Diferenciál funkcie, jeho význam a použitie
|
|
- Oldřich Blažek
- před 6 lety
- Počet zobrazení:
Transkript
1 Diferenciál funkcie, jeho význam a použitie
2 Diferenciál funkcie Výrazy y/x a y sa od seba líšia tým menej, čím viac sa x blíži k nule y x y lim x y x lim x 0 x0x x0 y y x lim x x yx x x x 0 x Diferenciál hlavná časť prírastku funkcie, označujeme ho znakom dy Tento člen ovplyvňuje prírastok funkcie oveľa viac ako druhý člen. Pri x0 sú oba členy nekonečne malými, druhý člen je však vyššieho rádu malosti.
3 Geometrická interpretácia dy y dy yx x α x x x Diferenciál zodpovedá prírastku funkcie, ak funkciu nahradíme v okolí bodu x jej dotyčnicou.
4 3 y x x dy d x x x x x x x y x dy d x x x 1 x x dx x Obvykle sa preto píše namiesto x znak dx a nazýva sa diferenciálom nezávislej premennej (argumentu). dy f ( x) dx f ( x) dy dx Derivácia funkcie je rovná podieľu jej diferenciálu dy k diferenciálu nezávislej premennej dx
5 Diferenciál súčtu, rozdielu podieľu viacerých funkcií dy f ( x) dx d u v... w du dv... dw d uv vdu udv u duv udv d v v dy f u du
6 Vlastnosti diferencialov a ich odvodenie Diferenciál súčtu funkciií u v... w u v... w / dx u v... w dx udx vdx... wdx d u v... w du dv... dw Diferenciál podieľ dvoch funkcií u uv uv / dx v v u udx v u vdx dx v v u du v u dv d v v Diferenciál súčinu funkciií uv uv uv / dx uv dx v udx u vdx d uv v du u dv Diferenciál zloženej funkcie df du df y Fu x u / dx du dx du df dy udx du dy F u du u
7 Približný výpočet hodnoty funkcie linearizácia funkcie Pre malé hodnoty x sa prírastok funkcie y približne rovná diferenciálu dy:
8 Linearizácia funkcií Na dostatočne úzkom intervale okolo daného bodu, možno každú funkciu nahradiť priamkou - dotyčnicou
9 Linearizácia funkcií Na dostatočne úzkom intervale okolo daného bodu, možno každú funkciu nahradiť priamkou - dotyčnicou
10 Približný výpočet hodnoty funkcie linearizácia funkcie Pre malé hodnoty x sa prírastok funkcie y približne rovná diferenciálu dy: Odhadnite hodnotu ak viete, že =10 Prírastok funkcie vyšetríme v okolí bodu x=100 dy y dy x x dx x 0 y y 100 y x100
11 Prírastok funkcie vyšetrujeme v okolí bodu x= X*X dy y dy x x dx x 0 y y 100 y x X
12 Výpočet chýb meranie vo fyzike Meraním sme zistili polomer gule r s presnosťou r. Určte relatívnu chybu merania objemu. dv r r V r r r 3r r 3r r r Vo fyzike je prirodzené očakávať, že meracie zariadenie spĺňa: r r Nelineárna, zanedbateľná časť vzhľadom na Δr V dr 3 V r 3 V dv r r 4r r Relatívna chyba stanovenia objemu je 3 krát väčšia ako relatívna chyba polomeru
13 Určuje ako zmena jednej veličiny ovplyvňuje zmenu druhej veličiny V r r r 3r r 3r r r Hlavná časť prírastku - diferenciál r zmena jednej veličiny ovplyvňuje zmenu druhej veličiny V mm^ r [mm]
14 Linearizácia funkcie 1 + x v okolí bodu x=0 zväčšenina 1 x x 0 1 dy x 1 x 1 xx0 x x 3 4 Pri odhade hodnoty funkcie v bode x=3 by sme linearizovali v okolí tohto bodu Čím bližšie je bod k bodu, v ktorom sa robí linearizácia, tým lepší odhad funkcie
