Radiometrie a fotometrie. Veličina Jednotka Značka. svítivost candela cd

Rozměr: px
Začít zobrazení ze stránky:

Download "Radiometrie a fotometrie. Veličina Jednotka Značka. svítivost candela cd"

Transkript

1 Úvod do asrové tchniky KFE FJFI Jakub Svoboda, Ptr Koranda, 004. Zákadní jdnotky fotomtri: Radiomtri a fotomtri Vičina Jdnotka Značka svítivost canda cd.. kanda kanda j svítivost zdroj, ktrý v daném směru vysíá monochromatické zářní o kmitočtu hrtzů a jhož zářivost v tomto směru j /683 wattu na stradián.. Dopňkové jdnotky: Vičina Jdnotka Značka rovinnýúh prostorový úh radián stradián rad sr radián rovinný úh svřný dvěma poopřímkami, ktré na kružnici opsané z jjich počátčního bodu vytínají obouk o déc rovné jjímu pooměru. stradián prostorový úh s vrchom v střdu kuové pochy, ktrý na této poš vytíná část s obsahm rovným druhé mocnině pooměru této kuové pochy. Prostorový úh Ω v vztahu k rovinnému úhu θ (např. divrgnc svazku) můžm vyjádřit: θ Ω= π Prostorový úh j určn vikostí pochy vyťaté obcnou kužovou pochou na povrchu kou o jdnotkovém pooměru, jjíž střd j totožný s vrchom kužové pochy. Prostorový úh s obvyk označuj jako vká omga Ω. Jdnotkou j stradián [sr]. sr j prostorový úh odpovídající jdnotkové poš (A = m ) na povrchu jdnotkové kou (r = m); jho vrcho j totožný s střdm kou. Ω = A / (r r) [sr; m, m, m]. Prostorový úh vrchíku kou, ktrý má výšku v j Ω = π r v / (r r) [sr; m, m, m, m ].. Radiomtrické vičiny..zářivý tok Každé těso j zdrojm ktromagntického vnění, vyzařuj tdy nrgii, ktrá s nazývá zářivou nrgií (U ). Podí zářivé nrgi a doby, za ktrou bya vyzářna j vyzařovaný výkon, ktrý s nazývá zářivý tok (Φ ). Jdnotkou zářivého toku j W. Určitou pochou prochází zářivý tok W, jstiž při ustáných poměrch projd touto pochou zářivá nrgi jou za skundu...zářivost Zářivost (I ) určitého zdroj v určitém směru j podí mntu zářivého toku vyzařovaného do maého prostorového úhu a tohoto prostorového úhu.

2 I = / V případě izotropního zdroj patí také I = Φ/Ω. Jdnotkou j W.sr -..3.Intnzita vyzařování Intnzita vyzařování (H ) v daném místě povrchu zdroj j podím mntu zářivého toku vystupujícího z mntu pochy a tohoto mntu pochy H = / V případě izotropního zdroj patí také H = Φ /S. Jdnotkou j W.m -.4.Spktrání vyzařování Spktrání vyzařování (H ) charaktrizuj spktrání sožní zářní pošného zdroj. Lokání spktrání vyzařování j určno podím mntu dh vyzařovaného v maém intrvau d a tohoto intrvau: Jdnotkou j W.m Fotomtrické vičiny H = dh /d 3..Vnímání ktromagntického vnění zrakovým orgánm. Zrakový orgán čověka nvnímá ktromagntické vnění v všch vnových dékách stjně fktivně. Tu část ktromagntického spktra, na níž j zrakový orgán citivý nazývám světm. Za světo považujm ktromagntické vnění v rozsahu vnových dék od 380 nm do 760 nm, přičmž uvdné hranic jsou individuáně variabiní. Rcptorm světa v oku jsou čípky a tyčinky. Ektrická sožka světné vny v nich vyvoává fotochmický děj, zapříčiňující vznik ktrických pusů, postupujících po nrvových váknch přs synaps a daší buňky do zrakových cntr v mozku. Čípky obsahují tři druhy chmických átk (tři druhy čípku), citivých na různé části spktra (modrocitivé, znocitivé a črvnocitivé). Tím j umožněno vnímání barv. Úhrnná spktrání citivost čípků má maximum pro vnovou déku = 550 nm. Čípky jsou aktivní v dn - tzv. fotopické vidění. Tyčinky obsahují jdinou chmickou átku - rodopsin - tudíž myjí všchny tyčinky stjnou spktrání odzvu a numožňují vnímaní barv, pouz odstínů šdi. Maximum citivosti j pro vnovou déku = 507 nm (mírně variabiní hodnota). Tyčinky jsou aktivní za tmy - skotopické vidění. Posuv "spktrání citivosti" j znám jako Purkyňův jv. 3..Spktrání světná účinnost zářní Spktrání světná účinnost zářní (světná účinnost monofrkvnčního zářní) (K ) j mpirická funkc vnové déky vyjadřující fkt, ktrý vyvoá spktrání zářivý tok v zrakovém orgánu. Tato dfinic nní mtroogická, a vychází z schématu tori vidění. Vztahuj s na "průměrný" zrakový orgán. Funkc má různé hodnoty pro vidění fotopické a skotopické Světný tok Součinm funkcí Φ.Κ pro fotopické vidění obdržím novou funkci nazývanou spktrání světný tok. Pocha pod grafm této funkc v intrvau od nuy do nkončna udává světný tok Φ (ktrý j

