3.5.2 Kvantový rotátor

Rozměr: px
Začít zobrazení ze stránky:

Download "3.5.2 Kvantový rotátor"

Transkript

1 35 Další příklady 77 m ( x) exp x ; ( ) th kb (388) uto dnes slavnou formuli odvodil Felix v roce 193 Formule má velký význam v teorii kmitů krystalové mříže Odvoďme tak jako v minulých případech limitu při nízkých a vysokých teplotách: 1) V : ) V : m mx ( x) exp 0 ( x) m m x ( x) exp kb kb První případ odpovídá opět ryze kvantovému řešení jde o hustotu pravděpodobnosti oscilátoru v základním kvantovém stavu Případ vysokých teplot dává klasický výsledek (38) 35 Kvantový rotátor Prozkoumejme nyní vlastnosti rotující částice s nenulovým momentem hybnosti L a nenulovým momentem setrvačnosti J Může jít například o rotující dvouatomovou molekulu nebo nějaký podobný systém ejprve odvodíme partiční sumu pro systém tvořený jedinou molekulou Standardní translační vztah p /m u rotačních pohybů přejde v analogický vztah L /J: L l( l1) ; l 01 J J Využili jsme vztah (149) pro kvantování velikosti momentu hybnosti esmíme zapomenout že každý takový energetický stav je degenerován vyskytuje se l+1 krát jednotlivé stavy se stejnou energií se liší magnetickým kvantovým číslem které nabývá hodnot m l l1 0 l1 l Proto v partiční sumě musíme každý Boltzmannův faktor vzít v úvahu tolikrát kolikrát je daný stav degenerován: ll ( 1) ll ( 1) z gl exp (l1) exp l0 JkB l0 JkB Poprvé se setkáváme s řadou která není analyticky řešitelná uto řadu můžeme sečíst jen numericky nebo v limitě nízkých či vysokých teplot Oblast nízkých a vysokých teplot je dána argumentem exponenciály Je-li argument roven jedné dostáváme cha-

2 78 Statistická fyzika rakteristickou teplotu při níž je tepelná energie rovna rotační energii Vyjdeme-li ze vztahu ħ J k B dostaneme pro tzv rotační teplotu vztah (389) kbj otační teplota je pro daný systém podobně jako vibrační teplota zcela charakteristickou veličinou Hodnoty rotačních a vibračních teplot některých plynů naleznete v následující tabulce: plyn rotační teplota vibrační teplota H 85 K 6100 K HCl 15 K 4140 K 3 K 3340 K O K 30 K Pokusme se sečíst řadu pro partiční sumu alespoň v limitě nízkých a vysokých teplot: ízké teploty Při nízkých teplotách ( << ) exponenciály v řadě s rostoucím l prudce klesají členy řady velmi rychle konvergují a proto stačí vzít v úvahu první dva členy řady: 1 3exp z 1 3exp / Jk B Standardním postupem určíme termodynamické veličiny v limitě nízkých teplot: Z 13exp / F kbln Z kbln 13exp / Druhý člen je malý proto můžeme provést aylorův rozvoj do prvního řádu ln(1+x) ~ x a pro volnou energii máme jednodušší formuli F 3kBexp / yní nalezneme entropii a vnitřní energii F S 3kBexp / 6kB exp / U F S k 6 exp / B Vysoké teploty Při vysokých teplotách ( >> ) je obsazeno mnoho stavů s velkým l a součet můžeme nahradit integrací: ( 1) exp ( 1) z l l l (x 1) exp x( x 1) d x l 0 0

3 35 Další příklady 79 V integrálu provedeme substituci xx ( 1) : z exp d 0 Standardním postupem určíme termodynamické veličiny v limitě vysokých teplot: Z / F k ln Z k ln / B B F S kb 1ln / U F S kb Jak jsme mohli očekávat dostáváme v limitě vysokých teplot klasické výsledky Sepišme na závěr výsledky v limitě nízkých i vysokých teplot do přehledné tabulky: 1 3exp / Z / Z 3 exp / F k ln / F k B S 3kB exp / 6k exp / U 6kBexp / U kb B S kb 1ln / (390) Situace je obdobná jako u oscilátoru Do rotační teploty není systém schopen absorbovat teplo Jeho stupně volnosti jsou zamrzlé ad rotační teplotou přispívá k tepelné kapacitě každý rotátor hodnotou Boltzmannovy konstanty Obr 107: Průběh vnitřní energie a tepelné kapacity pro kvantový rotátor U dvouatomárních molekul jsou rotační teploty podstatně nižší než vibrační Při postupném zahřívání plynu se nejprve uvolní rotační stupně volnosti a teprve později vibrační stupně volnosti