15 Linearizácia y 1 x Linearizujme v okolí bodu x=0. Pre prírastok funkcie platí: 1 y yx 1 x x x x0 y y 0 y 1 x =1/ = -1 x - x = 1/3 x 5x 4 = - 1/ x - x
16 0 1 m m v c m v m m c v c Kinetická energia k v E mc m c m c m c m v c 1/ v x c
17
18 Príklad Určte o akú vzdialenosť sa posunie obraz spojky, ak sme predmet posunuli o malú vzdialenosť da a a f af a a f da f da da da da a f Obraz sa posunie opačným smerom ako predmet
19 Určovanie charakteristík funkcií použitím derivácie
20 Monotónnosť funkcie Derivovateľná funkcia je v danom intervale : Konštantná, ak v tomto intervale: yx 0 Rastúca, ak v tomto intervale: yx 0 Klesajúca, ak v tomto intervale: yx 0 y x 0 RASTÚCA dy y y x lim y x 0 Konš tan ta dx x 0 x y x 0 KLESAJÚCA Podľa znamienka prvej derivácie môžeme rozhodnúť, či funkcia rastie alebo klesá na nejakom intervale
21 Funkcia rastie, smernica dotyčnice zviera s x-ovou osou ostrý uhol tg > 0 y x > 0 Funkcia klesá, smernica dotyčnice zviera s x-ovou osou tupý uhol tg < 0 y x < 0
22 Kladný tangent - ostrý uhol Derivácia geometricky zodpovedá tangentu (orientovaného) uhla, ktorý zviera dotyčnica s osou záporný tangent - tupý uhol Nulovej smernici zodpovedá priamka rovnobežná s x ovou osou.
23 Lokálne a globálne extrémy Nech je funkcia definovaná na intervale J. Funkčná hodnota f(x 0 ) sa nazýva: globálnym maximom, ak pre každé xj platí: f x f ( x ) 0 globálnym minimom, ak pre každé xj platí: f x f ( x ) 0 Ak sa obmedzíme len na nejaké okolie bodu x 0 a skúmame jeho vzájomný vzťah medzi hodnotou f(x 0 ) a hodnotami funkcie v ostatných bodoch tohto okolia, potom hovoríme o lokálnych extrémoch
24 Hovoríme, že funkcia má v bode x 0 lokálne maximum ak existuje také okolie U, že platí: f x f ( x ) 0 lokálne minimum, ak existuje také okolie U, že platí: f x f ( x ) 0
25 Lokálne a globálne extrémy obmedzíme sa len na nejaké okolie bodu x 0 a skúmame jeho vzájomný vzťah medzi hodnotou f(x 0 ) lokálne extrémy Celý definičný obor funkcie KEDY nastane extrém???
26 Použitie derivácii na štúdium priebehu funkcií Nutná podmienka Funkcia môže mať extrém iba v takom bode x 0, v ktorom: derivácia existuje f( x ) 0 0 Geometricky : funkcia má v bode x 0 dotyčnicu rovnobežnú s x ovou osou, alebo nemá dotyčnicu v tomto bode. derivácia neexistuje Derivácia je nevlastná Derivácia sprava je iná ako derivácia zľava
27 Splnenie nutnej podmienky nezabezpečuje existenciu extrému y( x) 3 1 x 3 Funkcia y v bode 0 nemá extém, hoci jej prvá derivácia neexistuje v tomto bode!!! y( x) 3x Funkcia y v bode 0 nemá extém, hoci jej prvá derivácia v tomto bode je nulová!!!
28 Splnenie nutnej podmienky nezabezpečuje existenciu extrému Funkcia y v bode 0 nemá extém, hoci jej prvá derivácia neexistuje v tomto bode!!! Funkcia y v bode 0 nemá extém, hoci jej prvá derivácia v tomto bode je nulová!!!
29 SKÚMAJME ZNAMIENKA DERIVÁCIÍ Aká je postačujúca podmienka? Smernica dotyčnice kladná Smernica dotyčnice kladná Smernica dotyčnice kladná y 0 y 0 y 0 y 0 y 0 y 0 y 0 Derivácia v bode D neexistuje Znamienko derivácie funkcie sa musí v lokálnom extréme zmeniť.
