- 1 - Zdeněk Havel, Jan Hnízdil. Cvičení z Antropomotoriky. Obsah:
|
|
- Štěpán Novák
- před 9 lety
- Počet zobrazení:
Transkript
1 - - Zdeněk Havel, Jan Hnízdl Cvčení z Antropomotorky Obsah: Úvod... S Základní charakterstky statstckých souborů...3 S Charakterstka základních výběrových technk a teoretcká rozložení četností...9 S 3 Testování statstckých hypotéz nezávslé výběry... S 4 Testování statstckých hypotéz závslé výběry S 5 Výpočet a nterpretace koefcentu součnové korelace...9 S 6 Hodnocení a normování motorckých výkonů... S 7 Posuzování a škálování...7 S 8 Pořadová korelace, kontngenční tabulky...30 S 9 Početní postupy s procenty, Kruskal-Wallsův test...36 S 0 Spolehlvost (relablta), platnost (valdta) a motorckých testů...40 Přílohy...48 Semnární úkoly...49 Statstcké tabulky A...60 Tabulky B pro záznam ndvduálních hodnot...68 Modelový postup pro použtí statstckých funkcí...70
2 - - Úvod předložené skrptum je určeno pro cvčení z antropomotorky pro studenty všech studjních oborů studjního programu tělesná výchova a sport. Jde o upravené a doplněné vydání skrpt Cvčení z antropomotorky z roku 989. Doplnění skrpt se především týká tzv. věcné(praktcké)významnost a jednoho z jejích nástrojů koefcentu velkost účnku EFFECT SIZE Kaptoly jsou uspořádány tak, že písmenem S jsou označeny názvy témat jednotlvých semnářů a je vhodné, aby se student na ně přpravl. Po úvodní teor následuje ukázka výpočtu příkladu základního postupu matematcké statstky, způsob, podle kterého je možné počítat podobné příklady. Každý semnář obsahuje dále cvčné příklady pro ndvduální doplnění samostudem. V závěru skrpt jsou uvedeny přílohy. Jednak se jedná o semnární úkoly č. 4., z nchž vyučující v daném roce určí úkol k zpracování, jednak pak pod písmenem A ( 7) jsou Statstcké tabulky, dále pod písmenem B ( -) se nalézají Tabulky pro záznam ndvduálních hodnot. Poslední přílohou pod písmenem C je Modelový postup pro použtí statstckých funkcí programu Excel (00). Skrptum obsahuje stručný text, spíše pracovní postupy př řešení podobného zadání. Podrobnější nformace výklad specalzovaných statí naleznou student v doporučené lteratuře. Poděkování:Je naší mlou povnností poděkovat oběma recenzentům Doc. PhDr. V. Gajdov, CSc. a Doc. RNDr. T. Zdráhalov, CSc. za posouzení textu, přpomínky a doplňky. Za případné chyby a nedostatky jsou však odpovědn autoř. Studentům a dalším laskavým čtenářům budeme vděčn za přpomínky a upozornění na chyby v textu. Autoř
3 - 3 - S Základní charakterstky statstckých souborů TEORIE Statstcké třídění dat a jejch základní zpracování, základní charakterstka statstckých souborů. Měrné škály Výsledky měření nebo odborného posuzování lze podle charakterstk a vlastností dat vyjádřt na stupncích (měrných škálách), které můžeme podle jejch rostoucího stupně dokonalost seřadt v pořadí: ) Stupnce nomnální (klasfkační) Objektům zde přřazujeme čísla, která určují příslušnost objektu do některé z nepřekrývajících se kategor. Číslo přřazené objektu nevypovídá o kvaltě an kvanttě, může být nahrazeno symbolem. Třídění zde není omezeno na dchotomcký systém, můžeme objekty zařazovat do více kategorí. Čísla mohou být objektům přřazována takovým způsobem, jakým se například provádí evdence automoblů (SPZ). ) Stupnce ordnální (pořadová) Je dána sestupně nebo vzestupně seřazeným čísly do tříd. Každá ze tříd má tedy jnou kvaltatvní hodnotu, kterou ovšem nejsme schopn přesně vymezt. Sousední třídy se mohou navzájem lšt o nestejně velký nterval. Jak vyplývá z názvu, důležté je pořadí. Příkladem jsou sportovní výsledky ve formě různých rankgových pořadí, žebříčků. Do této kategore spadají svou povahou školní známky, v prax je však s těmto daty nakládáno neodpovídajícím způsobem, nevhodným pro neparametrcká data (počítání průměrů). Na stupncích nomnální a ordnální vyjadřujeme data neparametrcké povahy. 3) Stupnce ntervalová Posun v dokonalost oprot předchozí stupnc je zde zajštěn konstantní jednotkou měření. Mez sousedním třídam jsou stejné ntervaly. Kromě pořadí tedy můžeme určt rozdíl mez jednotlvým daty. Nulový bod je určen dohodou. Příkladem je měření teploty ve º C, nebo určování času (hodna, den). 4) Stupnce ekvntervalová (poměrová) Oprot ntervalové stupnc má tato stupnce navíc ještě absolutní, přrozený nulový bod. Používá se př měření a je zde možné využít všechny matematcké operace. Na stupncích ntervalové a ekvntervalové pracujeme s daty parametrcké povahy.