4 80 Statistická fyzika Příklad 55: Určete nejpravděpodobnější rotační kvantové číslo pro kvantový rotátor (stav s nejvyšším zastoupením) Řešení: Pravděpodobnost že se systém nachází ve stavu s vedlejším kvantovým číslem l je dána výše odvozenou formulí ll ( 1) w ( 1)exp ( 1)exp ( 1) l A l A l l l J kb Při nízkých teplotách systém nerotuje pravděpodobnost je téměř nulová Při vysokých teplotách nalezneme standardním postupem maximum (s proměnnou l budeme zacházet jako se spojitou proměnnou): wl 1 0 lmax l Z vypočteného vztahu můžeme zjistit typická vedlejší kvantová čísla rotujících molekul při dané teplotě 353 Dvouatomární plyn Uvažujme nyní systém složený z dvouatomových molekul s rozlišitelnými atomy (jinak bychom se museli zabývat symetrií vlnových funkcí) ak se chová řada plynů Energie jedné molekuly bude složena z translační energie vibrační energie rotační energie a energie dalších (například jaderných) stupňů volnosti Partiční suma pro jednu molekulu bude součinem partičních sum jednotlivých stupňů volnosti a termodynamické veličiny budou součtem odpovídajících členů: tr vib rot nuc z e ( tr vib rot ) e tr d e vib e rot ztr zvib zrot Celková partiční suma pro částic potom bude: Z ztr zvib zrot Základní termodynamické veličiny jsou podle své definice aditivní a bude pro ně platit

5 35 Další příklady 81 F kbln Z Ftr Fvib Frot F S Str Svib Srot U F S Utr Uvib Urot U CV V Ctr Cvib Crot Zkoumejme nyní příspěvek k tepelné kapacitě jednotlivých stupňů volnosti: ranslační stupně volnosti 3 1 U 3 Utr kb c kb V ranslační stupně volnosti přispívají k měrné tepelné kapacitě plynu (tepelná kapacita vztažená na počet částic) konstantní hodnotou Vibrační stupně volnosti 1 U Uvib cth c kb sh kb kb k V B a následujících obrázcích jsou vykresleny vypočtené průběhy Při nízkých teplotách je vnitřní energie dána nulovými kmity (ħω/) při vysokých teplotách je lineární funkcí teploty K přechodu mezi oběma průběhy dochází v okolí vibrační teploty Při nízkých teplotách vibrační stupně volnosti nepřispívají k měrnému teplu Říkáme že při teplotách výrazně nižších než je vibrační teplota jsou vibrační stupně volnosti zamrzlé Při vysokých teplotách přispívají vibrační stupně volnosti k měrnému teplu konstantní hodnotou Provedeme-li limity malých a velkých teplot dostaneme: V U / C 0 c 0; V U kb C kb c kb Každý vibrační stupeň volnosti přidává při vysokých teplotách k tepelné kapacitě plynu hodnotu k B Jak už víme Boltzmannovu konstantu můžeme interpretovat jako tepelnou kapacitu jedné vibrující molekuly otační stupně volnosti Pro rotační stupně volnosti neznáme analytický průběh vnitřní energie a tepelné kapacity při konstantním objemu Známe ale hodnoty v limitě nízkých a vysokých teplot vzhledem k rotační teplotě viz (390): U 6kB exp / C 0 c 0; U kb C kb c kb Vidíme že rotační stavy přispívají k měrnému teplu stejným způsobem jako vibrační stavy příspěvek se projeví při teplotách vyšších než je rotační teplota Při teplotách

6 8 Statistická fyzika nižších jsou rotační stavy opět zamrzlé Každý rotační stav přispěje k tepelné kapacitě opět hodnotou Boltzmannovy konstanty Výsledný průběh měrné tepelné kapacity má schodovitý charakter: Obr 109: epelná kapacita dvouatomárního plynu Při zvyšování teploty přibývají další stupně volnosti každý rozmrzlý stupeň volnosti přispěje k měrné tepelné kapacitě hodnotou k B Každý translační stupeň volnosti přispívá k měrné tepelné kapacitě nezávisle na teplotě hodnotou k B / tj celkem 3k B / O rotačních a vibračních spektrech se můžete dočíst další detaily v učebnici [38] Poznámka: U kyanu HC odpovídá přechod mezi druhou a první rotační hladinou vlnové délce 13 mm což koresponduje s vlnovým maximem reliktního záření Právě reliktní záření proto způsobuje rotační excitace mezihvězdného kyanu otační teplota kyanu je 15 K 354 Anharmonický oscilátor Velmi zajímavá situace nastane pokud v aylorově rozvoji potenciální energie v okolí minima je důležitý i třetí (asymetrie minima) nebo dokonce čtvrtý člen yní již nejde o harmonické oscilace ale o anharmonický oscilátor s energií ve tvaru p m x 3 4 E a3x a4x m (391) Za předpokladu vysoké teploty (k B >> ħω) můžeme počítat klasickou partiční sumu pro nezávislých oscilátorů Za nízké teploty by se problém musel řešit kvantově Pro jeden oscilátor máme: [ E] dpdx z e p m x ax 3 a exp 4x dpdx (39) mkb kb kb kb mk 3 4 B m x ax 3 a4x exp exp dx kb kb kb

7 35 Další příklady 83 Je třeba poznamenat že jakkoli malý anharmonický člen třetího řádu vede k nekonvergentnímu integrálu (39) Konvergenci zajišťuje přítomnost členu čtvrtého řádu s a 4 > 0 yní budeme předpokládat že anharmonické členy jsou malé ve srovnání s harmonickým a provedeme rozvoj druhé exponenciály do druhého řádu v argumentu: mk 3 4 B m x ax ax 4 1 z exp 1 a3x a4x dx kb kb kb kb Jde o součet Gaussových integrálů s různými mocninami x násobícími základní exponenciálu Integrály s lichými mocninami jsou nulové ponecháme proto jen sudé členy do šestého řádu v x: mk 4 6 B m x ax 4 a3 x z exp 1 dx k B kb kb Po triviálním výpočtu za pomoci vztahu (G) nebo v programových prostředích MA- LAB Mathematica atp dostaneme mk B kb a4kb 15 a3kb z m m m kb a4kb 15 a3kb z m m kb a4kb 15 a3kb Z m m yní určíme standardním způsobem termodynamické veličiny kb a4kb 15 a3kb F kbln Z kbln m m (393) (394) F S ak 4 B a3kb k B a4k B 15 a3kb S kbln 3 k m m B m m ak 4 B 15 a k B m m ak 4 B a3kb U F S kb m m ak 4 B 15 a 1 3 3kB m m

8 84 Statistická fyzika ak 4 B 15 a3kb U kb m m (395) U 15a3 6a C k 4 B kb m m (396) Vidíme že anharmoničnost vibrací v krystalech nebo molekulách vede k narušení Dulongova Petitova zákona V tepelné kapacitě se objevuje lineární a případně i kvadratický člen v teplotě Poznamenejme že pokud položíme čtvrtou mocninu x v rozvoji energie (391) přesně rovnou nule nebude integrál (39) konvergovat a systém bude nestabilní při rostoucí výchylce z rovnováhy půjde potenciální energie k nekonečné hodnotě Pokud budeme předpokládat že čtvrtá mocnina x v rozvoji je byť jen velmi malá zajistíme konvergenci integrálu i stabilitu zkoumaného systému 355 Dvouhladinový systém alezněme chování kvantového systému s dvěma blízkými energetickými hladinami 0 = 0 a 1 = s degeneračními faktory g 0 a g 1 Partiční suma pro jednu částici bude mít jen dva členy z g 0 g 1 exp ( ) (397) yní budeme postupovat standardně: 0 1 exp Z g g k B (398) B ln B ln 0 1 exp F k Z k g g k B F / g0 S kbln g0 g1exp ; g kb g1 1 g exp kb U FS 1 g exp kb (399) (3100) (3101)

9 35 Další příklady 85 C V exp U g kb 1 g exp kb kb (310) c V CV exp kb B g k 1 g exp kb (3103) Dostali jsme velmi známý vztah pro příspěvek dvouhladinového systému k měrnému teplu Příspěvek konverguje k nule v oblasti nízkých i vysokých teplot o znamená že existuje teplota při které je příspěvek k měrnému teplu maximální Maximum je možné určit numericky pro g = 1 vychází c max ~ 034 k B Obr 111: epelná kapacita dvouhladinového systému Více se o tepelných kapacitách rotačních a vibračních spektrech a vztahu mezi termodynamikou statistickou fyzikou a chemií dozvíte z online učebnice [41] Zajímavé informace o spektroskopii rotačních a vibračních stavů naleznete také v publikaci [4]

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

Lehký úvod do kvantové teorie II

Lehký úvod do kvantové teorie II 1 Lehký úvod do kvantové teorie II 5 Harmonický oscilátor Na příkladu harmonického oscilátoru, jehož klasické řešení známe z Fyziky 1, si ukážeme typické postupy při hledání vlastních hodnot operátoru

Více

A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje.

