UMĚLÉ OSVĚTLENÍ V BUDOVÁCH. Ing. Bohumír Garlík, CSc. Katedra TZB

Rozměr: px
Začít zobrazení ze stránky:

Download "UMĚLÉ OSVĚTLENÍ V BUDOVÁCH. Ing. Bohumír Garlík, CSc. Katedra TZB"

Transkript

1 UMĚLÉ OSVĚTLENÍ V BUDOVÁCH Ing. Bohumír Garlík, CSc. Katedra TZB Praha 2008

2 1. PŘEDNÁŠKA 2. Měrné jednotky používané ve světelné technice: Měrové jednotky rovinného úhlu Rovinný úhel různoběžky: α je ten, který svírají dvě

3 Měří se: mírou úhlovou (v obloukových stupních) mírou obloukovou (v radiánech) OBLOUKOVÝ STUPEŇ a) 60 obloukových minut b) nebo 60 x 60 = 3600 obloukových vteřin 1 0 = 60 = 3600 Oblouková míra: => Velikost rovinného úhlu sevřeného dvěma různoběžkami, je vyjádřena DÉLKOU KRUHOVÉHO OBLOUKU, který vytínají ramena uvažovaného úhlu na kružnici opsané libovolným poloměrem z vrcholu tohoto úhlu, měřenou poloměrem uvažované kružnice.

4 délka kruhového oblouku α = poloměr příslušné kružnice [rad] Pro každý úhel, který je dán ve stupních (α 0 ), lze stanovit příslušnou obloukovou míru v radiánech (α rad ) pomocí rovnice α[rad] = 0,0175α[ 0 ] Obloukové míry různých úhlů jsou uvedeny v příslušných převodních tabulkách, např. Valouchových:

5 V osvětlovací technice se při výpočtu OSLNĚNÍ vzdáleným svítidlem uplatňují velmi malé úhly, pak platí zjednodušený vztah: pro úhel α v minutách α = 180a / πr = (57,3) a/r [ 0 ;m,m] α = (180.60a) / πr = (3440) a/r

6 ;m,m] ] PROSTOROVÝ ÚHEL PROSTOROVÝ ÚHEL Není názorný, přitom je důležitou veličinou používanou ve světelně technických výpočtech: - je to výseč z prostoru vymezovanou obecnou kuželovou nebo jehlanovou plochou

7 - jeho velikost je určena velikostí plochy, vyťaté obecnou kuželovou plochou na povrchu jednotkové koule, jejíž střed (vrchol prostorového úhlu) je totožný s vrcholem uvažované kuželové plochy, dělenou druhou mocninou jejího poloměru. Prostorový úhel 1 steradián (sr) je definován jako kužel, který na kouli o poloměru 1 m vytvoří plochu 1m 2 Prostorový úhel Ω, pod nímž je ze středu koule o poloměru r vidět plocha A

8 vyťatá na povrchu této koule, se stanoví ze vztahu: Ω = A / r 2 ( sr; m 2,m) Největší hodnoty Ω max = 4π nabývá prostorový úhel pro plochu A k rovnou povrchu celé koule, kdy je velikost plochy A k rovna A k = 4πr 2. Ω max - nazývá se 1 spat (sp) plný prostorový úhel VÝPOČET RŮZNÝCH PROSTOROVÝCH ÚHLŮ Ve světelné technice jde nejčastěji o prostorový úhel vymezovaný: rotačním kuželem (kulovým vrchlíkem) kulovým pásem a) prostorový úhel vymezovaný rotačním kuželem s vrcholovým úhlem 2α :

9 Ω = 4πsin 2 (α/2) b) prostorový úhel vymezovaný kulovým pásem:

10 Ω = 4πsin (α 1 + α 2 ) / 2. sin (α 1 - α 2 ) / 2 c) Russelovy Blochovy úhly: Plocha kulového pásu nebo vrchlíku je dána vztahem: S = 2πrv Rozdělíme-li povrch koule např. na 18 kulových pásů a dva vrchlíky sejných výšek v, je prostorový úhel, který přináleží kterémukoli kulovému pásu nebo vrchlíku, dán rovnicí: Ω = (4π) / 20 = 0,628 sr Obr.:Russelovy-Blochovy úhly Poloviční středové úhly α R příslušné k tětivám