3 tdy intgrám zmíněného součinu od nuy do nkončna). Jdnotkou světného toku j umn (m). Světný tok j anaogickou fotomtrickou vičinou k zářivému toku. Světný tok vyjadřuj schopnost zářivého toku vyvoat zrakový vjm. Označuj s Φ. Jdnotkou j umn [m]. V praxi s používá jdnotka kioumn ( km = 000 m) Svítivost Svítivost (I)j podí mntu světného toku a npatrného prostorového úhu, do ktrého j tnto světný tok vyzařován: Pro izotropní zdroj patí I = Φ/Ω. I = / Z hdiska mtroogi j však svítivost zákadní fyzikání vičinou. Mtroogicky nní jinak dfinována. Jjí jdnotkou j kanda (cd). Kanda j svítivost v daném směru zdroj, ktrý vysíá monofrkvnční zářní frkvnc Hz a jhož zářivost v tomto směru činí (/683) wattů na stradián. Svítivost j anaogickou fotomtrickou vičinou k zářivosti. Udaná frkvnc odpovídá vn. déc 556 nm, tdy přibižně maximu fotopické spktrání účinnosti monofrkvnčního zářní. Svítivost bodového zdroj I do určitého směru j rovna světnému toku obsažném v jdnotkovém prostorovém úhu. Tdy [ ] I = / cd; m, sr Jdnotkou j kanda [cd]. Dfinic d ČSN 0 00: Kanda j svítivost črného těsa komo k povrchu jhož vikost j Patiny (045 K) a taku 0 35 Pa Jdnotka světného toku m při tpotě tuhnutí 3.5.Jas Jak j výš zmíněno, j jdnotkou světného toku umn (= cd.sr).bodový světný zdroj vysíá do prostorového úhu sr světný tok m, j-i svítivost tohoto zdroj v všch směrch kanda. Jasm (L) j difrnciání podí svítivosti I npatrné pošky povrchu zdroj v směru pozorování a komého průmětu S n této pošky do tohoto směru L = di/ n = di/(.cosα), kd α j úh svřný směrm pozorování a normáou pošky. Jdnotkou j cd.m -. Kanda na čtvrční mtr j jas zdroj, jhož svítivost na m zdánivé pochy zdroj j rovna kanda. Zdánivou pochou s přitom rozumí vikost průmětu skutčné pochy do roviny komé k směru zářní. Jas j dfinován jako podí svítivosti di mntární pochy o obsahu zdroj v zvoném směru α a komého průmětu této pochy v tomto směru šířní: L di = Jdnotkou j [cd.m - ]..cos α