4 - 4 - Tab. Hlavní typy měrných škál MĚRNÁ ŠKÁLA ZÁKL. OPERACE RELACE CHARAKTERISTIKA PŘÍKLAD POUŽITELNÉ STATISTICKÉ POSTUPY Nomnální Klasfkace = numerzace, jako pojmenování objektů Ordnální Posuzování < > stanovení pořadí, bez jednotky měření Intervalová Měření rovnost ntervalů Poměrová Měření rovnost vztahů nulový bod dohodou, konstantní jednotka měření přrozený nulový bod. konst. jednotka měření muž= žena =0 plavec neplavec Lyžařský kurs - družstva dle výkonnost motorcký věk měření dálky, výšky síly četnost, modus, procenta, χ -test Četnost, modus, medán,koef. pořadové korelace, χ -test artm. průměr směrodatná odchylka Korelace, testy významnost ÚKOL Přřaďte k těmto proměnným příslušné škály: test ohebnost výsledná tabulka MS v ledním hokej číslce na dresu fotbalového týmu počet shybů výsledek Cooperova testu výsledky Iowa Brace testu
5 - 5 - TEORIE Četnost: absolutní ( n ) kumulatvní absolutní ( ) - četnost daného znaku x relatvní ( f ) - vypočítaná podle vzorce N - přčítáme-l absolutní četnost n n00 f = n kumulatvní relatvní ( F )- přčítáme-l relatvní četnost f PŘÍKLAD Hodnota znaku x Četnost absolutní relatvní n f absolutní N Kumulatvní relatvní F ,33 0,00 6,66 40, ,33 33,33 59,99 99, , ,99 TEORIE Míry polohy: Základní charakterstky statstckých souborů artmetcký průměr x modus xˆ nebo Mo (nejvyšší četnost) medan x ~ nebo Me (prostřední člen varační řady) Míry varablty: směrodatná odchylka s rozptyl s nebo var x (odráží varac všech znaků) varační rozpětí R Výpočet artmetckého průměru x, směrodatné odchylky s a rozptylu s x = n x s = ( x x) n
6 - 6 - PŘÍKLAD Poř.č. shyby x x - x ( x x) x x = = 7 7 s = 8 7 = 4 =
7 - 7 - ÚKOLY Statstcké zpracování dat: ) Proveďte nejjednodušší třídění tělesné výšky vzestupně podle velkost do varační řady- tab. ) V tab. jednorozměrného rozdělení četností doplňte hodnoty absolutních, relatvních kumulatvních četností. 3) Určete nejvyšší ( x max ) a nejnžší ( x mn varační rozpětí R. Určete hodnot medánu ( ) )hodnotu uspořádané řady a vypočtěte Me, ~ x x max = x mn = R = x~ = 4) Doplňte do tab. B a B hodnoty naměřené vyučujícím u vaší studjní skupny v prvním roce studa. 5) Vypočtěte artmetcký průměr tělesné výšky x a směrodatnou odchylku s u své studjné skupny. Stanovte medán a modus.
8 - 8 - Tab. Jednorozměrné rozdělení četností Hodnota Četnost Kumulatvní znaku x absolutní relatvní absolutní relatvní n f N F Tab.3 x n n x ( x ) ( ) n x Σ x = s = x~ = xˆ =
9 - 9 - S Charakterstka základních výběrových technk a teoretcká rozložení četností TEORIE Základním typem úvahy ve statstce bývá úsudek z část na celek, čl z určtého, tzv. výběrového souboru na soubor základní. Základní soubor... souhrn všech jednců u kterých bychom měl šetření provádět (např. X dět pátých tříd v ČR) Výběrový soubor... na základě randomzace (náhodného výběru) omezený počet jednců x, kteří reprezentují vlastnost a charakterstky celého základního výběru. Náhodný výběr získáme losováním, pomocí tabulky náhodných čísel nebo použtím generátoru náhodných čísel. Rozsah souboru... počet prvků základního (N) a výběrového (n) souboru Stanovení rozsahu náhodného výběru: Hlavním požadavkem na výběrové šetření mmo jeho reprezentatvnost je odpovídající rozsah výběru (počet vybraných prvků). Vypočítá se podle vzorce: n = t σ p kde t p =,96 př 0,05 nebo,58 př 0,0 hladně pravděpodobnost n σ = s n je požadovaná přesnost měření (odhad) je dána polovčním ntervalem s spolehlvost µ = x ± t p kde x s, n jsou hodnoty získané n v předvýzkumech PŘÍKLAD Počet t-letých chlapců v ČR je Hodnoty předvýzkumu testování výkonnost ve skoku dalekém n=, x = 69 s = 0. Stanov počet prvků náhodného výběru, aby byla zajštěna reprezentatvnost a výsledky byly statstcky významné pro základní soubor. 0 µ = 69 ±,96 = 69 ± 0, 8 tj: nterval spolehlvost je 68, 69, 8 =& =& 0
10 - 0 - σ = 400 = 403, ,33 n =,96 = 549,33 Výběrový soubor bude mít rozsah n = 549 probandů. TEORIE Teoretcká rozložení četností. Normální rozložení Normální rozdělení četností Znaky Gaussovy křvky: - symetrcká podle osy - stejnoměrný zvonovtý tvar - vrchol křvky je totožný s x, Mo, Me - R =& 6s - v ntervalu x ± s leží přblžně 68% všech případů - v ntervalu x ± s leží přblžně 95% všech případů - v ntervalu x ± 3s leží přblžně 99% všech případů Normální rozložení četností je jedním z předpokladů použtí parametrckých statstckých metod a postupů, které budou prezentovány v dalších částech. Exstují další typy rozložení četností např: - chí kvadrát rozložení - F rozložení - logartmcké rozložení - Pokud nám naměřená data vykazují tento typ rozložení, je nutné použít alternatvních metod.
11 - - ÚKOL Počet dětí osmých tříd základních škol v Ústeckém kraj je ( z toho 4 85 dívek). Hodnoty předvýzkumu testování výkonnost v leh sedu chlapc : n=38 x = 39,9 s = 0,4 dívky : n=3 x = 33,5 s = 7,5. Stanov počet prvků náhodného výběru, aby byla zajštěna reprezentatvnost a výsledky byly statstcky významné pro základní soubor. Muž počítají hodnoty pro chlapce, ženy pro dívky.
12 - - S 3 Testování statstckých hypotéz nezávslé výběry a) testování hypotéz o rozptylu: F - test b) testování hypotéz o průměru. t test pro nezávslé výběry, jestlže σ. t test pro nezávslé výběry, jestlže σ = σ σ Obecná charakterstka jednotlvých etap: a) posouzení smysluplnost aplkace statstckých metod b) přesná formulace H 0 c) zvolení hladny významnost d) výpočet hodnoty statstckého testu e) nalezení příslušné tabulkové krtcké hodnoty testového krtéra pro zvolenou hladnu významnost f) posouzení statstcké významnost (je-l to naším cílem) g) posouzení věcné (praktcké) významnost h) nterpretace výsledků PŘÍKLAD Příklad Ruční dynamometrí jsme měřl sílu stsku ruky u dvou výběrových souborů mužů: učtelské ( n ) neučtelské ( n ) skupny. Proveďte srovnání obou skupn. Naměřl jsme tyto hodnoty: n = 0 n = 30 skupn. x x = 70 = 77 s s = 5 = 8 s s = 5 = 64 Proveďte srovnání obou A) Postup výpočtu statstcké významnost: s 8 64 F = (v čtatel je vždy vyšší hodnota) F = = =,56 s 5 5 Stanovíme počet stupňů volnost v a v, který je dán rozsahem výběru ( n ) a ( n ) n = 0 v = 9 n = 30 v = 9 Tabulková hodnota (tab. A) je tedy: F 0,05 =,
13 - 3 - Srovnáme vypočítanou hodnotu F =,56 s hodnotou tabulkovou F 0,05 =,. Vypočtená hodnota je větší, rozptyl mez výběry je statstcky významný ( σ σ ). Pro výpočet testovacího krtera t použjeme vzorce σ tj. t = s n x x s + n σ Vypočtenou hodnotu v tomto případě nesrovnáváme s tabulkovou hodnotou ale s upravenou tabulkovou t + p, která j nahrazuje. Získáme j vzorcem: s s t p + t p + n n t p = s s + n n + t p = nahrazená tabulková hodnota t = tabulková hodnota daná počtem stupňů volnost pro první soubor v = n ) p ( ( v = n t p = tabulková hodnota daná počtem stupňů volnost pro druhý soubor ) Po dosazení konkrétních hodnot: t = = = 5 64,36 +,07, = 3, ,09 +,04 +,75 + 4,50 7,5 t = 9 9 p 0,05 = = = 5 64,058,36 +,07 3, Srovnáním vypočtené hodnoty a upravené hodnoty t + p0, 05 zamítáme nulovou hypotézu H 0 a usuzujeme na statstcky významný rozdíl mez oběma výběry.