11 MN, které vyznačují poloviční výšku každého vrchlíku, popřípadě kulového pásu, se nazývají úhly Russelovy-Blochovy. Pro každý takový úhel platí: α R = (α 1 + α 2 ) / 2 d) Prostorový úhel vymezovaný rotačním kuželem s vrcholovým úhlem velmi malým: Obr.:Ztotožnění vrchlíku s plochou základny Z obr. Výše uvedeného lze odvodit: r l tgα a / l protože pro velmi malé úhly platí obecný goniometrický tvar: sin 2 x tg 2 x

12 lze pro malý prostorový úhel psát: Ω = (πa 2 /l 2 ) je-li l / d 3,2 Pro takový případ platí přibližně vztah: Ω = S / l 2 Kde: Ω - prostorový úhel (sr) S - plocha kruhu (m 2 ) l - vzdálenost pozorovatele (m) d - průměr kruhu (m). Při poměru l / d = 3,2, odpovídá vrcholový úhel kužele asi 18 0, dosahuje chyba 1,9%. Svírá-li osa zorného úhlu s normálou pozorované plochy S úhel υ platí obecný vztah: Ω = (S cos υ) / l 2 = S ' / l 2

13 S ' - zorný průmět plochy S (m 2 ) l - vzdálenost pozorovatele od pozorované plochy (m) Ω - zorný prostorový úhel (sr) Obr.Prostorový úhel při malém vrch.úhlu Prostorový úhel Ω α, který přináleží velmi malému vrcholovému úhlu α lze vypočítat s přihlédnutím k obr. výše uvedeného, tímto postupem (viz. přednášky): Ω α = 2, α 2 b) Když je úhel α dán v minutách, platí: Poznámka: Odvození a příklady viz. přednášky!!! Ω α = 6, α 2 e) Prostorový úhel vymezovaný čtyřbokým jehlanem s obdélníkovou základnou:

14 V praxi se často počítá prostorový úhel, pod nímž se z určité vzdálenosti pozoruje obdélniková plocha. Obr.:Prostorový úhel vymezený čtyřbokým jehlanem Stanovíme prostorový úhel, pod nímž je z bodu P vidět obdélník BCDG v soustavě x, y, z; v rovině rovnoběžné s rovinou x,y ve vzdálenosti h od počátku P. Poznámka. Úpravou a odvozením dostaneme výsledný

15 obecný tvar pro výpočet prostorového úhlu (viz. přenášky). Upravíme výše uvedený obrázek na obrázek obecný: Ω - a,b - h - prostorový úhel při vrcholu O (sr) strany obdélníka (m) výška jehlanu nad vrcholem obdélníka (m) Ω = arctg(ab)/h a 2 +b 2 +h 2 Určuje-li prostorový úhel, pod nímž je z bodu

16 P vidět obdélník BCDG, umístěný podle níže uvedeného obr., v rovině kolmé k úsečce PP 0, doplní se sledovaný obdélník o dílčí obdélníky III a IV a rozdělí se na obdélníky I, II, jak je patrno z tohoto obrázku: Hledaný prostorový úhel se stanoví z rovnice: Ω (I+II) = Ω (IV+I) + Ω (III+II) - Ω (IV) - Ω (III) Prostorový úhel, pod nímž se z bodu P pozoruje obdélník BCDG umístěný podle níže uvedeného obrázku

17 Ω (I+II+III+IV) = Ω (I) + Ω (II) + Ω (III) + Ω (IV) POMOCNÉ POJMY: Zorný průmět: je to kolmý průmět pozorovaného tělesa nebo rovinného obrazce do roviny, která je kolmá ke směru pohledu a která se dotýká pozorovaného tělesa nebo obrazce na straně k pozorovateli. Zorný úhel - je to rovinný úhel, v němž vidí pozorovatel uvažovanou úsečku. Je to úhel sevřený, oběma myšlenými různoběžkami, proloženými okem pozorovatele a koncovými body úsečky.

18 Zorný prostorový úhel - je vymezován kuželovou nebo jehlancovou plochou, určenou viditelným obrysem pozorovaného předmětu nebo rovinného obrazce a vrchol této kuželové nebo jehlancové plochy je v místě oka pozorovatele. Je-li vzdálenost pozorovatele vzhledem k pozorovanému předmětu dostatečně velká, je tento zorný prostorový úhel totožný s prostorovým úhlem, který přísluší zornému průmětu. PŘÍKLADY Poznámka: Příklady budou řešeny na přednáškách. Na jednotlivých ukázkách praktických příkladů, budou zadány úkoly do semestrálních prací!!! Světelně technické pojmy a měrové jednotky.