4 Obr.. Poznámka k dfinici jasu Osvětní Osvětní (E) j podí mntu světného toku a pošného mntu, na ktrý tnto světný tok dopadá: E = / Při rovnoměrném rozožní světného toku patí E = Φ /S. Jdnotkou osvětní j ux (x).lux j osvětní pochy na jjíž čtvrční mtr dopadá rovnoměrně rozožný světný tok umnu. Poznamnjm, ž v této dfinici nní požadován komý dopad světného toku na pochu. Obr.. Poznámka k dfinici osvětní. Souhrn Raadiomtrické jdnotky Spktrání jdnotky Fotomtrické jdnotky Zářivý tok Spktrání zářivý tok Světný tok Φ [ W ] Φ d Φ [ m ] ] (umn) Φ = Φ d L Intnzita vyzařování H = [ (zářivý tok z pochy) Ozářní E = [ I (zářivý tok do pochy) Zářivost = W sr d Ω [ (zářivý tok do prostorového úhu) Zář = sr ] [ (zářivý tok z pochy do prostorového úhu) L pocha pod křivkou Spktrání intnzita vyzařování H = [ 3 Spktrání ozářní E = [ 3 Spktrání zářivost I = [ sr ] Spktrání zář 3 = [ sr ] Světní H = [ m m Osvětní E = [ m m = [ x ] (ux) Svítivost I = [ m sr ] = [ cd ] d Ω (canda) Jas L = cd sr ] = [ nt ] [ m m ] = [ (nit) m

5 Poznámky Odvozní vzorc pro stradián: Dfinic: =.d d dr (.d ) r r Ω = π r dr π r dα π sinα dα = = π sinα dα = = = Ω = π ( cosβ) Náhrada: S π r Ω = = r = tgβ nbo r = sinβ β 0 Použitá itratura:. Šindář V, Smrž L, Nová soustava jdnotk (SPN Praha, 989)

, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty:

, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty: Radiomtri a fotomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá fotomtri. V odstavci Přnos nrgi

Více

, je vhodná veličina i pro studium vyzařování energie z libovolného zdroje a také i pro popis dopadu energie na hmotné objekty:

, je vhodná veličina i pro studium vyzařování energie z libovolného zdroje a také i pro popis dopadu energie na hmotné objekty: Radiomtri a otomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá otomtri. V odstavci Přnos nrgi

Více

Trivium z optiky 37. 6. Fotometrie

Trivium z optiky 37. 6. Fotometrie Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

Měření vlastností vedení

Měření vlastností vedení LBR 7. Měřní vastností vdní Měřní vastností vdní (úko měřní) Úkom tohoto měřní j sznámit s s mtodikou měřní vastností vdní onanční mtodou a dá změřit vastnosti různých typů běžně používaných vdní a určit

Více

UMĚLÉ OSVĚTLENÍ V BUDOVÁCH. Ing. Bohumír Garlík, CSc. Katedra TZB

UMĚLÉ OSVĚTLENÍ V BUDOVÁCH. Ing. Bohumír Garlík, CSc. Katedra TZB UMĚLÉ OSVĚTLENÍ V BUDOVÁCH Ing. Bohumír Garlík, CSc. Katedra TZB Praha 2008 1. PŘEDNÁŠKA 2. Měrné jednotky používané ve světelné technice: Měrové jednotky rovinného úhlu Rovinný úhel různoběžky: α je ten,

Více

Její uplatnění lze nalézt v těchto oblastech zkoumání:

Její uplatnění lze nalézt v těchto oblastech zkoumání: RADIOMETRIE, FOTOMETRIE http://cs.wikipedia.org/wiki/kandela http://www.gymhol.cz/projekt/fyzika/12_energie/12_energie.htm M. Vrbová, H. Jelínková, P. Gavrilov. Úvod do laserové techniky, skripta ČVUT,

Více

Demonstrace skládání barev

Demonstrace skládání barev Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.

Více

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ

Více

Elektrické světlo příklady

Elektrické světlo příklady Elektrické světlo příklady ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY. Rovinný úhel (rad) = arc = a/r = a'/l (pro malé, zorné, úhly) a a' a arc / π = /36 (malým se rozumí r/a >3 až 5) r l. Prostorový úhel Ω = S/r

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

Geometrická optika. Energetické vlastnosti optického záření. zářivý tok (výkon záření) Φ e. spektrální hustota zářivého toku Φ Φ = e

Geometrická optika. Energetické vlastnosti optického záření. zářivý tok (výkon záření) Φ e. spektrální hustota zářivého toku Φ Φ = e Enrgticé vlastnosti opticého zářní popisují zářní z hlisa přnosu nrgi raiomtricé vličiny zářivý to (výon zářní) t W [W] zářivá nrgi W, trá proj za jnotu času nějaou plochou sptrální hustota zářivého tou

Více

Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla.

Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla. 12. Radiometrie a fotometrie 12.1. Základní optické schéma 12.2. Zdroj světla 12.3. Objekt a prostředí 12.4. Detektory světla 12.5. Radiometrie 12.6. Fotometrie 12.7. Oko 12.8. Měření barev 12. Radiometrie

Více

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM PNO NRG LKTROMAGNTCKÝM VLNNÍM lktromagntické vlnní, stjn jako mchanické vlnní, j schopno pnášt nrgii Tuto nrgii popisujm pomocí tzv radiomtrických, rsp fotomtrických vliin Rozdlní vyplývá z jdnoduché úvahy:

Více

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice

Více

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice

Ing. Ondrej Panák, ondrej.panak@upce.cz Katedra polygrafie a fotofyziky, Fakulta chemicko-technologická, Univerzita Pardubice 1 ěřní barvnosti studijní matriál Ing. Ondrj Panák, ondrj.panak@upc.cz Katdra polygrafi a fotofyziky, Fakulta chmicko-tchnologická, Univrzita Pardubic Úvod Abychom mohli či už subjktivně nbo objktivně

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

{ } ( ) ( ) ( ) ( ) r 6.42 Urč ete mohutnost a energii impulsu

{ } ( ) ( ) ( ) ( ) r 6.42 Urč ete mohutnost a energii impulsu Systé my, procsy a signály I - sbírka příkladů Ř EŠENÉPŘ ÍKLADY r 64 Urč t mohutnost a nrgii impulsu s(k 8 k ( ( s k Ab k, A, b, 6 4 4 6 8 k Obr6 Analyzovaný diskrétní signál Mohutnost impulsu k A M s(

Více

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice

Více

INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE

INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE Studnt Skupina/Osob. číslo INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE 5. Měřní ěrného náboj lktronu Číslo prác 5 Datu Spolupracoval Podpis studnta: Cíl ěřní: Pozorování stopy lktronů v baňc s zřděný plyn

Více

Fotometrie a radiometrie Důležitou částí kvantitativního popisu optického záření je určování jeho mohutnosti

Fotometrie a radiometrie Důležitou částí kvantitativního popisu optického záření je určování jeho mohutnosti Učbí txt k přášc UFY1 Fotomtri a raiomtri Fotomtri a raiomtri Důlžitou částí kvatitativího popisu optického září j určováí jho mohutosti B, jsou přímo měřitlé, a proto rgtických charaktristik. Samoté vktory

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

fotometrická měření jedna z nejstarších měření vůbec!

fotometrická měření jedna z nejstarších měření vůbec! Fotometrie fotometrie = fotos (světlo) + metron (míra, měřit) - část fyziky zabývající se měřením světla; zkoumáním hustoty světelného toku radiometrie obecnější, zkoumání hustoty toku záření fotometrická

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Ověření Stefanova-Boltzmannova zákona. Ověřte platnost Stefanova-Boltzmannova zákona a určete pohltivost α zářícího tělesa.

Ověření Stefanova-Boltzmannova zákona. Ověřte platnost Stefanova-Boltzmannova zákona a určete pohltivost α zářícího tělesa. 26 Zářní těls Ověřní Stfanova-Boltzmannova zákona ÚKOL Ověřt platnost Stfanova-Boltzmannova zákona a určt pohltivost α zářícího tělsa. TEORIE Tplo j druh nrgi. Vyjadřuj, jak s změní vnitřní nrgi systému

Více

Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU

Hodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU Hodnocní tlné bilanc a vaotransirac travního orostu mtodou Bownova oměru návod do raktika z rodukční kologi PřF JU Na základě starších i novějších matriálů uravil a řiravil Jakub Brom V Čských Budějovicích,

Více

8. Optické zobrazování

8. Optické zobrazování 8. Optické zobrazování 8.1 Pojem optického zobrazení Z každého bodu svítícího nebo osvěteného předmětu vychází svazek paprsků. Přeměníme-i, tyto svazky nějakým zařízením v nové svazky nazýváme body, v

Více

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů. Světeln telné veličiny iny a jejich jednotky Světeln telné veličiny iny a jejich jednotky, světeln telné vlastnosti látekl světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Světlo, Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Fotorealistická syntéza obrazu

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

264/2000 Sb. VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. července 2000,

264/2000 Sb. VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. července 2000, Vyhl. č. 264/2000 Sb., stránka 1 z 7 264/2000 Sb. VYHLÁŠKA Ministerstva průmyslu a obchodu ze dne 14. července 2000, o základních měřicích jednotkách a ostatních jednotkách a o jejich označování Ministerstvo