14 - 4 - Teore Věcná (praktcká) významnost. Doposud výzkumní pracovníc hodnotl věcnou významnost výhradně v naměřených jednotkách např. v cm,sekundách,bodech a pod.,což je nadále nutné.současně se však užívají statstcké koefcenty effect sze (příloha č.a 8), které určují podíl vysvětleného rozptylu. Jsou to koefcenty,které budeme považovat za obsahově podstatné v relac k ostatním nesledovaným vlvům a zpravdla jsou uvedeny v procentech. Pro posouzení věcné významnost máme k dspozc mnmálně tř dostupné nástroje:. Statstckou významnost na určené hladně významnost, zpravdla p=0,05. Logcký úsudek, kdy předem stanovíme mnmální hodnotu velkost v jednotkách měření 3. Stanovení procenta velkost účnku effect sze Zpracováno volně dle Blahuše, (000) B) Postup výpočtu věcné (praktcké) významnost (efect sze) t 3,97 vypočítá se podle vzorce: ω = = ω = = 0,38 t + n + n 3, Výsledek je větší než 0, a proto je sledovaný rozdíl věcně (praktcky) významný. Znamená to, že rozdíl ve výkonu mez dvěma skupnam je z 4% ovlvněn příslušností ke studjní skupně. Jným, zpravdla neznámým faktory je ovlvněno76% rozdílu. PŘÍKLAD Příklad Náhodné výběry žen studjních skupn Tv-Čj a Tv-Z dosáhly těchto průměrných výkonů vertkálního výskoku: n = 5 n = 30 x x = 6, = 65,3 s s = 9,74 =,5 s s = 86 = 6 Proveďte srovnání obou skupn: A) Postup výpočtu statstcké významnost:
15 - 5 - s 6 F = = = s 86,465 (vypočítaná hodnota) F0,05 =,98 (tabulková hodnota) Vypočtená hodnota je menší než tabulková, rozptyly se tedy rovnají ( σ = σ ) Pro výpočet testovacího krtéra t použjeme vzorec ( σ = σ ), tj. x x nn ( n + n ) t = n s + n s n + n Po dosazení: 6, 65, ( ) t = =, Tabulková hodnota testovacího krtera t je určena počtem stupňů volnost v = ( n + n ), v našem případě v = = 53. Tomu odpovídá tabulková hodnota t0,05 =,009 (tab. A) Vypočítaná hodnota nedosahuje tabulkové krtcké hodnoty, soubory se nelší. Potvrzujeme H 0. Z tohoto důvodu dále nestanovujeme významnost věcnou.
16 - 6 - ÚKOL Je statstcky významný rozdíl v hodnotách startovní reakce vrcholových sprnterů? (Je hodnota startovní reakce ovlvněna pohlavím?) Jako vstupní data použjte startovní reakce závodníků v rozbězích na atletckém mstrovství světa v Osace 007. Proveďte náhodný výběr 5 mužů a 5 žen. Data naleznete na Muž (reakční čas) x x x ( x x) ( x ) n = x = s = Ženy (reakční čas) x x x ( x x) ( x ) n = x = s =
17 - 7 - S 4 Testování statstckých hypotéz závslé výběry ( t test pro párové hodnoty) PŘÍKLAD Náhodně vybraní muž ze základního souboru učtelského studjního programu s TV prováděl po dobu jednoho měsíce kruhový trénnk př výuce atletky. Změřl jsme jm počet shybů před zahájením a po skončení poslování. Hodnoty výběrového souboru jsou uvedeny v tabulce. Zajímá nás, zda jsou přírůstky věcně a statstcky významné. Jnak vyjádřeno, je-l zvolená metoda stmulace slových schopností účnná. n. měření x. měření x d d d ( d d ) ,3 -,7 0,3 0,3 0,3,3 0,09 7,9 0,09 0,09 0,09, ,34 d n d 0. d = =,666 =, 7 = = 6 n s d = n = ( d n d ) s d = 9,34 =,48 6 d n,7 6 t = t = = 3, 337,48 s d Počet stupňů volnost je v = n (hledáme v tabulce krtckých hodnott, (tab. A ) t,57. Vypočítaná hodnota je vyšší než krtcká tabulková hodnota, popíráme 0,05 = 0 H. Přírůstky v počtu shybů jsou statstcky významné. Použtí stmulační metody pro rozvoj slové schopnost se ukázalo vhodné.