30 Extrémy elementárnych funkcií Skúsme špecifikovať základné charakteristiky lokálnych extrémov: V bode, v ktorom je lokálny extrém, musí prechádzať rastúca časť spojitej funkcie na klesajúcu, alebo naopak. Znamienko derivácie funkcie sa musí v lokálnom extréme zmeniť. Funkcia nemôže mať lokálny extrém v intervale, v ktorom je rýdzo rastúca, alebo klesajúca.
31 SKÚMAJME PRIEBEH FUNKCIE PRVÁ Lokálne a globálne maximá Smernica dotyčnice y klesá aj v danom bode y x 0 < 0 Smernica dotyčnice y klesá aj v danom bode y x 0 > 0 Ak Ak y( x ) 0 y( x ) y( x ) 0 y( x ) má funkcia y(x) v bode x 0 ostré lokálne minimum má funkcia y(x) v bode x 0 ostré lokálne maximum
32 Overenie postačujúcej podmienky Extrémy funkcie Určíme kritické body x 0, v ktorých je derivácia nulová Určíme druhé derivácie: alebo overíme či derivácia v bode x 0 mení znamienko f x 0 > 0 v x 0 je lokálne minimum Ak pre x>x 0 je f x >0 & f x 0 < 0 v x 0 je lokálne maximum x<x0 je f x <0 funkcia má minimum f x 0 = 0 Môže byť extrém, alebo inflexný bod, rozhodneš podľa derivácie, ktorá bude prvýkrát nulová Ak pre x>x 0 je f x <0 & x<x0 je f x >0 funkcia má maximum Preskúmaj body, v ktorých funkcia nemá deriváciu a stacionárne body, v ktorých funkcia nemá deriváciu.
33 Postačujúce podmienky pre existenciu lokálneho extrému Ak Ak y( x ) 0 y( x ) y( x ) 0 y( x ) má funkcia y(x) v bode x 0 ostré lokálne minimum má funkcia y(x) v bode x 0 ostré lokálne maximum Ak y( x ) y ( x )... y ( x ) 0 y ( x ) 0 n1 n n je párne číslo, tak funkcia má v bode x0 ostrý lokálny extrém a to: n maximum, ak y ( x0 ) 0 n Minimum, ak y ( x0 ) 0 n je nepárne číslo, tak funkcia f nemá v bode x0 lokálny extrém, x0 je inflexný bod
34 Aký má byť rozmer valca daného objemu V, aby jeho povrch bol čo najmenší? Polomer malý, výška veľka Polomer veľký, výška malá V S 0 r 3 4 S r h r Využitie vo fyzike: minimalizácia tepelných strát povrchom kalorimetra
35 Určte čas za ktorý kinetická energia dažďovej kvapky dosiahne maximum. Kvapka mala počiatočnú hmotnosť m 0 a pri páde jej hmotnosť dôsledkom vyparovania sa rovnomerne zmenšuje. 1 1 Ek mv m0 kt gt d 3 E k g t kt m 0 dt de dt k m0 0 0 t 3k m 0 t 3k m0 0 t 3k 0
36 n S x xi x min imum i1
Limita funkcie. Čo rozumieme pod blížiť sa? y x. 2 lim 3
Limita funkcie y 2 2 1 1 2 1 y 2 2 1 lim 3 1 1 Čo rozumieme pod blížiť sa? Porovnanie funkcií y 2 2 1 1 y 2 1 2 2 1 lim 3 1 1 1-1+ Limita funkcie lim f b a Ak ku každému číslu, eistuje také okolie bodu
Funkcia - priradenie (predpis), ktoré každému prvku z množiny D priraďuje práve jeden prvok množiny H.