19 ZÁKLADNÍ VELIČINY: Světelně technické jednotky jsou odvozeny z JEDNOTKY SVÍTIVOSTI, která jediná je realizovatelná. Při výpočtech, je třeba předpokládat, že světelný zdroj je tak malých rozměrů, že jej lze považovat za SVÍTÍCÍ BOD. Např. žárovka je považována za svítící bod. Znalost pojmu prostorový úhel usnadní pochopení pojmu SVÍTIVOSTI a SVĚTELNÉHO TOKU. SVĚTELNÝ TOK: Světelným tokem bodového světelného zdroje se míní úhrnný světelný tok Φ 0 vyzařovaný do celého prostoru, tj. do plného prostorového úhlu. SVÍTIVOST I : Je to světelný tok připadající na jednotku

20 prostorového úhlu. Svítivost I bodového zdroje v uvažovaném prostorovém úhlu je: I ω = Φ ω / ω (cd) [kandela] Kde: Φ ω - ω - světelný tok v uvažovaném prostorovém úhlu ω(lm) uvažovaný prostorový úhel (sr) POZNÁMKA: Problematika bude podrobně rozvedena na přednáškách a procvičena!!! DEFINICE : Svítivosti Jedna kandela (cd) je rovna svítivosti zdroje, který vyzařuje v určitém směru monochromatické záření o frekvenci Hz, při čemž zářivost zdroje v tomto směru je 1/683 W/sr. DEFINICE : Světelného toku

21 Jednotka světelného toku se nazývá LUMEN (lm). Je to světelný tok bodového světelného zdroje svítícího jednotkou svítivosti, tj. 1 cd do jednotky prostorového úhlu, tj. do jednoho steradiánu. Bodový světelný zdroj, jehož střední sférická svítivost je I, má úhrnný světelný tok Kde Φ = 4πI Φ - úhrnný světelný tok (lm) I - střední sférická svítivost (cd) Světelný zdroj, jehož střední sférická svítivost je 1 cd, dává celkový světelný tok 12,57 lm. MNOŽSTVÍ SVĚTLA Q : Je vyzařovaná, nebo pohlcovaná světelná

22 energie. Q = Φ.t Q - množství světla (lmh) lumenhodina Φ - světelný tok (lm) t - doba svícení (h) MĚRNÝ (SVĚTELNÝ) VÝKON η : η = Φ/P Φ - celkový světelný tok zdroje (lm) P - příkon světelného zdroje (W) Posuzujeme tím světelné zdroje různých druhů a příkonů, ale i různých jakostí. INTENZITA OSVĚTLENÍ E : Světelný tok zachycený uvažovanou plochou způsobuje OSVĚTLENÍ. Osvětlení je tím intenzivnější, čím větší je světelný tok plochou zachycený a čím menší je tato plocha. E = Φ / S Tato rovnice platí, je-li světelný tok v mezích uvažované plochy neměnný

23 Je takto definována jen STŘEDNÍ HODNOTA osvětlení E med E - intenzita osvětlení (lx) Φ - světelný tok zachycený uvažovanou plochou (lm) S - velikost uvažované plochy (m 2 ) Vnitřní osvětlení koule s ploměrem r je dáno rovnicí: E = 4πI / 4πr 2 = I / r 2 Z této rovnice je zřejmé, že intenzita osvětlení bodovým světelným zdrojem ubývá kvadraticky se vzdáleností od zdroje. Hovoříme tak o: ZÁKON ČTVERCOVÝ Čtvercový zákon také vyplývá ze vztahu mezi svítivostí a světelným tokem v uvažovaném prostorovém úhlu:

24 Poznámka: Odvození s příklady budou uvedeny na přednáškách!!! E = Iω /r 2 JAS L : dvě různě svítící koule ze stejného opálového skla koule jsou prosvětlované stejnými žárovkami menší koule je světlejší než větší vyzařovaný světelný tok a svítivost obou koulí jsou stejné se stejným směrem JAS je tím větší, čím větší je svítivost tímto směrem a čím menší je svítící plocha v tomto směru JAS svítící plochy v určitém směru je dán: podílem její svítivosti v uvažovaném směru a velikostí jejího zorného průmětu (tj. kolmého průmětu svítící plochy do roviny kolmé k uvažovanému směru): ODVOZENÍ (viz. přednášky)