A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje. Příklad 1 Vypočtěte počet způsobů rozdělení 18 identických objektů do 6 boxů s obsahem 1,0,3,5,8,1 objektů a srovnejte tuto váhu s konfigurací, kdy je každý box obsazen třemi objekty. Která konfigurace

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx 1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti. 6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové

Více

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži

Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014 F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

přičemž předpokládáme A malé, U zahrnuje coulombické členy. Když roznásobíme závorku, p 2 reprezentuje kinetickou energii nabitých částic, člen

přičemž předpokládáme A malé, U zahrnuje coulombické členy. Když roznásobíme závorku, p 2 reprezentuje kinetickou energii nabitých částic, člen Výběrová pravidla Absorpce/stim. emise Kde se výběrová pravidla vezmou? Použijeme semiklasické přiblížení, tzn. s nabitými částicemi (s indexy 1...N) zacházíme kvantově, s vnějším elektromagnetickým polem

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně.

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Statistická fyzika - cvičení RNDr. Filip Moučka, Ph.D., filip.moucka@ujep.cz Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Cílem tohoto textu

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx = . cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

Vlastnosti pevných látek

Vlastnosti pevných látek Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

1 Tepelné kapacity krystalů

1 Tepelné kapacity krystalů Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

1. Obyčejné diferenciální rovnice

1. Obyčejné diferenciální rovnice & 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.

Více

Statistická termodynamika

Statistická termodynamika Statistická termodynamika Jan Řezáč UOCHB AV ČR 24. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Statistická termodynamika 24. listopadu 2016 1 / 38 Úvod Umíme popsat jednotlivé molekuly (případně jejich interakce)

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

2.6. Koncentrace elektronů a děr

2.6. Koncentrace elektronů a děr Obr. 2-11 Rozložení nosičů při poloze Fermiho hladiny: a) v horní polovině zakázaného pásu (p. typu N), b) uprostřed zakázaného pásu (vlastní p.), c) v dolní polovině zakázaného pásu (p. typu P) 2.6. Koncentrace

Více

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn?

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn? Kvantová a statistická fyzika (erodynaika a statistická fyzika) 1 Poznáka k terodynaice: Jednoatoový či dvouatoový plyn? Jeden ol jednoatoového plynu o teplotě zaujíá obje V. Plyn však ůže projít cheickou

Více

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx. Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)

Více

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

Vlastnosti pevných látek

Vlastnosti pevných látek lastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

Látka jako soubor kvantových soustav

Látka jako soubor kvantových soustav Opakování pojmů Látka jako soubor kvantovýh soustav - foton - kvantování energie - kvantová soustava systém vázanýh části (atom, molekula, iont), jehož energie je kvantována - základní stav kvantové soustavy

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

Lekce 4 Statistická termodynamika

Lekce 4 Statistická termodynamika Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty

Více

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Tomáš Salač Ú UK, FF UK LS 2017/18 Tomáš Salač ( Ú UK, FF UK ) 9. Vícerozměrná integrace LS 2017/18 1 / 29 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

6. Lineární ODR n-tého řádu

6. Lineární ODR n-tého řádu 6. Lineární ODR n-tého řádu A. Obecná homogenní LODRn V předcházející kapitole jsme diferenciální rovnici (libovolného řádu) nazvali lineární, je-li tato rovnice lineární vzhledem ke hledané funkci y a

Více

INSTRUMENTÁLNÍ METODY

INSTRUMENTÁLNÍ METODY INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,

Více

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Matematika 3. Úloha 1. Úloha 2. Úloha 3 Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Řešení. Označme po řadě F (z) Odtud plyne, že

Řešení. Označme po řadě F (z) Odtud plyne, že Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

9.3. Úplná lineární rovnice s konstantními koeficienty

9.3. Úplná lineární rovnice s konstantními koeficienty Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

Oddělení pohybu elektronů a jader

Oddělení pohybu elektronů a jader Oddělení pohybu elektronů a ader Adiabatická aproximace Born-Oppenheimerova aproximace Důležité vztahy sou 4, 5, 7, 0,,, udělal sem to zbytečně podrobně, e to samostatný okruh Separace translačního pohybu:

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

16 Fourierovy řady Úvod, základní pojmy

16 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 16: Fourierovy řady 1 16 Fourierovy řady 16.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více