18 - 8 - B) Postup výpočtu věcné (praktcké) významnost (efect sze) t 3,337 vypočítá se podle vzorce: ω = = ω = = 0,64 t + n 3, Výsledek je větší než 0, a proto je sledovaný rozdíl věcně (praktcky) významný. Znamená to, že změna ve výkonu mez po aplkac trénnku je z 64% ovlvněn trénnkovým programem. ÚKOL Ověřte t testem pro párové hodnoty první a druhý pokus domnantní paže v testu stsk ruky u své studjní skupny (vám vyplněná tabulka B z. semnáře) n. pokus x. pokus x d d d ( d d ) - - -
19 - 9 - S 5 Výpočet a nterpretace koefcentu součnové korelace PŘÍKLAD A) Výpočet koefcentu součnové korelace. Zajímá nás, zda u souboru chlapců je závslost v počtu provedených shybů a klků. Výkony jsou uvedeny v tabulce 5. Tab. 5.č. p x shyby klky y x y x y r xy r xy = = n n = n x n = ( x y ( n = x ) = n x ) n n = ( n = y y ) ( [ ] [ ] n = y ) = 0,855
20 - 0 - Teore Druhá mocnna korelačního koefcentu se nazývá koefcent determnace (r ). Jeho hodnota nám říká kolka procenty se podílí sledovaný faktor na výsledné závslost. B) Statstcká významnost: V případě, že se jedná o náhodný výběr ze základního souboru můžeme porovnáním s tabulkovou krtckou hodnotou stanovt zda se jedná o statstcky významnou závslost. r 0,05 = 0,54 r 0,0 = 0, 64 (stupně volnost v = n ) /tab. A 3/ Závslost shybů a klků je statstcky významná př hladně významnost α = 0, 0 C) Postup výpočtu věcné (praktcké) významnost (efect sze) Koefcent determnace r = 0,855 = 0, 73 Závslost shybů na klcích a naopak je ovlvněna ze 73%. ÚKOLY. Na základě znalostí varačního rozpětí reakce na akustcký podnět ( x ) a reakce na vzuální podnět ( y ), sestrojte v kartézské soustavě souřadnc tzv. korelační dagram (korelogram) sestávající z bodů o souřadncích ( x, y ). Korelogram sestrojte pomocí vhodného software (MS Excel), popřípadě na mlmetrovém papíře.. Dagram sestrojte rovněž pro stsk domnantní ( x ) a nedomnantní ( y ) paže. 3. Vzuálně posuďte povahu a charakter rozptýlení vynesených bodů, odhadněte typ a velkost sledované statstcké závslost. 4. Předpokládejte, že se jedná o součnovou korelační závslost a proveďte výpočet korelačního koefcentu ( r x, y ) pomocí tab. 6 nebo výpočtem pomocí vhodného statstckého software (kalkulátor, software MS Excel, Statstca ) 5.Vypočítejte věcnou významnost.
21 - - Tab x y x y x y
22 - - S 6 Hodnocení a normování motorckých výkonů TEORIE Hrubé skóre je číslem vyjádřené sdělení o výkonu, které v určtém testu dosáhla testovaná osoba. Typy hrubých skóre jsou: a) skóre vyjádřené ve fyzkálních jednotkách b) skóre vyjádřené počtem opakování c) skóre vyjádřené počtem úspěchů nebo počtem chyb Hrubé skóre má však samo o sobě malou nformatvní hodnotu. Zajímá nás výkonnost jných osob, chceme výkony porovnávat, hrubé skóre se pak vztahuje k normě, nebo k povaze pohybového úkolu. Hrubé skóre dáváme do relace s krtérem. Původní výsledky (výkony) proto převádíme a normujeme. Tab. 7 Přehled hlavních typů standardních skóre Označení Charakterstka z-skóre (z body) T-skóre (T body) Stanny Steny MQ - skóre Školní známka v podstatě šestbodová stupnce, v níž artmetcký průměr = 0 bodů, bod = směrodatná odchylka Teoretcky stobodová stupnce, v prax spíše šedesátbodová. Art. průměr = 50 bodů, bod = 0, směrodatné odchylky Devítbodová stupnce (angl. standard nne), v níž art.průměr = 5 bodů, bod = 0,5 směrodatné odchylky Desetbodová stupnce (angl.standart ten), artm. prům.= 5,5 bodu, bod = 0,5 směrodatné odchylky MQ = motorcký kvocent. Stupnce, v níž artm. prům. = 00 bodů, bod = 0,66 směrodatné odchylky Pětbodová stupnce (v ČR), teoretcky artm. prům. = 3, bod =, směrodatné odchylky.v prax nesplňuje parametry normálního rozdělení četností. (Nejčastější známkou není trojka) Transformační rovnce ( x x) z = s x Příklad *) = ( 84 00) 0 = 0,8 T = z = ( 0,8) = 4 Sta = 5 + z = 5 + ( 0,8) = 3,4 = & 3 Ste = 5,5 + z = 5,5 + ( 0,8) = 3,9 = & 4 MQ = z = ( 0,8) = 88 ŠZ = 3 z = 3 ( 0,8) = 3,8 = & 4 *) Příklad: x = 00 cm sx = 0 cm x = 84 cm
23 - 3 - Procently: Procentl určuje relatvní pozc testované osoby ve skupně, nformuje nás o tom, jaká část skupny skóruje níže než daná osoba. Hrubé skóre se převádí na procentlové podle vzorce: P kum N 0,5 = P = procentl n kum N = kumulatvní četnost n = počet osob PŘÍKLAD Ze 30 žáků žák A skočl 43 cm ve skoku do dálky, 6 žáků skočlo méně, tř měl skok delší. Od nejnžšího po nejvyšší výkon byl žák A 7. P A 7 0,5 = = & 0,88 30 Hrubé skóre 43 odpovídá 88. procentlu, 88% skórovalo níže. Norma: Norma znamená kvanttatvní hodnotu, emprcky určenou, představující normální (obvyklý) výkon, zaznamenaný u odpovídající populace. Normy jsou nutným předpokladem pro efektvní využívání testů ve školní a sportovní prax. Rozeznáváme normy založené na: a) bodovacích stupncích (Z- body, T- body, Steny, ) b) procentlech c) určování motorckého věku Normou je někdy deální vzor správného provedení, např. provedení určtého cvku ve sportovní gymnastce (přemet vpřed).