Více

41 Absorpce světla ÚKOL TEORIE

41 Absorpce světla ÚKOL TEORIE 41 Absorpc světla ÚKOL Stanovt závislost absorpčního koficintu dvou průhldných látk různé barvy na vlnové délc dopadajícího světla. Proměřt pro zadané vlnové délky absorpci světla při jho průchodu dvěma

Více

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

02 Systémy a jejich popis v časové a frekvenční oblasti

02 Systémy a jejich popis v časové a frekvenční oblasti Modul: Analýza a modlování dynamických biologických dat Přdmět: Linární a adaptivní zpracování dat Autor: Danil Schwarz Číslo a názv výukové dnotky: Systémy a ich popis v časové a frkvnční oblasti Výstupy

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku Řešení úoh koa 49 ročníku fyzikání oympiády Kategorie D Autořiúoh:JJírů(,3,4,5,6,),TDenkstein(), a) Všechny uvažované časy jsou měřené od začátku rovnoměrně zrychené pohybu vaku a spňují rovnice = at,

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

SFA1. Denní osvětlení. Přednáška 4. Bošová- SFA1 Přednáška 4/1

SFA1. Denní osvětlení. Přednáška 4. Bošová- SFA1 Přednáška 4/1 SFA1 Denní osvětlení Přednáška 4 Bošová- SFA1 Přednáška 4/1 CÍL: Přístup světla rozptýleného v atmosféře do interiéru (denní světlo je nezávislé na světových stranách) Vytvoření zrakové pohody pro uživatele

Více

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Dfinic plazmatu (typická) Úvod do fyziky plazmatu Plazma j kvazinutrální systém nabitých (a případně i nutrálních) částic, ktrý vykazuj kolktivní chování. Pozn. Kolktivní chování j tdy podstatné, nicméně

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie A

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie A Řešení úoh 1 koa 49 ročníku fyzikání oympiády Kategorie A Autořiúoh:JJírů(1),PŠedivý(,,4,5,7),BVybíra(6) 1a) Při vobě směrů proudů pode obrázku sestavíme pode Kirchhoffových zákonů rovnice: R U e1 = R

Více

Michal Vik a Martina Viková: Základy koloristiky ZKO3

Michal Vik a Martina Viková: Základy koloristiky ZKO3 Fyziologie vnímání barev Příklady vizuáln lních iluzí: Vliv barvy pozadí I Jsou tyto kruhy barevně shodné? Příklady vizuáln lních iluzí: Vliv barvy pozadí II Jsou tyto kruhy barevně shodné? Příklady vizuáln

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

Viditelné elektromagnetické záření

Viditelné elektromagnetické záření Aj to bude masakr 1 Viditelné elektromagnetické záření Vlnová délka 1 až 1 000 000 000 nm Světlo se chová jako vlnění nebo proud fotonů (záleží na okolnostech) 2 Optické záření 1645 Korpuskulární teorie

Více

SIMULATION OF RESIN FLOW IN VARTM TECHNOLOGY POPIS PROUDĚNÍ PLNIVA PŘI VÝROBĚ KOMPOZITŮ TECHNOLOGIÍ VARTM V PODDAJNÉ FORMĚ

SIMULATION OF RESIN FLOW IN VARTM TECHNOLOGY POPIS PROUDĚNÍ PLNIVA PŘI VÝROBĚ KOMPOZITŮ TECHNOLOGIÍ VARTM V PODDAJNÉ FORMĚ IMULATION OF REIN FLOW IN VARTM TECHNOLOGY POPI PROUDĚNÍ PLNIVA PŘI VÝROBĚ KOMPOZITŮ TECHNOLOGIÍ VARTM V PODDAJNÉ FORMĚ Josf ŽÁK 1, Františk MARTAU 2 Abstrakt Tchnoogy VARTM ( Vacuum Assistd Rsin Transfr

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky 1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu

Více

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Světlo, Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. 2 Fotorealistická syntéza obrazu

Více

4. Tažené a tlačené pruty, stabilita prutů Tažené pruty, tlačené pruty, stabilita prutů.

4. Tažené a tlačené pruty, stabilita prutů Tažené pruty, tlačené pruty, stabilita prutů. 4. Tažné a tlačné prut, stabilita prutů Tažné prut, tlačné prut, stabilita prutů. Tah Ed 3 -pružnéřšní Posouní pro všchn tříd: Únosnost t,rd : pro noslabnou plochu t,rd pl, Rd A f /γ M0 pro oslabnou plochu

