÍ EXPERIMENTÁLNÍ METODY V OBRÁBĚNÍ ÚLOHA č. 4 (Skupina č. 1) OPTIMALIZACE ŘEZNÉHO PROCESU (Trvanlivost břitu, dlouhodobá zkouška obrobitelnosti

Více

Systémové trubky a lisovací tvarovky z uhlíkové oceli se systémem LBP

Systémové trubky a lisovací tvarovky z uhlíkové oceli se systémem LBP Systémové tubky lisoví tvovky z uhlíkové oeli se systémem LBP SC640 Systémové tubky z glvnizovné uhlíkové oeli Velikost Mteiál Obj.č. 15 mm x 1,2 mm x 3 m glvnizovná uhlíková oel PY-45080 18 mm x 1,2 mm

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu VÝUKA V TERÉNU Z GEODÉZIE 1, 2 - VY1 kód úlohy název úlohy K PŘÍMÉ

Více

Výpočet silové a energetické náročnosti při obrábění

Výpočet silové a energetické náročnosti při obrábění Cvičení číslo: 5 Stud. skupina: Pořadové číslo: Téma cvičení: Výpočet silové a energetické náročnosti při obrábění Vypracoval: Datum: Počet listů: Zadání: - vypočítejte příklady č. 1,, 3, 4, a 5 - uveďte

Více

Příloha č. 1. Pevnostní výpočty

Příloha č. 1. Pevnostní výpočty Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této

Více

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů. Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.

Více

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

STEREOMETRIE 9*. 10*. 11*. 12*. 13* STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky

Více

Anemometrie - žhavené senzory

Anemometrie - žhavené senzory Anemometrie - žhavené senzory Fyzikální princip metody Metoda je založena na ochlazování žhaveného senzoru proudícím médiem. Teplota senzoru: 50 300 C Ochlazování závisí na: Vlastnostech senzoru Fyzikálních

Více

Křížová válečková ložiska Cross-Roler Ring Kompaktní, velice tuhá válečková ložiska s vynikající přesností otáčení

Křížová válečková ložiska Cross-Roler Ring Kompaktní, velice tuhá válečková ložiska s vynikající přesností otáčení Křížová válečková ložiska Coss-Role Ring Kompaktní, velice tuhá válečková ložiska s vynikající přesností otáčení CATALOG No. 382-1CZ Obsah Křížová válečková ložiska Coss-Role Ring Konstukce a vlastnosti...

Více

Zakládání staveb 9 cvičení

Zakládání staveb 9 cvičení Zakláání tave 9 včení Únonot áklaové půy Mení tavy Geotehnké kategore Mení tav únonot (.MS) MEZÍ STAVY I. Skupna mení tav únonot (hrouení kontruke, nepříputné aoření, naklonění) II. Skupna mení tav přetvoření

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Metrické vlastnosti v prostoru

Metrické vlastnosti v prostoru Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii

Více

KONSTRUKCE PÁNSKÉ KOŠILE podle Múller & Sohn

KONSTRUKCE PÁNSKÉ KOŠILE podle Múller & Sohn KONSTRUKCE PÁNSKÉ KOŠILE podle Múller & Sohn Postup konstrukce a technický nákres najdete také zde: http://www.kod.tul.cz/ucebni_materialy/konstrukce/konstrukce/docy/skripta_kso_web_8_kosile.pdf Před samotnou

Více

BNC100/ BNC160/ BNC200/ BNC300

BNC100/ BNC160/ BNC200/ BNC300 NOVINKY NÁSTROJŮ CZ81 Povlakované destičky po soustužení kalené oceli / / / ROZŠÍŘENÍ PROGRAMU Nové geometie řezné hany po optimalizaci výkonu Vícebřité jednoázové destičky po optimalizaci nákladů Šioká

Více

9.6. Odchylky přímek a rovin

9.6. Odchylky přímek a rovin 9 Stereometrie 96 Odchylky přímek rovin Odchylku dvou přímek, dvou rovin přímky od roviny převádíme n určení velikosti úhlu dvou různoběžek Odchylk dvou přímek Odchylk dvou přímek splývjících nebo rovnoběžných

Více

Konstrukce čtyřdílného střihu. Martina Horáková

Konstrukce čtyřdílného střihu. Martina Horáková Konstrukce čtyřdílného střihu Martina Horáková Měření a konstrukce střihu ÚVOD -snaha o zjednodušení a přiblížení soudobého střihu, ne rekonstrukce historických střihů -aplikace střihu STŘIH -rozvržení

Více

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Syntetická geometrie II

Syntetická geometrie II Mnohoúhelníky Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Čtyřúhelníky Definice (Čtyřúhelník) Jsou dány čtyři body A, B, C, D v rovině, z nichž žádné tři nejsou kolineární. Čtyřúhelník ABCD

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy 1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné

Více

3.1.3 Vzájemná poloha přímek

3.1.3 Vzájemná poloha přímek 3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Generátor s IO 555 101-3R

Generátor s IO 555 101-3R Vyšší odborná škola a Střední průmylová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Čílo úlohy Generátor IO 555 101-3R Zadání 1. Pomocí IO 555 navrhněte

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometie RND. Yett Btákoá Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles komolá těles VY INOVACE_05 9_M Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles A) Komolý jehln - je těleso, kteé znikne půnikem

Více

Kolmost rovin a přímek

Kolmost rovin a přímek Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

OPOTŘEBENÍ A TRVANLIVOST NÁSTROJE

OPOTŘEBENÍ A TRVANLIVOST NÁSTROJE Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

5. Aplikace výsledků pro průřezy 4. třídy.

5. Aplikace výsledků pro průřezy 4. třídy. 5. plikace výsledků pro průřez 4. tříd. eff / eff / Výsledk únosnosti se používají ve tvaru součinitele oulení ρ : ρ f eff kde d 0 Stěn namáhané tlakem a momentem: Základní případ: stlačovaná stěna: výsledk

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více

8. Antény pro pásma DV, SV, KV

8. Antény pro pásma DV, SV, KV 8. Antény po pásma DV, SV, KV hlediska po výbě - kmitočtové pásmo, šíření vln, směové vlastnosti, výkony, cena 8.1 Vysílací antény po pásma DV, SV - povchová vlna - vetikální polaizace - ozhlas AM všesměové

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

4. Stanovení teplotního součinitele odporu kovů

4. Stanovení teplotního součinitele odporu kovů 4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf

Více

ITO. Semestrální projekt. Fakulta Informačních Technologií

ITO. Semestrální projekt. Fakulta Informačních Technologií ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování

Více

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků. FOTLOÝ MÍČ Popis aktivit ýpočt odchlek přímek a rovin v tělese, resp. velikostí úhlů, které svírají stěn a hran v mnohostěnu. Předpokládané znalosti Odchlka rovin a přímk, odchlka dvou rovin. Definice

Více

Výpočtová únosnost U vd. Cvičení 4

Výpočtová únosnost U vd. Cvičení 4 Výpočtová únosnost U vd Cvičení 4 Podmínka únosnosti: V de U vd V de Svislá složka extrémního výpočtového zatížení U vd výpočtová únosnost ve svislém směru Stanovení výpočtové únosnosti pilot Podle ČSN:

Více