24 - 4 - Normované normální rozdělení četností (+ nejrůznější typy standardních skórů) Z skóry -3,0 -,0 -,0 0 +,0 +,0 +3,0 MQ T-body Percently Znaky Gaussovy křvky: - symetrcká podle osy - stejnoměrný zvonovtý tvar - vrchol křvky je totožný s x, Mo, Me - R =& 6s - v ntervalu x ± s leží přblžně 68% všech případů - v ntervalu x ± s leží přblžně 95% všech případů - v ntervalu x ± 3s leží přblžně 99% všech případů ÚKOLY. S použtím naměřených dat v testu výdrž ve shybu (ženy) a shyby na hrazdě opakovaně, sestavte tří, pět a devítstupňovou normu a získané hodnoty zaneste do tab.8, 9 a 0. K sestavení norem použjte hodnot: Ženy: Výdrž ve shybu (vysokoškolačky) x = s = 0, Muž: Shyby na doskočné hrazdě opakovaně (vysokoškolác, studující TV) x = 9,3 s = 3,4
25 Grafcky znázorněte osobní výkony v každé s uvedených norem pomocí číselných os ve vztahu k normálnímu rozdělení. Tab. 8 Třístupňová norma Kvaltatvní hodnocení Body Prncp normy Podprůměrný x, s a méně Průměrný x ± s Nadprůměrný 3 x +, s a více Rozmezí výkonu Tab.9 Pětstupňová norma Kvaltatvní hodnocení Body Prncp normy Rozmezí výkonu Výrazně podprůměrný x, 5 s a méně Podprůměrný x 0, 5s až x, 50s Průměrný 3 x ± 0, 50 s Nadprůměrný 4 x + 0, 5 až x +, 50s Výrazně nadprůměrný 5 x +, 5 s a více Tab.0 Devítstupňová norma Body Prncp normy x, 76 a méně x,6 s až x, 75 s 3 x 0,76 s až x, 5 s x 0,6 s až x 0, 75 5 x ± 0, 5 s 6 x + 0,6 s až x + 0, 75 s 7 x + 0,76 s až x +, 5 s 8 x +,6 s až x +, 75 s 9 x +, 76 a více 4 s Rozmezí výkonu
26 - 6 - Grafcky znázorněte osobní výkon v jednotlvých normách. x PPR třístupňová norma NPR V PPR PPR NPR V NPR pětstupňová norma devítstupňová norma -3s -s -s 0 +s +s +3s
27 - 7 - S 7 Posuzování a škálování TEORIE Základní technky posuzování:. Kontrolní seznam. Posuzovací škály 3. Uspořádání do pořadí 4. Třídění do skupn 5. Párové srovnávání 6. Kolektvní posuzování Podrobnost o jednotlvých technkách vz příslušná přednáška. PŘÍKLAD Párové srovnání: Pro aplkac použjeme příklad párového srovnávání ze základní lteratury (Měkota,K., Kovář,R.,Štepnčka,J. Antropomotorka II. Praha, SPN 988. s ) V tabulce označte předmět z tělesné výchovy, který podle vašeho názoru přnáší studentům nejvíce poznatků pro Vaše budoucí povolání. Jedná se o párové srovnávání, proveďte u všech předmětů navzájem. Vyjádření je shodné není přípustné. Tab. Párové srovnávání jedním posuzovatelem P.č. Předmět Basketbal x Drobné pohybové hry x 3 Házená x 4 Kopaná x 5 Volejbal x Záznam se provádí následovně: Preferuje-l posuzovatel hru č. prot hře č., umíst do pole na průsečíku sloupce a řádku jednčku a současně umístí nulu do průsečíku. sloupce a. řádku. Data získaná od všech posuzovatelů Vaší studjní skupny uspořádejte do tab. matce f. Úhlopříčku zaplníme hodnotam n tj. počet posuzovatelů děleno dvěma. Jestlže sloupce označíme, řádek j, pak f j udává četnost, se kterou byl -tý předmět hodnocen příznvěj.
28 - 8 - Tab. Matce f P.č. Předmět Basketbal x Drobné pohybové hry x 3 Házená x 4 Kopaná x 5 Volejbal x V další tabulce (3) matce p převedeme na hodnoty relatvní četnost tak s využtím fj vzorce pj = n Tab. 3 Matce p P.č. Předmět Basketbal 0,5 Drobné pohybové hry 0,5 3 Házená 0,5 4 Kopaná 0,5 5 Volejbal 0,5 Nyní převedeme pravděpodobnost p j na z- body. Převod provedeme pomocí statstcké tabulky A 6- Krtcké hodnoty dstrbuční funkce normovaného normálního rozdělení (příloha A). Spočítáme dále sloupcové artmetcké průměry, které představují hledané škálové hodnoty. Přpočtením konstanty, která má velkost největší zjštěné záporné hodnoty, elmnujeme záporná čísla a dostaneme všechny škálové hodnoty kladné. Nejvyšší hodnota značí předmět, který byl studenty považován za nejpřínosnější pro učtelské povolání. Tab. 4 Matce z P.č. Předmět Basketbal 0 Drobné pohybové hry 0 3 Házená 0 4 Kopaná 0 5 Volejbal 0 x x + k
29 - 9 - ÚKOL S využtím technky párového srovnávání stanovte která z následujících charakterstk má, podle názoru Vaší studjní skupny, největší význam pro učtele tělesné výchovy. Výkonnost, dovednost, vědomost, organzační schopnost, nebo ddaktcké schopnost? Tab. 4 Párové srovnávání jedním posuzovatelem P.č. Charakterstka Výkonnost x Dovednost x 3 Vědomost x 4 Organzační schopnost x 5 Ddaktcké schopnost x Tab. 5 Matce f P.č. Charakterstka Výkonnost x Dovednost x 3 Vědomost x 4 Organzační schopnost x 5 Ddaktcké schopnost x Tab.6 Matce p P.č. Charakterstka Výkonnost 0,5 Dovednost 0,5 3 Vědomost 0,5 4 Organzační schopnost 0,5 5 Ddaktcké schopnost 0,5 Tab.7 Matce z P.č. Charakterstka Výkonnost 0 Dovednost 0 3 Vědomost 0 4 Organzační schopnost 0 5 Ddaktcké schopnost 0 x x + k
30 S 8 Pořadová korelace, kontngenční tabulka. PŘÍKLAD A) Výpočet a nterpretace koefcentu pořadové korelace. Určete závslost mez kvaltou provedení modfkovanéhoiowa Brace testu ( test pohybového nadání ) a rondátem u skupny mužů Tv Ov. Pořadí v provedení rondátu sestavl vyučující SG. Student Brace- Rondát d d test A B C D E F 0 9 G 7 6 H 0 0 CH I d = rozdíl obou pořadí r s = Spearmanův koefcent pořadové korelace r s = 6 d = ( n ) 6.00 = 0 (0 ) n n = 0,394 B) Statstcká významnost: V případě, že se jedná o náhodný výběr ze základního souboru můžeme porovnáním koefcentu pořadové korelace (0,394) s tabulkovou krtckou hodnotou (0,643) stanovt zda se jedná o statstcky významnou závslost. r 0,05 = 0,643 (stupně volnost v = ( n ) ) /tab. A 3/ Na základě uvedených hodnot nemůžeme tvrdt, že uvedená závslost exstuje.
31 - 3 - C) Postup výpočtu věcné (praktcké) významnost (efect sze) Druhá mocnna korelačního koefcentu se nazývá koefcent determnace (r ). Jeho hodnota nám říká kolka procenty se podílí sledovaný faktor na výsledné závslost (Kerlnger,97). Koefcent determnace r = 0,394 = 0, 55 Kvalta provedení rondátu a výsledek Iowa Brace testu a naopak je ovlvněna z 5,5%. ÚKOL Zjstěte, zda-l je závslost mez výkonem Vaší studjní skupny v Brace-testu (tab. B ) a výsledkem přjímacích zkoušek z gymnastky vyjádřeném v pořadí. Tato data naleznete na Výpočet: r s = 6 n n d = ( n ) Krtcká hodnota rs dle tabulek př α = 0, 05 α = 0,0 TEORIE Čtyřpolní a kontngenční tabulka, χ test Čtyřpolní tabulka: Skup Jev Jev Σ na nastal nenastal (A 0 ) (B 0 ) A + B A B (C 0 ) (D 0 ) C+D C D Σ A+C B+D N
32 - 3 - očekávané četnost: A 0 = ( A + B). ( A + C) N B 0 = ( A + B). ( B + D) N C 0 = ( A + C). ( C + D) N D 0 = ( B + D). ( C + D) N Výpočet: χ = ( A A ) ( B B ) ( C C ) ( D D ) A B C D 0 0 Počet stupňů volnost pro čtyřpolní tabulku je vždy. PŘÍKLAD Požadavky ze sportovní gymnastky nezvládl v posledním roce tto student a studentky. Je mez nm rozdíl? (je úspěšnost v gymnastce ovlvněna pohlavím?).roč. ZŠ Zvládl Nezvládl Σ Ženy 80 (70,7) 6 (5,8) 86 Muž 3 (40,8) 8 (8,7) 49 Σ 4 35 A B C D = = 70, = = 5, = = 40, = = 8,7 35 χ = ( 80 70,7) ( 6 5,8) ( 3 40,8) ( 8 8,7) 70,7 + 5,8 + 40,8 + 8,7 = 8,78 χ 0,05 = 3,84 Rozdíl studentů a studentek je statstcky významný, úspěšnost v gymnastce je ovlvněna pohlavím.
33 B) Postup výpočtu věcné (praktcké) významnost (efect sze) Cramerovo φ se hodnotí následovně: φ 0,0...malý efekt φ 0,30... střední efekt φ 0,50...velký efekt χ 8,78 35 vypočítá se podle vzorce pro parcální korelac φ = = = 0,37 n Výsledek je větší než 0,3 a proto je sledovaný rozdíl věcně (praktcky) významný, hovoříme o středním efektu. PŘÍKLAD Čtyřpolní tabulka pro malé četnost přchází v úvahu, jestlže v některém políčku je četnost menší nežl 5, nebo jestlže je celkové N menší než 0. Provádíme pak úpravu uspořádání emprckých četností tak, že k nejmenší hodnotě přčteme 0,5 a ostatní četnost upravíme tak, aby součty zůstaly nezměněny. Výpočet je shodný s předcházejícím příkladem..postup.postup Σ Udělal 0 Neudělal Σ Upravená tabulka.postup.postup Σ Udělal 9,5,5 Neudělal 3,5 4,5 8 Σ PŘÍKLAD - Kontngenční tabulka Zajímá nás, zda jsou známky ze zkoušky z antropomotorky jsou přblžně po čtyř léta za sebou shodně rozložené ( H 0 ) Roky/známka Výborně Velm dobře Dobře Σ 986 (,947) (,084) (6,0) (5,) (4,) (8,7) (5,) (4,) (8,7) (6,7) 8 (5,6) 6 (0,6) 9 53 Σ
34 ( n n ) χ = x, x, x k n hodnota znaku n, n n k emprcká četnost n, n n k očekávaná četnost Počet stupňů volnost: ( k ). ( m ) d v = k počet řádků tabulky m počet sloupců n j N. N j = N N okrajový součet -tého řádku N j okrajový součet j-tého řádku N celkový součet všech případů Vzorec vz teoretcká část této kaptoly. χ = ( 8,947) ( 3,084) ( 0 6,0) ( 3 5,) ( 3 4,) ( 8,7),947 ( 5,) ( 4 4,) ( 3 8,7) ( 8 6,7) ( 6 5,6) ( 9 0,6) 5, + + 4,, ,7 6, ,7 5, + + 5,6 4, + + 0,6 8,7 + = 0,93 d v ( 3 ). ( 4 ) = 6 6, 8 = χ 0,0 = Zamítáme nulovou hypotézu ( H 0 ) a zjšťujeme, že známky nejsou v jednotlvých letech shodně rozložené. B) Věcné (praktcké) významnost (efect sze) Postup výpočtu věcné (praktcké) významnost (efect sze) v tomto případě η η (eta) se hodnotí následovně: η 0,0...malý efekt η 0,06... střední efekt η 0,4...velký efekt χ d v η = = vypočítá se podle vzorce pro parcální korelac : n( ) 0, = 0,08 Výsledek se blíží hodnotě 0,0 a proto lze hovořt o malém efektu.
35 ÚKOL. Posuďte, která ze studjních skupn je na tom lépe v akrobac, když za rozhodující prvek je bráno zvládnutí přemetu vpřed (řešte statstckou věcnou významnost) Tab. 8 Zvládl Nezvládl Σ TV-Z TV-Ov 5 6 Σ
36 S 9 Početní postupy s procenty, Kruskal-Wallsův test. Početní postupy s procenty TEORIE Předpokladem je, že n je větší než 0 (je zřejmé, že procentní počet získaný z šetření méně než 0t osob je nespolehlvým údajem) b % = 00 n b= část souboru, kterou chceme vyjádřt v procentech Interval spolehlvost pro procentový údaj: Výpočet provádíme z hodnot výběrového procenta, který chceme zevšeobecnt a z rozsahu výběru. V úvahu bereme pravděpodobnost, se kterou budeme šíř ntervalu posuzovat. Interval spolehlvost je dán vztahem: ( 00 p ) pv v IS(%) = pv ± t p n velčna př 99% =,58 a 95% =,96 p v = výběrové procento t p = pravděpodobnostní PŘÍKLAD Příslušncí vězeňské služby (n=40) splnl výkonnostní lmt ve vytrvalostním běhu v počtu 30 osob. Zajímá nás kolk je to procent. 30 % = = 75% Vypočítal jsme tedy, že výkonnostní lmt ve vytrvalostním běhu splnlo 75% příslušníků vězeňské služby. Chceme zjstt nterval, ve kterém se nalézá neznámé procento všech příslušníků vězeňské služby v ČR (základního souboru). IS(75%) = ( 75) ±,96 = 75 ± 3,49 40 Interval spolehlvost pro 75% je s pravděpodobností 95%v rozsah 6,6-88,4%
Povinný předmět (verze 2013)
Povinný předmět (verze 2013) Název kurzu: Rozvoj pohybových schopností Počet kb.: 2 Identifikační kód: KTV/6219 KTV/0397 KTV/6137 Hodinová dotace: 1/1, KS 3hod. Semestr: letni Forma výuky: semestrální
Více6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu
6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a
VíceStatistická šetření a zpracování dat.