25 L α = I α / S = I α / Scosα L α - jas (cd/m 2 ) ve směru α I α - svítivost (cd) ve směru α S - svítící plocha (m 2 ) α - úhel, který svírá svítící plocha se svým zorným průmětem Jde-li o jas plochy ve směru kolmém, pak: L 0 = I 0 /S Obě rovnice platí tehdy, je-li svítivost plochy v každém místě stejná. Pak I α a L α jsou průměrné velikosti jasu a svítivosti v uvažovaném směru α. Je-li svítivost uvažované plochy v různých místech různá, platí pro každé místo svítící plochy diferenciální rovnice:

26 Poznámka: postup bude uveden na přednáškách!!! Př.Vykazuje-li svítící plocha o velikosti S 1 = 0,6 x 0,6 = 0,36 m 2 (např. vyzařovací plocha zářivkového svítidla 4x18W s difuzním krytem) pod úhlem α = 60 0 (cosα = 0,5) od normály svítivost I α = 450 cd, pak je jas L α této plochy ve zmíněném směru roven: L α = 450 / 0,36. 0,5 = 2500 cd.m -2 ROVNOMĚRNÝ ROZPTYL SVĚTLA LAMBERTŮV ROZPTYL - jas svítící plochy se jeví ve všech směrech stejný LAMBERTOVA SVÍTÍCÍ PLOCHA - je to plocha s ideálně rovnoměrným rozptylem světla SVÍTIVOST v různých směrech, kterékoli roviny proložené kolmicí v uvažovaném místě

27 svítící plochy je určena tzv. Lambertovou kružnicí k 1. SVÍTIVOST I α v kterémkoli směru, je dána součinem max. svítivosti ve směru kolmém I 0 a kosinem úhlu I α který svírá uvažovaný směr s kolmicí v uvažovaném místě k Lambertově ploše. SVÍTIVOST ubývá stejně jako se zmenšuje průmět svítící plochy, tj. s kosinem úhlu α, a proto zůstává podíl I α / S cos α tj. JAS, v kterémkoli směru stejný; lze jej znázornit poloměrem kružnice k 2. I 0 = Φ/ π = LS I 0 - svítivost ve směru kolmém k Lambertově ploše (cd) Φ - plochou vyzařovaný světelný tok (lm) L - jas Lambertovy svítící plochy (cd/m 2 ) S - velikost Lamberovy svítící plochy (m 2) Při rovnoměrném rozptylu je jas ve všech směrech stejný, proto platí

28 L = I 0 /S Pak Φ = πi 0 = πls dělením rovnice S Φ/S = πi 0 / S = πl πl - SVĚTLENÍ Lambertovy plochy označuje se M M = Φ/S = πl M - světlení (lm/m 2 ) Φ - vyzařovaný světelný tok (lm) S - velikost svítící plochy (m 2 ) L - jas Lambertovy plochy (cd/m 2 ) SVĚTLENÍ je plošná hustota světelného toku vyzařovaného plošným zdrojem.

29 POZNÁMKA: V osvětlovací technice se používají často svítící plochy, ať jsou osvětlované nebo prosvětlované, za Lambertovy plochy, i když se svými světelnými vlastnostmi jen blíží rovnoměrnému rozptylovači světla; za tohoto předpokladu lze při výpočtech aplikovat jednoduché matematické vztahy a tím se výpočty značně zjednoduší. PŘÍKLADY: Budou uvedeny na přednáškách a rovněž na přednáškách budou zadány příklady do semestrální práce!!!

Elektrické světlo příklady

Elektrické světlo příklady Elektrické světlo příklady ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY. Rovinný úhel (rad) = arc = a/r = a'/l (pro malé, zorné, úhly) a a' a arc / π = /36 (malým se rozumí r/a >3 až 5) r l. Prostorový úhel Ω = S/r

Více

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů. Světeln telné veličiny iny a jejich jednotky Světeln telné veličiny iny a jejich jednotky, světeln telné vlastnosti látekl světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin

EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin FSI UT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin OSNOA 11. KAPITOLY Úvod do měření světelných