Více

TEPLOVODNÍ KOTLE ROJEK

TEPLOVODNÍ KOTLE ROJEK Tchnická data kotů J TP Tpovodní kot J s ručním přikádáním z dopnit o vysoc kvaitní švédské ptové hořáky typ PX a zásobníky s podavači na pty, čímž s z těchto kotů stanou automatické tpovodní kot. Varianta

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu 1 Dfinic plazmatu (S. Ichimaru, Statistical Plasma Physics, Vol I) Plazma j jakýkoliv statistický systém, ktrý obsahuj pohyblivé nabité částic. Pozn. Statistický znamná makroskopický,

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

1. Okrajové podmínky pro tepeln technické výpo ty

1. Okrajové podmínky pro tepeln technické výpo ty 1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

Tabulka 1. SI - základní jednotky

Tabulka 1. SI - základní jednotky 1 Veličina Jednotka Značka Rozměr délka metr m L hmotnost kilogram kg M čas sekunda s T elektrický proud ampér A I termodynamická teplota kelvin K Θ látkové množství mol mol N svítivost kandela cd J Tabulka

Více

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha této kapitol: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjí části) budm idaliovat

Více

Kinematika pístní skupiny

Kinematika pístní skupiny Kinematika pístní skupiny Centrický mechanismus s = r( cos(α)) + l [ ( λ 2 sin 2 α) 2] Dva členy z binomické řady s = r [( cos (α)) + λ ( cos (2α))] 4 I. harmonická s I = r( cos (α)) II. harmonická s II

Více

Svˇetelné kˇrivky dosvit u

Svˇetelné kˇrivky dosvit u Světelné křivky dosvitů. Filip Hroch Světelné křivky dosvitů p. 1 Charakteristiky dosvitů Dosvit (Optical Afterglow) je objekt pozorovaný po gama záblesku na větších vlnových délkách. Dosvit je bodový

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

Klasický a kvantový chaos

Klasický a kvantový chaos Klasický a kvantový chaos Pavl Cjnar Ústav částicové a jadrné fyziky MFF UK Praha cjnar @ ipnp.troja.mff.cuni.cz 7.4. 20, fi/fy sminář MFF UK Fyzika. druhu ( kódování ) složité chování jdnoduché rovnic

Více

telná technika Literatura: tlení,, vlastnosti oka, prostorový úhel Ing. Jana Lepší http://webs.zcu.cz/fel/kee/st/st.pdf

telná technika Literatura: tlení,, vlastnosti oka, prostorový úhel Ing. Jana Lepší http://webs.zcu.cz/fel/kee/st/st.pdf Světeln telná technika Literatura: Habel +kol.: Světelná technika a osvětlování - FCC Public Praha 1995 Ing. Jana Lepší Sokanský + kol.: ČSO Ostrava: http://www.csorsostrava.cz/index_publikace.htm http://www.csorsostrava.cz/index_sborniky.htm

Více

Veličiny a jednotky v astronomii, zvláště v astronomické fotometrii

Veličiny a jednotky v astronomii, zvláště v astronomické fotometrii Veličiny a jednotky v astronomii, zvláště v astronomické fotometrii návrh doplňku konformního ke knize V. Šindelář, L. Smrž: Nová soustava jednotek (SPN, Praha 1968, 4., upravené vydání 1989) Jan Hollan

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

OPTIKA Fotometrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Fotometrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Fotometrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Fotometrie definuje a studuje veličiny charakterizující působení světelného záření na

Více

Fyzikální podstata fotovoltaické přeměny solární energie

Fyzikální podstata fotovoltaické přeměny solární energie účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav

Více

EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin

EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin FSI UT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin OSNOA 11. KAPITOLY Úvod do měření světelných

Více

1. Limita funkce - výpočty, užití

1. Limita funkce - výpočty, užití Difrnciální a intgrální počt. Limita funkc - výpočt, užití Vpočtět násldující it: +.8..cos +. + 5+. 5..5.. 8 sin sin.7 ( cos.9 + sin cos. + 5cos. + log( +... + + + 5 +.5..7.8.9.. 5+ + 9 + + + + 8 sin sin5

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Příklady z kvantové mechaniky k domácímu počítání

Příklady z kvantové mechaniky k domácímu počítání Příklady z kvantové mchaniky k domácímu počítání (http://www.physics.muni.cz/~tomtyc/kvant-priklady.pdf (nbo.ps). Počt kvant: Ionizační nrgi atomu vodíku v základním stavu j E = 3, 6 V. Najdět frkvnci,

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

Vedení elektromagnetických vln

Vedení elektromagnetických vln Vna na vdní VED-a ákadní vtahy, fáory vičin V - VED VED-a Vdní ktromagntických vn ákadní vtahy, fáory vičin Pro konomický transort nrgi mi drom a sotřbičm nní obvyk možné řdávat nrgii řnosm ktromagntickými

Více

B4M39RSO * Úvod do globálního osvětlení * Radiometrie * Světelné zdroje. Vlastimil Havran ČVUT v Praze

B4M39RSO * Úvod do globálního osvětlení * Radiometrie * Světelné zdroje. Vlastimil Havran ČVUT v Praze B4M39RSO * Úvod do globálního osvětlení * Radiometrie * Světelné zdroje Vlastimil Havran ČVUT v Praze Úvod do globálního osvětlení Počítačová grafika Mezioborová tematika Matematický popis světa Animace

Více

3.3. Derivace základních elementárních a elementárních funkcí

3.3. Derivace základních elementárních a elementárních funkcí Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ

ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ U tkanin: Vazba Dostava Pošná hmotnost Objemová měrná hmotnost Pórovitost Toušťka Setkání

Více

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Učební text k přeášce UFY0 Lom hranoem ámavé stěny ámavá hrana ámavý úhe ϕ deviace δ úhe, o který je po výstupu z hranou vychýen světený paprsek ežící v rovině komé k ámavé hraně (v tzv. havním řezu hranou),

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-1 Téma: Veličiny a jednotky Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD SI soustava Obsah MECHANIKA... Chyba! Záložka není definována.

Více

Měrný náboj elektronu

Měrný náboj elektronu Fyzikální praktikum FJFI ČVUT v Praz Úloha č. 12 : Měřní měrného náboj lktronu Jméno: Ondřj Ticháčk Pracovní skupina: 7 Kruh: ZS 7 Datum měřní: 8.4.2013 Klasifikac: Měrný náboj lktronu 1 Zadání 1. Sstavt

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole

Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol Otázka č.3 Vličiny používané pro kvantifikaci lktromagntického pol odrobnější výklad základu lktromagntismu j možno nalézt v učbním txtu:

Více

Radiometrické a fotometrické veličiny

Radiometrické a fotometrické veličiny Radiomtické a fotomtické vličiny Matiál j učn pouz jako pomocný matiál po studnty zapsané v přdmětu: Obazové snzoy, ČVUT- FEL, katda měřní, 013 Ctl shift + otočit Matiál j pouz gafickým podkladm k přdnášc

Více

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy Navazující magistrské studium MATEMATIKA 16 zadání A str.1 Příjmní a jméno: Z uvdných odpovědí j vžd právě jdna správná. Zakroužkujt ji! V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna

Více

ORIENTOVANÝ ÚHEL. Popis způsobu použití:

ORIENTOVANÝ ÚHEL. Popis způsobu použití: 2014 RIENTVANÝ ÚHEL opis způsobu použití: teorie samostudiu (i- earning) pro 3. roční střední šo technicého zaměření, teorie e onzutacím dáového studia Vpracovaa: Ivana ozová Datum vpracování: 4. edna

Více

Pořízení obrazu a jeho fyzikální základy

Pořízení obrazu a jeho fyzikální základy Pořízení obrazu a jeho fyzikální základy Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,

Více

7 Kvantová částice v centrálně symetrickém potenciálu.

7 Kvantová částice v centrálně symetrickém potenciálu. 7 Kvantová částice v centráně symetrickém potenciáu. Představte si, že hodíte kámen do vody a chcete popsat vny, které vzniknou. Protože hadina je D, můžete vny popsat funkcí f x, y. Ae pokud jste chytří,

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice

Více

Křivky kolem nás. Webinář. 20. dubna 2016

Křivky kolem nás. Webinář. 20. dubna 2016 Křivky kolem nás Webinář 20. dubna 2016 Přístup k funkcím Funkce (zobrazení) Předpis, který přiřazuje jedné hodnotě x hodnotu y = f (x). Je to množina F uspořádaných dvojic (x, y) takových, že pokud (x,

Více