FUNKCIA, DEFINIČNÝ OBOR, OBOR HODNÔT Funkcia - priradenie (predpis), ktoré každému prvku z množiny D priraďuje práve jeden prvok množiny H. Množina D definičný obor Množina H obor hodnôt Funkciu môžeme
Zvyškové triedy podľa modulu
Zvyškové triedy podľa modulu Tomáš Madaras 2011 Pre dané prirodzené číslo m 2 je relácia kongruencie podľa modulu m na množine Z reláciou ekvivalencie, teda jej prislúcha rozklad Z na systém navzájom disjunktných
MAT I. Logika, množiny 6. Finančná matematika 4. Geometria 8. Planimetria 14. Výrazy 18. Funkcie Függvények 4
MAT I Logika, množiny 6 1. Výrok, pravdivostná hodnota výroku, výroková forma 2. Logické spojky. Kvantifikované výroky 3. Pravdivostná hodnota zložených výrokov 4. Množina, prvok, množina prázdna, konečná,
D(f) =( 1, 1) [ ( 1, 1) [ (1, 1). 2( x)3 ( x) 2 1 = 2(x) 3. (x) 2 1 = f(x) Funkce je lichá, není periodická
Vyšetříme funkci f(x): f(x) = 2x3.. Stanovme definiční obor funkce D(f) a zjistíme,ve kterých bodech je funkce sojitá D(f) =(, ) [ (, ) [ (, ). 2. Počítáme f( x) = 2( x)3 ( x) 2 = 2(x) 3 (x) 2 = f(x) Funkce
14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce
. Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní
Aplikace derivace a průběh funkce
Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Pravdepodobnosť. Rozdelenia pravdepodobnosti
Pravdepodobnosť Rozdelenia pravdepodobnosti Pravdepodobnosť Teória pravdepodobnosti je matematickým základom pre odvodenie štatistických metód. Základné pojmy náhoda náhodný jav náhodná premenná pravdepodobnosť
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Derivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:
Výsledky Př.. Určete intervaly monotónnosti a lokální extrémy funkce a) y < y > y < y > -2 0 3 Funkce je rostoucí v intervalech. Funkce je klesající v intervalech b) y < y > y < - Funkce je rostoucí v
verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový
1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec
ČÍSELNÉ RADY. a n (1) n=1
ČÍSELNÉ RADY Budeme sa zaoberať výrazmi, ktoré obsahujú nekonečne veľa sčítancov. Takéto výrazy budeme nazývať nekonečné rady. V nasledujúcom príklade je ilustrované, ako môže takýto výraz vzniknúť. Príklad.
Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Diferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
Stručný přehled učiva
Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném
i j, existuje práve jeden algebraický polynóm n-tého stupˇna Priamym dosadením do (2) dostávame:
0 Interpolácia 0 Úvod Hlavnou myšlienkou interpolácie je nájs t funkciu polynóm) P n x) ktorá sa bude zhodova t s funkciou fx) v n rôznych uzlových bodoch x i tj P n x) = fx i ) = f i = y i i = 0 n Niekedy
Matematika Postupnosti
Matematika 1-06 Postupnosti Definícia: Nekonečnou postupnosťou reálnych čísel nazývame zobrazenie f: N R množiny prirodzených čísel N do množiny reálnych čísel R. Označenie: a n n=1 = a 1, a 2,, a n, Matematika
Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,
V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.
Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff
Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
Pavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
Průběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:
Průběh funkce Průběh funkce Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:. Určení definičního oboru. 2. Rozhodnutí, jestli je funkce sudá, lichá, periodická nebo nemá ani
Iracionálne rovnice = 14 = ±
Iracionálne rovnice D. Rovnica je iracionálna, ak obsahuje neznámu pod odmocninou. P. Ak ide o odmocninu s párnym odmocniteľom, potom musíme stanoviť definičný obor pod odmocninou nesmie byť záporná hodnota
Kvadratické funkcie, rovnice, 1
Kvadratické funkcie, rovnice, 1. ročník Kvadratická funkcia Kvadratickou funkciu sa nazýva každá funkcia na množine reálnych čísel R daná rovnicou y = ax + bx + c, kde a je reálne číslo rôzne od nuly,
Základy optických systémov
Základy optických systémov Norbert Tarjányi, Katedra fyziky, EF ŽU tarjanyi@fyzika.uniza.sk 1 Vlastnosti svetla - koherencia Koherencia časová, priestorová Časová koherencia: charakterizuje koreláciu optického
Zlín, 23. října 2011
(. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,
Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
Kapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
IX. Vyšetřování průběhu funkce
IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde
Funkce dvou a více proměnných
Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:
Kapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
Katolícka univerzita v Ružomberku Pedagogická fakulta Katedra matematiky. Diferenciálny počet očami G. W. Leibnitza
Katolícka univerzita v Ružomberku Pedagogická fakulta Katedra matematiky Diferenciálny počet očami G. W. Leibnitza História matematiky Mária Šuvadová 4. roč. MAT INF Niečo na úvod V rôznych knihách matematiky
Riešenie cvičení z 3. kapitoly
Riešenie cvičení z 3. kapitoly Cvičenie 3.1. Prepíšte z prirodzeného jazyka do jazyka výrokovej logiky: (a) Jano pôjde na výlet a Fero pôjde na výlet; (1) vyjadrite túto vetu pomocou implikácie a negácie
Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )
Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x
Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ. Grafy
Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ Grafy Graf efektívne vizuálne nástroje dáta lepšie pochopiteľné graf môže odhaliť trend alebo porovnanie zobrazujú
MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
8. Relácia usporiadania
8. Relácia usporiadania V tejto časti sa budeme venovať ďalšiemu špeciálnemu typu binárnych relácií v množine M - reláciám Najskôr si uvedieme nasledujúce štyri definície. Relácia R definovaná v množine
LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21
Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Matematika B 2. Úvodní informace
Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno
Matice. Matica typu m x n je tabuľka s m riadkami a n stĺpcami amn. a ij. prvok matice, i j udáva pozíciu prvku
Matice Matice Matica typu m x n je tabuľka s m riadkami a n stĺpcami a11 a12... a1 n a21 a22... a2n............ am1 am2... amn a ij prvok matice, i j udáva pozíciu prvku i- čísluje riadky J- čísluje stĺpce
Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
PRIEMYSELNÁ INFORMATIKA DISKRÉTNE LINEÁRNE RIADENIE
e(k 1) e(k) e(k) e(k 1) PRIEMYSELNÁ INFORMATIKA 5.5. Číslicové regulátory Od číslicového regulátora budeme očakávať rovnakú funkciu ako od spojitého regulátora a tou je vstupujúcu regulačnú odchýlku zosilňovať,
11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu
PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 211014 Názov predmetu : Matematika II. Typ predmetu : Povinný Študijný odbor: Všetky odbory bakalárskeho štúdia Zameranie: Ročník : 1. Semester : letný Počet
Série EM588, Série EM589 Digitální teploměr
Před použitím si pečlivě přečtěte tento manuál. Série EM588, Série EM589 Digitální teploměr Úvod Teploměry sérii EM588 a EM589 jsou mikroprocesorem řízené digitální teploměry. Jsou přesné a snadno se ovládají.
Mocninná funkce: Příklad 1
Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.
Paretova analýza Regulačný diagram Bodový diagram
Paretova analýza Regulačný diagram Bodový diagram Doc. Ing. Vladimír Konečný, PhD. Žilinská univerzita v Žiline 9-1 7 základných nástrojov MK Kontrolná tabuľka (kontrolný list) Histogram Diagram príčin
Kombinatorická pravdepodobnosť (opakovanie)
Kombinatorická pravdepodobnosť (opakovanie) Metódy riešenia úloh z pravdepodobnosti a štatistiky Cvičenie 1 Beáta Stehlíková, FMFI UK Bratislava www.iam.fmph.uniba.sk/institute/stehlikova Príklad 1: Zhody
Matematika 2 Průběh funkce
Matematika 2 Průběh funkce Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 1 Základní věty diferenciálního počtu Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09
c ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =
Je to voľne dostupný programový balík (free software), ktorý sa používa na meraniach.
Počítačový program SciDavis Je to voľne dostupný programový balík (free software), ktorý sa používa na meraniach. Zostrojenie grafu z nameraných hodnôt 1. Po otvorení programu SciDavis, do tabuľky zapíšeme
Riešené úlohy Testovania 9/ 2011
Riešené úlohy Testovania 9/ 2011 01. Nájdite číslo, ktoré po vydelení číslom 12 dáva podiel 57 a zvyšok 11. 57x12=684 684+11=695 Skúška: 695:12=57 95 11 01. 6 9 5 02. V sude je 1,5 hektolitra dažďovej
PODPROGRAMY. Vyčlenenie podprogramu a jeho pomenovanie robíme v deklarácii programu a aktiváciu vykonáme volaním podprogramu.