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa

+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa 1. Jehlan ( síť, objem, povrch ) Jehlan je těleso, které má jednu podstavu tvaru n-úhelníku. Podle počtu vrcholů n-úhelníku má jehlan název. Stěny tvoří n rovnoramenných trojúhelníků se společným vrcholem

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

Její uplatnění lze nalézt v těchto oblastech zkoumání:

Její uplatnění lze nalézt v těchto oblastech zkoumání: RADIOMETRIE, FOTOMETRIE http://cs.wikipedia.org/wiki/kandela http://www.gymhol.cz/projekt/fyzika/12_energie/12_energie.htm M. Vrbová, H. Jelínková, P. Gavrilov. Úvod do laserové techniky, skripta ČVUT,

Více

Povrch a objem těles

Povrch a objem těles Povrch a objem těles ) Kvádr: a.b.c S =.(ab+bc+ac) ) Krychle: a S = 6.a ) Válec: π r.v S = π r.(r+v) Obecně: S podstavy. výška S =. S podstavy + S pláště Vypočtěte objem a povrch kvádru, jehož tělesová

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky. AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna

Více

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku 4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního

Více

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

STEREOMETRIE 9*. 10*. 11*. 12*. 13* STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice

Více

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

( ) Φ(λ) = K(λ) Φ e (λ) = K m V(λ) Φ e (λ) = 683 V(λ) Φ e (λ) (lm; lm.w -1, -, W) (3-1)

( ) Φ(λ) = K(λ) Φ e (λ) = K m V(λ) Φ e (λ) = 683 V(λ) Φ e (λ) (lm; lm.w -1, -, W) (3-1) 3. ZÁKLADNÍ SVĚTELNĚ TECHNICKÉ VELIČINY A POJMY Vzhledem k tomu, že zrakový orgán člověka nemá schopnost vnímat souhrnné působení světla za určitou dobu, není pro vlastní vidění důležité celkové množství

Více

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice

Více

16 Měření osvětlení Φ A

16 Měření osvětlení Φ A 16 Měření osvětlení 16.1 Zadání úlohy a) změřte osvětlenost v měřicích bodech, b) spočítejte průměrnou hladinu osvětlenosti, c) určete maximální a minimální osvětlenost a spočítejte rovnoměrnost osvětlení,

Více

Kružnice, úhly příslušné k oblouku kružnice

Kružnice, úhly příslušné k oblouku kružnice KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k

Více

1 Měrové jednotky používané v geodézii

1 Měrové jednotky používané v geodézii 1 Měrové jednotky používané v geodézii Ke stanovení vzájemné polohy jednotlivých bodů zemského povrchu, je nutno měřit různé fyzikální veličiny. Jsou to zejména délky, úhly, plošné obsahy, čas, teplota,

Více

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je a) 4:π, b) :π, c) :4π, d) :4π, e) π :,. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme o 0 %, zmenší

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu.

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu. 1. ZÁKON ODRAZU SVĚTLA, ODRAZ SVĚTLA, ZOBRAZENÍ ZRCADLY, Dívejme se skleněnou deskou, za kterou je tmavší pozadí. Vidíme v ní vlastní obličej a současně vidíme předměty za deskou. Obojí však slaběji než

Více

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.

Více

ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY

ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY ZÁKLADNÍ POJMY SVĚTELNÉ TECHNKY 1. Rovinný úhel α (rad) arcα a/r a'/l (pro malé, zorné, úhly) α a α a' a arcα / π α/36 (malým se rozumí r/a >3 až 5) r l. Prostorový úhel Ω S/r (sr) steradián, Ω 4π 1 spat

Více

fotometrická měření jedna z nejstarších měření vůbec!

fotometrická měření jedna z nejstarších měření vůbec! Fotometrie fotometrie = fotos (světlo) + metron (míra, měřit) - část fyziky zabývající se měřením světla; zkoumáním hustoty světelného toku radiometrie obecnější, zkoumání hustoty toku záření fotometrická

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.

Více

Metrické vlastnosti v prostoru

Metrické vlastnosti v prostoru Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii

Více

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného Elipsa Výklad efinice a ohniskové vlastnosti prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného řezu na rotační kuželové ploše, jestliže řezná rovina není kolmá k ose

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků. FOTLOÝ MÍČ Popis aktivit ýpočt odchlek přímek a rovin v tělese, resp. velikostí úhlů, které svírají stěn a hran v mnohostěnu. Předpokládané znalosti Odchlka rovin a přímk, odchlka dvou rovin. Definice

Více

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

Více

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v

Více

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2 PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku

Více

Jsou všechny žárovky stejné?