Statstcká šetření a zpracování dat. Vyjadřovací prostředky ve statstce STATISTICKÉ TABULKY Typckým vyjadřovacím prostředkem statstky je číslo formalzovaným nástrojem číselného vyjádření je statstcká tabulka.
VíceIndividuální tělovýchovný program
Individuální tělovýchovný program posluchač provede osobní Fitness diagnostiku na základě předepsaného měření testů 1-5 vyhodnotí měření a testy a výsledky zanese v původních hodnotách do sloupcových diagramů.
VíceANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší
Více9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese
cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování
Vícepodle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y
4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.
VíceREGRESNÍ ANALÝZA. 13. cvičení
REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká
VíceRegresní a korelační analýza
Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska
VíceANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha
ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl
Více7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM
7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané
VíceANALÝZA ROZPTYLU (Analysis of Variance ANOVA)
NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než
VíceNumerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První
Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá
VíceCHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.
CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt
VícePříprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz
Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla
VíceZAHRANIČNÍ TESTOVÉ BATERIE. Bc. Lucie Grajciarová Masarykova univerzita v Brně Fakulta sportovní studií Sportovní edukace Předmět: Antropomotorika
ZAHRANIČNÍ TESTOVÉ BATERIE Bc. Lucie Grajciarová Masarykova univerzita v Brně Fakulta sportovní studií Sportovní edukace Předmět: Antropomotorika TESTOVÉ BATERIE Seskupení více testů jsou společně standardizované
VíceTeoretické modely diskrétních náhodných veličin
Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze
VíceKritéria maturitní zkoušky z volitelného předmětu tělesná výchova. Maturitní zkouška je složena ze 2 částí A/ praktické B/ teoretické
Kritéria maturitní zkoušky z volitelného předmětu tělesná výchova Maturitní zkouška je složena ze 2 částí A/ praktické B/ teoretické A/ praktická část 2013/2014 GYMNASTIKA 1. test: Akrobatická sestava
VíceČísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.
Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný
VíceKritéria maturitní zkoušky z volitelného předmětu tělesná výchova. Maturitní zkouška je složena ze 2 částí A/ praktické B/ teoretické
Kritéria maturitní zkoušky z volitelného předmětu tělesná výchova Maturitní zkouška je složena ze 2 částí A/ praktické B/ teoretické A/ praktická část 2013 GYMNASTIKA 1. test: Akrobatická sestava Popis
VícePŘÍLOHA Č. 3 POPIS A NORMY VYBRANÝCH TESTŮ. Skok daleký z místa odrazem snožmo (cm)
PŘÍLOHA Č. 3 POPIS A NORMY VYBRANÝCH TESTŮ Skok daleký z místa odrazem snožmo (T1) Tento test se provádí na rovné, pevné ploše (zajištěné před posouváním), jako pomůcka je zapotřebí měřící pásmo. Testovaná
VíceTeoretické modely diskrétních náhodných veličin
Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze
VíceVyužití logistické regrese pro hodnocení omaku
Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost
VíceTesty dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
VícePŘÍLOHY Seznam příloh:
PŘÍLOHY Seznam příloh: Příloha č. 1: Žádost o vyjádření etické komise Příloha č. 2. Vzor informovaného souhlasu Příloha č. 3: Přístoj BIA QuadScan 4000 Příloha č. 4: Umístění elektrod přístroje BIA QuadScan
VíceYou created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
VíceGYMNASTICKÉ SESTAVY PRO PŘEDŠKOLNÍ DĚTI
Časopis pro všechny příznivce aktivního způsobu života 13. ročník prosinec 2009 METODICKÁ PŘÍLOHA 49. GYMNASTICKÉ SESTAVY PRO PŘEDŠKOLNÍ DĚTI (4-5 a 6-7 let) DOPORUČENÉ PRO ODDÍLY VŠEOBECNÉ GYMNASTIKY
Více676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
VíceJEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
VíceI. TEST výbušná silová schopnost dolních končetin skok daleký z místa
I. TEST výbušná silová schopnost dolních končetin skok daleký z místa Ze stoje úzce rozkročného těsně před odrazovou čarou testovaná osoba provede skok vpřed odrazem snožmo se snahou skočit co nejdále.
VíceMÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
VíceKorelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d
Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím
VícePOROVNÁNÍ MEZI SKUPINAMI
POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá
VíceSTATISTIKA (pro navazující magisterské studium)
Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
VíceINDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
VíceJana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
VíceVLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ
VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje
Více3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina
3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních
VícePožadavky zkoušky z předmětu Základy pohybových dovedností - PXVP studijní program Učitelství 1. stupeň základních škol
Požadavky zkoušky z předmětu Základy pohybových dovedností - PXVP studijní program Učitelství 1. stupeň základních škol I. Plavání 1.40 m znak se startem a obrátkou (hodnocena technika plaveckého způsobu,
VícePříloha. Popis povinných prvků: 1. High Leg Kick Front. a) Pohled ze strany b) Pohled zepředu. Stoj spojný švihem přednožit vzhůru pravou/levou
Příloha Popis povinných prvků: 1. High Leg Kick Front a) Pohled ze strany b) Pohled zepředu Stoj spojný švihem přednožit vzhůru pravou/levou Obecné požadavky pro správné provedení High Leg Kicků Front:
VíceZápadočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky
Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou
VícePříklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
VíceKorelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Více=10 =80 - =
Protokol č. DĚDIČNOST KVALITATIVNÍCH VLASTNOSTÍ ) Jednorozměrné rozdělení fenotypové charakteristiky (hodnoty) populace ) Vícerozměrné rozdělení korelační a regresní počet pro dvě sledované vlastnosti
VíceLokace odbavovacího centra nákladní pokladny pro víkendový provoz
Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená
VíceKritéria přijímacího řízení
Kritéria přijímacího řízení Obor: 68-42-M/01 Bezpečnostně právní činnost 1. Jednotné testy z českého jazyka a matematiky - maximálně 60 bodů. Přepočet na školní Body jednotného testování Přepočet na školní
VíceProtokol č. 1. Tloušťková struktura. Zadání:
Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále
VíceIterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2
Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...
VíceStatistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
VíceSIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10
SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním
VíceSEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VícePříloha č. 2: Vzorový informační dopis pro rodiče žákyň 7.třidy
10 Seznam příloh Příloha č. 1: Souhlas etické komise UK FTVS Příloha č. 2: Vzorový informační dopis pro rodiče žákyň 7.třidy Příloha č. 3: Výsledky jednotlivých probandů a množství jejich pohyb. aktivit
VíceLOGICKÉ OBVODY J I Ř Í K A L O U S E K
LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2
VíceOtto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 14522
Otto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 145 UNCERTAINTY OF DETEMINATION OF THE AUTO-IGNITION TEMPERATURE OF FLAMMABLE GASES OR VAPOURS
VíceMETODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU
METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU vyučující doc. RNDr. Jiří Zháněl, Dr. M I 4 Metodologie I 7. ANALÝZA DAT (KVANTITATIVNÍ VÝZKUM) (MATEMATICKÁ) STATISTIKA DESKRIPTIVNÍ (popisná) ANALYTICKÁ
VíceMatematika I A ukázkový test 1 pro 2018/2019
Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete
VícePřednáška č. 11 Analýza rozptylu při dvojném třídění
Přednáška č. Analýza roztlu ř dvojném třídění Ve většně říadů v rax výsledk exermentu, rozboru závsí na více faktorech. Př této analýze se osuzují výsledk náhodných okusů (exerment nebo soubor získané
VíceSTATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
VíceNÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
VíceParametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
VíceVýslednice, rovnováha silové soustavy.
Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky
VíceVícekriteriální rozhodování. Typy kritérií
Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování
VíceBc. Jaroslav Kubricht.
Bc. Jaroslav Kubricht jaroslavkubricht@gmail.com Otazníky zdraví možnosti zvyšování zdravotní gramotnosti dětí a mládeže Z celkového počtu 538 žáků základních škol absolvovalo všechny testy tělesné zdatnosti
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
VíceMODELOVÁNÍ A SIMULACE
MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký
VíceSAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Více4. Třídění statistických dat pořádek v datech
4. Třídění statstcých dat pořáde v datech Záladní členění statstcých řad: řada časová, řada prostorová, řada věcná věcná slovní řada, věcná číselná řada. Záladem statstcého třídění je uspořádání hodnot
VíceKategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
VíceKritéria pro 2. kolo přijímacího řízení pro školní rok 2018/2019
Kritéria pro 2. kolo přijímacího řízení pro školní rok 2018/2019 Obor: 68-42-M/01 Bezpečnostně právní činnost 1. Jednotné testy z českého jazyka a matematiky - maximálně 60 bodů. Přepočet na školní body
VícePopisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
Více4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
VíceKontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)
Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =
VíceTALENTOVÉ ZKOUŠKY Z TĚLESNÉ VÝCHOVY PRO AKADEMICKÝ ROK 2019/2020
TALENTOVÉ ZKOUŠKY Z TĚLESNÉ VÝCHOVY PRO AKADEMICKÝ ROK 2019/2020 Studijní program: Trenér Kondiční trenér V přijímacím řízení na UK FTVS musí uchazeč prokázat požadovanou úroveň výkonů v atletice, gymnastice
VíceSTATISTIKA PRO NELÉKAŘSKÉ ZDRAVOTNICKÉ OBORY
STATISTIKA PRO NELÉKAŘSKÉ ZDRAVOTNICKÉ OBORY Eva Reterová Olomouc 06 Fakulta zdravotnckých věd Unverzta Palackého v Olomouc Statstka pro nelékařské zdravotncké obory Eva Reterová Olomouc 06 Oponent: PhDr.
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceKRITÉRIA PRO SPLNĚNÍ TĚLESNÉ ZPŮSOBILOSTI UCHAZEČE O ZAMĚSTNÁNÍ U MP BRNO NA POZICI STRÁŽNÍKA
KRITÉRIA PRO SPLNĚNÍ TĚLESNÉ ZPŮSOBILOSTI UCHAZEČE O ZAMĚSTNÁNÍ U MP BRNO NA POZICI STRÁŽNÍKA Test tělesné způsobilosti před přijetím k městské policii jsou povinni absolvovat všichni uchazeči o zaměstnání
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceCvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
VíceMetodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci
VíceF Y Z I C K É T E S T Y
M stská policie F Y Z I C K É T E S T Y Testy postihují základní pohybové schopnosti: - rychlost - obratnost - pohyblivost - sílu - vytrvalost Po adí test : Test. 1 člunkový běh 4 krát 10 metrů Test. 2
VícePracovní list č. 3 Charakteristiky variability
1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte
VíceTestování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
VíceTEST FYZICKÉ ZDATNOSTI
1. Test č. 1 Člunkový běh 4 krát 10 m 1.1 Popis TEST FYZICKÉ ZDATNOSTI K testu je třeba rovný terén, na kterém je dvěma metami vyznačen úsek o vzdálenosti mezi vnějšími okraji met v délce 10 metrů a stopky.
Více12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
VíceMOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.
MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých
VíceJednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceNeparametrické metody
Neparametrcké metody Přestože parametrcké metody zaujímají klíčovou úlohu ve statstcké analýze dat, je možné některé problémy řešt př neparametrckém přístupu. V této přednášce uvedeme neparametrcké odhady
Více2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
VíceTestování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
VíceNáhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
VíceZávodní sestavy sportovní gymnastiky - ženské složky
Závodní sestavy sportovní gymnastiky - ženské složky Červené písmo označuje změny a doplňky k 7.3.2018, platné pro republikovou soutěž SG pro rok 2018 Tyto sestavy jsou určeny pro všechny členky České
VíceUniverzita Tomáše Bati ve Zlíně
nverzta Tomáše Bat ve líně LABOATOÍ CČEÍ ELETOTECHY A PŮMYSLOÉ ELETOY ázev úlohy: ávrh dělče napětí pracoval: Petr Luzar, Josef Moravčík Skupna: T / Datum měření:.února 8 Obor: nformační technologe Hodnocení:
Více