PODPROGRAMY Podprogram je relatívne samostatný čiastočný algoritmus (čiže časť programu, ktorý má vlastnosti malého programu a hlavný program ho môže volať) Spravidla ide o postup, ktorý bude v programe
7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
7.1 Návrhové zobrazenie dotazu
7.1 Návrhové zobrazenie dotazu Ovládanie návrhového zobrazenia, ktoré je jedným z možností zobrazenia dotazu, je nevyhnutné pri tvorbe zložitejších dotazov, pretože v ňom môžeme definovať akýkoľvek dotaz
9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
Základy matematiky pro FEK
Základy matematiky pro FEK 10. přednáška Blanka Šedivá KMA zimní semestr 016/017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 016/017 1 / 1 Použití derivace pro vyšetřování průběhu funkce
Metóda vetiev a hraníc (Branch and Bound Method)
Metóda vetiev a hraníc (Branch and Bound Method) na riešenie úloh celočíselného lineárneho programovania Úloha plánovania výroby s nedeliteľnosťami Podnikateľ vyrába a predáva zemiakové lupienky a hranolčeky
3 Mechanická práca a energia
3 Mechanická práca a energia U áut je bežné hodnotiť ich výkon v jednotke kone. Napríklad podľa výrobcu, model auta Peugeot 07 má výkon 68 koní. Na súťažiach F sú od sezóny 007 používané motory s výkonom
1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
TomTom Referenčná príručka
TomTom Referenčná príručka Obsah Rizikové zóny 3 Rizikové zóny vo Francúzsku... 3 Upozornenia na rizikové zóny... 3 Zmena spôsobu upozornenia... 4 tlačidlo Ohlásiť... 4 Nahlásenie novej rizikovej zóny
PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu
PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 2B001 Názov predmetu : Matematika I. Typ predmetu : Povinný Študijný odbor: Všetky odbory bakalárskeho štúdia SjF Zameranie: Ročník : 1. Semester : zimný Počet
EKONOMICKÁ UNIVERZITA V BRATISLAVE
Metóda dvoch bodov vychádza z lineárneho priebehu nákladov; čiže sa predpokladá sa, že náklady sa menia priamo úmerne so zmenou výšky jednej vopred zvolenej veličiny (najčastejšie objem výroby) predpokladá
Na aute vyfarbi celé predné koleso na zeleno a pneumatiku zadného kolesa vyfarbi na červeno.
Kružnica alebo kruh Aký je rozdiel medzi kružnicou a kruhom si vysvetlíme na kolese auta. Celé koleso je z tohto pohľadu kruh. Pneumatika je obvod celého kolesa obvod kruhu a obvod kruhu nazývame inak
1.1 Příklad z ekonomického prostředí 1
1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a
Základná škola s materskou školou Rabča
Základná škola s materskou školou Rabča Motto: SLUŠNOSŤ A MÚDROSŤ NECH TI OTVORIA BRÁNU DO ŽIVOTA naše motto predstavuje zámer školy postupnými zmenami v ponímaní výchovy a vzdelávania vytvoriť novú modernú
Lineárne nerovnice, lineárna optimalizácia
Opatrenie:. Premena tradičnej škol na modernú Gmnázium Jozefa Gregora Tajovského Lineárne nerovnice, lineárna optimalizácia V tomto tete sa budeme zaoberat najskôr grafickým znázornením riešenia sústav
PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu
PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 3B0100 Názov predmetu : Matematika I. Typ predmetu : Povinný Študijný odbor: Všetky odbory bakalárskeho štúdia EF Zameranie: Ročník : 1. Semester : zimný Počet
Konvexnost, konkávnost
20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R
PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu
PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 2B001 Názov predmetu : Matematika I. Typ predmetu : Povinný Študijný odbor: Všetky odbory externého bakalárskeho štúdia Zameranie: Ročník : 1. Semester : zimný
15. Príkazy vetvenia
Príkaz vetvenia je zložený riadiaci príkaz. Používame ho vtedy, keď potrebujeme, aby sa určitý príkaz alebo príkazy vykonal/vykonali iba vtedy, keď je splnená nejaká podmienka. V programe sa vykoná iba