Jsou všechny žárovky stejné? Jsou všechny žárovky stejné? VÍT BEDNÁŘ, VLADIMÍR VOCHOZKA, JIŘÍ TESAŘ, Fakulta pedagogická, Západočeská univerzita, Plzeň Pedagogická fakulta, Jihočeská univerzita, České Budějovice Abstrakt Článek se

Více

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy. strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy 1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné

Více

Křivky kolem nás. Webinář. 20. dubna 2016

Křivky kolem nás. Webinář. 20. dubna 2016 Křivky kolem nás Webinář 20. dubna 2016 Přístup k funkcím Funkce (zobrazení) Předpis, který přiřazuje jedné hodnotě x hodnotu y = f (x). Je to množina F uspořádaných dvojic (x, y) takových, že pokud (x,

Více

Geometrická optika. Energetické vlastnosti optického záření. zářivý tok (výkon záření) Φ e. spektrální hustota zářivého toku Φ Φ = e

Geometrická optika. Energetické vlastnosti optického záření. zářivý tok (výkon záření) Φ e. spektrální hustota zářivého toku Φ Φ = e Enrgticé vlastnosti opticého zářní popisují zářní z hlisa přnosu nrgi raiomtricé vličiny zářivý to (výon zářní) t W [W] zářivá nrgi W, trá proj za jnotu času nějaou plochou sptrální hustota zářivého tou

Více

Úhly a jejich vlastnosti

Úhly a jejich vlastnosti Úhly a jejich vlastnosti Pojem úhlu patří k nejzákladnějším pojmům geometrie. Zajímavé je, že úhel můžeme definovat několika různými způsoby, z nichž má každý své opodstatnění. Definice: Úhel je část roviny

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Mechanika II.A Třetí domácí úkol

Mechanika II.A Třetí domácí úkol Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více

ZÁKLADY SVĚTELNÉ TECHNIKY

ZÁKLADY SVĚTELNÉ TECHNIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ ZÁKLADY SVĚTELNÉ TECHNIKY Prof. Ing. Jiří Habel, DrSc. Praha 202 Předmluva Předkládaný učební text je určen studentům elektrotechnické fakulty

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1 Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu

Více

11. BODOVÁ METODA VÝPOČTU PARAMETRŮ OSVĚTLENÍ

11. BODOVÁ METODA VÝPOČTU PARAMETRŮ OSVĚTLENÍ 11. BODOVÁ METODA VÝPOČTU PARAMETRŮ OSVĚTLENÍ Z hlediska osvětlovací soustavy rozhoduje o jakosti osvětlení v daném místě prostoru rozložení jasu popsané fotometrickou plochou jasu. Vyšetřování fotometrických

Více

Měření osvětlení. 1. Proměřte průměrnou osvětlenost v různých místnostech v areálu školy.

Měření osvětlení. 1. Proměřte průměrnou osvětlenost v různých místnostech v areálu školy. Úloha č. 4 Měření osvětlení Úkoly měření: 1. Proměřte průměrnou osvětlenost v různých místnostech v areálu školy. 2. Hodnoty naměřených průměrných osvětleností v měřených místnostech podle bodu 1 porovnejte

Více

Projekty - Vybrané kapitoly z matematické fyziky

Projekty - Vybrané kapitoly z matematické fyziky Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

Základní topologické pojmy:

Základní topologické pojmy: Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński

Více

Kótované promítání. Úvod. Zobrazení bodu

Kótované promítání. Úvod. Zobrazení bodu Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,

Více

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: 8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Zadavatel: KRONEN LABE spol. s r. o. Tylova 410/24, 400 04 Trmice

Zadavatel: KRONEN LABE spol. s r. o. Tylova 410/24, 400 04 Trmice ÚSTAV TECHNIK Y A ŘÍZENÍ V ÝROBY Ústav techniky a řízení výroby Univerzity J. E. Purkyně v Ústí nad Labem Na Okraji 11 Tel.: +42 475 285 511 96 Ústí nad Labem Fax: +42 475 285 566 Internet: www.utrv.ujep.cz

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému

Více

Modelování blízkého pole soustavy dipólů

Modelování blízkého pole soustavy dipólů 1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento

Více