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Matematická analýza pro informatiky I. Derivace funkce
Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz
Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. 8 Ing. Petra Schreiberová, Ph.D. Ostrava 01 Ing. Petra Schreiberová, Ph.D. Vysoká škola báňská Technická
Operačná analýza 2-12
Operačná analýza 2-12 Teória zásob Úvod Zásoby - skladovaný substrát- predmety, ktoré sú v procese výroby uschované na neskoršiu spotrebu. História 1888 - hľadanie optimálnej výšky peňažných zásob v peňažnom
Model epidemickej choroby (SIR model)
Slovenská technická univerzita v Bratislave Fakulta elektrotechniky a informatiky Katedra matematiky Študentská Vedecká a Odborná Činnosť Model epidemickej choroby (SIR model) autor: konzultant: Pavol
Návrh postupu pre stanovenie počtu odborných zástupcov na prevádzkovanie verejných vodovodov a verejných kanalizácií v správe vodárenských spoločnosti
1 Návrh postupu pre stanovenie počtu odborných zástupcov na prevádzkovanie verejných vodovodov a verejných kanalizácií v správe vodárenských spoločnosti Oprávnenie prevádzkovať verejný vodovod alebo verejnú
Funkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Zmena skupenstva látok
1. Keď má sústava v rovnovážnom stave vo vrtkých častiach rovnaké fyzikálne a chemické vlastnosti, napr. rovnakú hustotu, štruktúru, rovnaké chemické zloženie, nazýva sa fáza. Prechod látky z jednej fázy
1. MAGNETICKÝ INDUKČNÝ TOK
NESTACIONÁRNE MAGNETICKÉ POLE STACIONÁRNE MAGNETICKÉ POLE - je časovo nepremenné, konštantné magnetické pole. Vzniká okolo nepohybujúceho permanentného magnetu alebo okolo nepohybujúceho sa vodiča, ktorým
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Přijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
Fyzika stručne a jasne
Moderné zdeláanie pre edomostnú spoločnosť/projekt je spolufinancoaný zo zdrojo EU Fyzika stručne a jasne Učebný text Tatiana Suranoá 014 Moderné odborné učebne a kalitnejšie zdeláanie pre študento SOŠ
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
Vývoj cien energií vo vybraných krajinách V4
Vývoj cien energií vo vybraných krajinách V4 Ceny energií majú v krajinách V4 stále výrazný proinflačný vplyv. Je to výsledok významných váh energií a ich podielu na celkovom spotrebnom koši v kombinácii
KATEGORIZÁCIA KOLESOVÝCH TRAKTOROV
KATEGORIZÁCIA KOLESOVÝCH TRAKTOROV Traktor znamená každý motorový, kolesový alebo pásový poľnohospodársky alebo lesný traktor s minimálne dvoma nápravami a maximálnou konštrukčnou rýchlosťou najmenej 6
Ak stlačíme OK, prebehne výpočet a v bunke B1 je výsledok.
Hľadanie riešenia: ak poznáme očakávaný výsledok jednoduchého vzorca, ale vstupná hodnota, ktorú potrebujeme k určeniu výsledku je neznáma. Aplikácia Excel hľadá varianty hodnoty v určitej bunke, kým vzorec,
14 SEKUNDOVIEK O FOREXE 1. ČO JE TO FOREX?
1. ČO JE TO FOREX? FOREX = FOREIGN EXCHANGE = VÝMENA PEŇAZÍ. Je obchodovanie s peniazmi, kedy dochádza ku zámene jednej meny za druhú s cieľom profitovať. Je to najväčší finančný trh na svete. Denný obrat
Dodanie tovaru a reťazové obchody Miesto dodania tovaru - 13/1
Dodanie u a reťazové obchody Miesto dodania u - 13/1 ak je dodanie u spojené s odoslaním alebo prepravou u - kde sa nachádza v čase, keď sa odoslanie alebo preprava u osobe, ktorej má byť dodaný, začína
AR, MA a ARMA procesy
Beáta Stehlíková FMFI UK Bratislava Overovanie stacionarity a invertovateľnosti Opakovanie - stacionarita AR procesu Zistite, či je proces x t = 1.2x t 1 + 0.5x t 2 + 0.3x t 3 + u t stacionárny. Napíšte
Funkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
10. cvičení - LS 2017
10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro