Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
|
|
- Blanka Tomanová
- před 8 lety
- Počet zobrazení:
Transkript
1 Funkce jedné reálné proměnné Derivace Přednáška října 2015
2 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce
3 Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární algebra (kap. 2,3) 2 Diferenciální počet: 3 Integrální počet: 4 Opakování středoškolské matematiky
4 Několik pojmů 4/ 41 Číselné množiny 1 Přirozená čísla N = {1, 2, 3,..., n,... } operace: sčítání a násobení 2 Celá čísla Z = {..., n,..., 3, 2, 1, 0, 1, 2, 3,..., n,... } operace: sčítání, odčítání, násobení { } p 3 Racionální čísla Q =, p, q Z, q 0 q (konečný nebo nekonečný periodický desetinný rozvoj) operace: sčítání, odčítání, násobení, dělení 4 Reálná čísla R: množina racionálních a iracionálních čísel (iracionální čísla: nekonečný neperiodický desetinný rozvoj 2, π) 5 Rozšířená množina reálných čísel R = R {, + }
5 Operace s (+ ) a ( ) 5/ 41 1 pro x R definujeme: x + (+ ) = +, x + ( ) =, x (+ ) = x x ( ) = +, + = 0, x = 0 2 (+ ) + (+ ) = +, ( ) + ( ) =, (+ ) ( ) = +, ( ) (+ ) =, (+ ) (+ ) = +, (+ ) ( ) =, ( ) ( ) = + 3 pro x R \ {0} definujeme: pro x > 0 pro x < 0 x (+ ) = + x (+ ) = x ( ) = x ( ) = = + = x x = = + x x 4 nedefinované výrazy: dělení nulou, (+ ) (+ ), ( ) ( ), (+ ) + ( ) ±, 0 (± ), 1 ±, + jsou nevlastní body R
6 Pomocné pojmy 6/ 41 Okoĺı bodu v R Je-li x 0 R, pak okoĺım bodu x 0 nazýváme každý interval (x 0 ε, x 0 + ε), kde ε > 0; značení U ε (x 0 ) nebo U(x 0 ). prstencové okoĺı bodu x 0 R: množina U(x 0 ) \ {x 0 } okoĺı + interval (a, ), a R okoĺı interval (, a), a R levé okoĺı bodu x 0 R: interval (x 0 ε, x 0 ), ε > 0 pravé okoĺı bodu x 0 R: interval (x 0, x 0 + ε), ε > 0 Extrémy množin v R: minimum a maximum maximum množiny M R: číslo y M, takové, že x M : x y. minimum množiny M R: číslo z M, takové, že x M : x y. Ne každá množina v R musí mít extrém (tj. minimum nebo maximum množiny M může, ale nemusí existovat).
7 Pojmy 7/ 41 Funkce (reálná funkce jedné reálné proměnné) na množině D je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. definiční obor D(f ): maximální množina těch x R, pro která má předpis smysl obor hodnot funkce: H(f ) = {y R : x D(f ) : y = f (x)}, graf funkce:g(f ) = {[x, f (x)] R 2 ; x D(f )} rovnost funkcí: f = r [D(f ) = D(g) ( x D(f ) : f (x) = g(x))] funkce zdola, shora omezená funkce rostoucí, klesající, monotónní funkce prostá: x 1, x 2 D(f ), x 1 x 2 : f (x 1 ) f (x 2 ), funkce sudá: x D(f ) : x D(f ) f ( x) = f (x), funkce lichá: x D(f ) : x D(f ) f ( x) = f (x), periodická: T R : x D(f ) : x + T D(f ) f (x + T ) = f (x),
8 Operace s funkcemi 8/ 41 součet funkcí f a g je funkce h: h(x) = f (x) + g(x) pro x D(f ) g(x), analogicky rozdíl, součin funkcí; podíl funkcí f a g je funkce h: h(x) = f (x) pro x [D(f ) D(g)] \ {x D(g) : g(x) = 0}, g(x) absolutní hodnota funkce f je funkce h: h(x) = f (x) pro x D(f ); restrikce funkce (tj. zúžení funkce) Je-li f funkce a A D(f ), pak funkci, definovanou pouze na A, která každému x A přiřazuje tutéž hodnotu jako funkce f (tj. f (x) ), nazýváme restrikcí funkce f na množinu A. složená funkce Jsou-li f a g funkce pro která platí H(g) D(f ), lze definovat složenou funkci h(x) = f (g(x)) pro x D(g). inverzní funkce f 1 k prosté funkci f : x D(f ) : y = f (x) x = f 1 (y), D(f 1 ) = H(f )
9 Transformace grafu funkce 9/ 41 f 1 : y = f(x) f 2 : y = f( x) f 3 : y = f(x) + b f 4 : y = f(x a) f 5 : y = k f(x) f 6 : y = f(mx)
10 Základní elementární funkce Základní elementární funkce: funkce exponenciální a logaritmické, mocninné, goniometrické a cyklometrické, hyperbolické a hyperbolometrické. Elementární funkce: lze vytvořit ze základníıch elementárních funkcí pomocí konečného počtu operací sčítání, odčítání, násobení, dělení a skládání funkcí. logaritmická funkce exponenciální funkce
11
12
13 Eulerovo číslo e, exponenciální funkce e x 13/ 41 ( e= lim ) n e= n n k=0 1 k!
14 Přirozený logaritmus: (ln x) inverzní funkce k e x 14/ 41
15 Mocninná funkce 15/ 41 Obecná mocninná funkce x α je definovaná : x α = e α ln x pro x > 0, α R, D(x α ) = (0, ) Pro některé exponenty α lze D(x α )rozšířit. Mocninná funkce s přirozeným exponentem a n tá odmocnina. Sudé n: inverzní: D(f ) = R, H(f ) = 0, ) D(f ) = 0, ), H(f ) = R
16 Mocninná funkce s přirozeným exponentem a n tá odmocnina (liché n) 16/ 41. D(f ) = R, H(f ) = R D(f ) = R, H(f ) = R
17 Mocninná funkce se záporným celým exponentem 17/ 41 f : y = x n, n N, x R \ {0} lichý exponent sudý exponent D(f ) = R \ {0}, H(f ) = (0, ) D(f ) = R \ {0}, H(f ) = R \ {0}
18 Mocninná funkce s racionálním exponentem 18/ 41 r Q \ Z, r = p, p Z, q N, q 2, p, q : nesoudělná q f : y = x p q = q x p Definiční obor: p > 0, q liché: D(f ) = R p < 0, q liché: D(f ) = R \ {0} p > 0, q sudé: D(f ) = 0, ) p < 0, q sudé: D(f ) = (0, ) Mocninná funkce s reálným exponentem: f : y = x r, x R +, r R \ Q Mocninná funkce s nulovým exponentem: f : y = x r, x R, r = 0 : x 0 = 1
19 Mocninná funkce 19/ 41
20 Goniometrické funkce a cyklometrické funkce 20/ 41 D(f ) : 1, 1, H(f ) : π 2, π 2 D(f ) : 1, 1, H(f ) : 0, π
21 Hyperbolické funkce 21/ 41
22 Hyperbolometrické funkce 22/ 41
23 Definiční obory funkcí : příklady 23/ 41 1 a)y = 1 x b)y = x 1 x 2 4 c)y = x 1 2 a)y = x 2 3x + 2 b)y = 4 x + 1 x 1 c)y = 1 x x a)y = 3 x + 1 x 2 3x + 2 b)y = 5 x 1 c)y = 1 x x a)y = ln(cos x) b)y = ln 5x x 2 4
24 Limita funkce 24/ 41 Vlastní limita funkce ve vlastním bodě lim f (x) = A x x 0 ε R + δ R + x (x 0 δ, x 0 +δ)\{x 0 } : f (x) (A ε, A+ε) Nevlastní limita funkce ve vlastním bodě lim f (x) = + x x 0 M R δ R + x (x 0 δ, x 0 + δ) \ {x 0 } : f (x) > M Vlastní limita funkce ve nevlastním bodě lim f (x) = A x ε R + K R x R : f (x) (A ε, A + ε) Nevlastní limita funkce ve nevlastním bodě lim f (x) = x M R K R xr, x > K : f (x) > M
25 Vlastnosti limit 25/ 41 1 Věta: Necht x 0 R, A R. Limita v bodě x 0 existuje právě tehdy, když v tomto bodě existují obě jednostranné limity a jsou stejné. 2 Věta: Funkce má v bodě x 0 R nejvýše jednu limitu. 3 Věta (Henrich Eduard Heine): Necht x 0 R, A R a funkce f je definovaná na nějakém prstencovém okoĺı bodu x 0. Potom lim x x 0 f (x) = A právě když pro každou posloupnost {x n } takovou, že pro každé n N je x n v tomto prstencovém okoĺı, platí lim x n = x 0 lim f (x n) = A n n 4 Věta: Necht x 0 R a necht existují lim x x0 f (x), lim x x0 g(x). Platí: 1 lim [f (x) ± g(x)] = lim f (x) ± lim x x0 x x0 2 lim f (x)g(x) = lim f (x) lim x x0 x x0 f (x) 3 lim x x0 g(x) = lim x x 0 f (x) lim x x0 g(x) 4 lim x x0 f (x) = lim x x0 f (x) g(x) x x0 g(x) x x0
26 Spojitost funkce 26/ 41 Funkce je spojitá v bodě x 0 R, jestliže platí: lim x x0 f (x) = f (x 0 ) Je-li funkce f spojitá v bodě x 0, potom existuje vlastní limita funkce f v bodě x 0 funkce f je definovaná v bodě x 0 (f (x 0 )) hodnota funkce a její limity se rovnají Vlastnost spojitých funkcí 1 Věta: Necht funkce f a g jsou spojité v bodě x 0 R. Pak i funkce f ± g a f g jsou spojité v bodě x 0. Je-li navíc g(x 0 ) 0, je i funkce f /g spojitá v bodě x 0. 2 Věta: Necht funkce f je spojitá v bodě x 0 R a necht funkce g je spojitá v bodě f (x 0 ). Potom funkce g(f (x)) je spojitá v bodě x 0. 3 Věta: Necht f je základní elementární funkce a necht x 0 je vnitřním bodem definičního oboru D(f ). Potom funkce f je spojitá v bodě x 0.
27 Výpočet limit 27/ 41 Limity funkcí spojitých v bodě: dosazení. Věta o limitě součtu, rozdílu, součinu a podílu. (počítání s ± ) Limita funkcí shodujících se v prstencovém okoĺı bodu (úprava zkrácení rozšíření zlomku vytýkání ) Věta o sevření Věta o součinu nulové a omezené funkce Věta o limitě složené funkce Věta ( o limitě) typu 1/0 ( ) = + 0 =
28 Derivace 28/ 41 Definice: Nectt x 0 D(f ). Existuje-li limita f (x) f (x 0 ) lim, x x 0 x x 0 značíme ji f (x 0 ) a nazýváme derivací funkce f v bodě x 0. Je-li f (x 0 ) R, pak funkce f má v bodě x 0 vlastní derivaci. Je-li f (x 0 ) = ±, pak funkce f má v bodě x 0 nevlastní derivaci. Věta: Má li funkce f v bodě x 0 vlastní derivaci, je v tomto bodě spojitá. Definice: Necht existuje vlastní derivace f (x) funkce f pro všechna x M D(f ). Pak funkci f : y = f (x), x M nazýváme derivací funkce f na M.
29 Pravidla pro derivování 29/ 41 1 (f ± g) (x 0 ) = f (x 0 ) ± g (x 0 ) 2 (fg) (x 0 ) = f (x 0 )g(x 0 ) + f (x 0 )g (x 0 ) ( ) f 3 (x 0 ) = f (x 0 )g(x 0 ) f (x 0 )g (x 0 ) g g 2 (x 0 ) 4 (cf ) (x 0 ) = cf (x 0 ) 5 složená funkce F = f (g(x)), existuje derivace g v bodě x 0 a derivace f v bodě u 0 = g(x 0 ). Potom složená funkce F má derivaci v bodě x 0 a platí F (x 0 ) = f (u 0 ) g (x 0 ) = f (g(x 0 )) g (x 0 ) 6 derivace funkce tvaru f (x) g(x) f (x) g(x) g(x) ln f (x) = e
30 Derivace základních funkcí 30/ 41
31 Tečna a normála 31/ 41 Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y f (x 0 ) = 1 f (x 0 ) (x x 0)
32 Základní věty diferenciálního počtu 32/ 41 Věta o střední hodnotě (Lagrange) Necht funkce f je spojitá v uzavřeném intervalu a, b a necht má derivaci v otevřenén intervalu (a, b). Pak existuje bod ξ (a, b): f (ξ) = f (b) f (a) b a l Hospitalovo pravidlo Necht x 0 R a je splněna jedna z podmínek: lim f (x) = lim g(x) = 0 nebo lim f (x) = lim g(x) = x x0 x x0 x x0 x x0 f (x) Potom existuje-li lim x x0 g (x), existuje i limita lim x x 0 f (x) g(x) a platí lim x x 0 f (x) g(x) = lim x x 0 f (x) g (x)
33 Monotonie, extrémy 33/ 41 Věta. Necht funkce f je spojitá v intervalu I. Pak platí implikace: f > 0 f je v intervalu I rostoucí f 0 f je v intervalu I neklesající f < 0 f je v intervalu I klesající f 0 f je v intervalu I nerostoucí f = 0 f je v intervalu I konstantní Lokální extrémy Funkce má v bodě x 0 lokální minimum (lokální maximum), existuje-li okoĺı P(x 0 ) bodu x 0, že pro všechna x P(x 0 ) platí: f (x) f (x 0 ) (resp. f (x) f (x 0 ). Věta Má-li funkce f v bodě x 0 lokální extrém a existuje-li f (x 0 ), je f (x 0 ) = 0. To znamená, že funkce může nabývat svých lokálních extrémů na intervalu I v těch vnitřních bodech intervalu I, ve kterých: nemá derivaci derivace je rovna nule
34 Konvexní a konkávní funkce 34/ 41 Věta. Necht funkce f je spojitá v intervalu I. Pak platí implikace: f > 0 f je v intervalu I ryze konvexní f 0 f je v intervalu I konvexní f < 0 f je v intervalu I ryze konkávní f 0 f je v intervalu I konkávní f = 0 f je v intervalu I lineární Inflexní bod Bod [x 0, f (x 0 )] je inflexním bodem funkce f, jestliže existuje f (x 0 ) R a funkce f je v nějakém levém okoĺı bodu x 0 ryze konvexní a nějakém pravém okoĺı bodu x 0 ryze konkávní (resp. naopak). (Tj. konvexnost se mění na konkávnost (resp. naopak).)
35 Asymptoty 35/ 41 Rovnice asymptot. svislá: x = x 0, pokud aspoň jedna jednostranná limita pro x x 0 je ± šikmá: y = kx + q, kde k = lim f (x) x, q = lim f (x) kx
36 Průběh funkce 1 Pro funkci určíme: 1 definiční obor D(f ), 2 zda je (není) sudá, lichá, periodická 3 průsečíky s osami souřadnic (pokud existují) 4 jednostranné limity v krajních bodech D(f ) 2 Vypočteme a vyšetříme derivaci f (x) : > 0 f (x) je rostoucí f (x) < 0 f (x) je klesající = 0 stacionární body 3 Vypočteme a vyšetříme druhou derivaci f (x) : > 0 f (x) je ryze konvexní f (x) < 0 f (x) je ryze konkávní = 0 možné inflexní body 4 Najdeme rovnice asymptot. svislá: x = x 0, pokud aspoň jedna jednostranná limita pro x x 0 je ± šikmá: y = kx + q, kde k = lim f (x) x, q = lim f (x) kx 5 Graf.
37 Půběh funkce y = x 2 +1 x Pro funkci určíme: 1 definiční obor D(f ) = (, 1) ( 1, 1) (1, ), 2 zda je sudá: f ( x) = ( x)2 + 1 ( x) 2 1 = x x 2 = f (x) je sudá. 1 Proto vyšetříme průběh pouze na množině 0, 1) (1, + ) 3 průsečíky s osami souřadnic (pokud existují): x = 0 y = 1 Y = [0, 1]; y 0 x D(f ) 4 jednostranné limity v krajních bodech D(f ): x lim x x 2 1 = 1 x lim x 1 + x 2 1 = x (x 1)(x 1) = = + lim x 1 x x 2 1 = x (x 1)(x 1) = 2 0 =
38 Průběh y = x 2 +1 x Určíme derivaci: : 1. a 2. derivace y = 2x(x 2 1) (x 2 + 1) 2x (x 2 1) 2 = 4x (x 2 1) 2 4x (x 2 1) 2 > 0 x (, 1) f (x) je rostoucí x ( 1, 0) f (x) je rostoucí < 0 x (0, 1) f (x) je klesající x (1, ) f (x) je klesající = 0 x = 0 M = [0, 1] lokální maximum 3. Určíme druhou derivaci: y = 4(x 2 1) 2 + 4x 2(x 2 1) 2x (x 2 1) 4 = 12x (x 2 1) 3 12x (x 2 1) 3 > 0 x 2 1 > 0 x (, 1) f (x) je konvexní x (1, ) f (x) je konvexní < 0 x 2 1 < 0 x ( 1, 1) f (x) je konkávní 0 nemá inflexní body
39 Průběh y = x 2 +1 x 2 1 : Asymptoty svislá: x = x 0, pokud aspoň jedna jednostranná limita pro x x 0 je ± x lim x 1 + x 2 1 = lim x x +1 x 2 1 = Tedy přímky x = 1 a x = 1 jsou svislými asymptotami. šikmá: y = kx + q, kde k = lim f (x) x, q = lim f (x) kx f (x) x lim = lim x x x + (x 2 1)x = 0 x lim f (x) 0 x = lim x x x 2 1 = 1 Přímka y = 1 je šikmá asymptota.
40 Globální (absolutní) extrémy Definice: Necht M D(f ) a x 0 M. Funkce f nabývá na množině M globálního maxima (resp. globálního minima) v bodě x 0, jestliže pro všechna x M platí f (x) f (x 0 ) (resp. f (x) f (x 0 )). Spojitá funkce na uzavřeném intervalu a, b nabývá absolutních extrémů. Extrémy mohou být: v bodě lokálního extrému na (a, b) nebo v krajních bodech a, b. Příklad: y = 1 5 (x 2 + 2x) 4 = 1 (x 2 + 2x) 4 5, na intervalu 1, 2. Stacionární body: y 4 = 0 : 5 (x 2 + 2x) 1 5 (2x + 2) = 0 x = 1 Derivace neexistuje (ale funkce je definovaná) ( jmenovatel = 0) x = 0 1, 2, x = 2 1, 2 Hodnoty funkce : a = 1 x = 0 b = 2 f ( 1) = 0 f (0) = 1 f (2) = max min
7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
VíceIX. Vyšetřování průběhu funkce
IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
VíceBakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
VícePříklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )
Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21
Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
VíceVypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
VíceMATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika
VíceDiferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
VíceAplikace derivace a průběh funkce
Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Vícesoubor FUNKCÍ příručka pro studenty
soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá
VícePavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
Více1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
VíceMatematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceMATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
VíceText může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
VíceMatematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
Více0.1 Funkce a její vlastnosti
0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena
VíceMatematika B 2. Úvodní informace
Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 10. přednáška Blanka Šedivá KMA zimní semestr 016/017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 016/017 1 / 1 Použití derivace pro vyšetřování průběhu funkce
VícePosloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
VíceKapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá
VíceFUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
Více(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
VíceVýznam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
VíceDerivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
VíceKapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
VíceMATEMATIKA A Metodický list č. 1
Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači
VíceI. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet
I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x
VíceDIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,
DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, LIMITA FUNKCE, DERIVACE FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století
VíceZlín, 23. října 2011
(. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,
Více1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
VíceFunkce. Limita a spojitost
Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,
VíceMatematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz
VícePožadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15
Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15 Klíčové pojmy Neznalost některého z klíčových pojmů bude mít za následek ukončení zkoušky se známkou neprospěl(a). supremum infimum limita
VíceMatematika I. Funkce jedné proměnné. Funkce jedné proměnné Matematika I 1 / 212
Matematika I Funkce jedné proměnné Funkce jedné proměnné Matematika I 1 / 212 1. Množiny a zobrazení Funkce jedné proměnné Matematika I 2 / 212 Množiny Definice 1.1.1: Množinou rozumíme soubor prvků se
VíceMATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a
MATEMATIKA B metodický list č. 1 Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači se seznámí
VíceVII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
Vícex (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.
1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,
VíceMatematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
VíceKapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
VíceMATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik
MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
VíceLimita a spojitost LDF MENDELU
Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VícePřehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.
Přehled funkcí Martina Hetmerová Gymnázium Přípotoční 1337 Praha 10 Vlastnosti funkcí Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo Zapisujeme: f:y=f(x)
VíceFunkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
VíceMatematika (KMI/PMATE)
Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
VíceKapitola 1: Reálné funkce 1/20
Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli
VíceMatematika 2 Průběh funkce
Matematika 2 Průběh funkce Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 1 Základní věty diferenciálního počtu Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VíceÚvod, základní pojmy, funkce
Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného
VíceSpojitost a limita funkce
Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové
VícePožadavky ke zkoušce. Ukázková písemka
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
VíceDerivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff
Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice
VíceVýsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:
Výsledky Př.. Určete intervaly monotónnosti a lokální extrémy funkce a) y < y > y < y > -2 0 3 Funkce je rostoucí v intervalech. Funkce je klesající v intervalech b) y < y > y < - Funkce je rostoucí v
VíceP ˇ REDNÁŠKA 3 FUNKCE
PŘEDNÁŠKA 3 FUNKCE 3.1 Pojem zobrazení a funkce 2 3 Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic (x, y) A B,
VíceAplikační úlohy z diferenciálního počtu jedné proměnné
Jihočeská univerzita v Českých Budějovicích Fakulta Katedra Bakalářská práce Aplikační úlohy z diferenciálního počtu jedné proměnné Vypracoval: Michaela Jelínková Vedoucí práce: RNDr. Vladimíra Petrášková,
VíceMatematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)
VíceJe založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
Více2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.
MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
Více, f g jsou elementární funkce.
Průběh funkce použité definice a věty Definice. Řekneme, že funkce je spojitá na otevřeném intervalu (a, b), jestliže je spojitá v každém vnitřním bodě tohoto intervalu. Řekneme, že funkce je spojitá na
VíceLogaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.
Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení
VíceOmezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina
Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená
VíceOrganizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova
VícePřijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
VíceMATEMATIKA I - vybrané úlohy ze zkoušek v letech
MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné
VíceExponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.
Exponenciální funkce Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí y = a x Číslo a je kladné číslo, různé od jedničky a xεr. Definičním oborem exponenciální funkce je tedy množina
VíceMatematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/21 Matematická analýza ve Vesmíru. proměnné - p. 2/21 Definice. Funkcí (přesněji:
VícePoužití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT. Monotónie. Konvexita. V této části budou uvedena některá použití derivací.
V této části budou uvedena některá použití derivací. Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou itu zprava. Samozřejmě obdobné tvrzení platí pro itu zleva
VíceZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY VYŠETŘOVÁNÍ PRŮBĚHU FUNKCÍ - ŘEŠENÉ PŘÍKLADY BAKALÁŘSKÁ PRÁCE Lucie Ceplechová Přírodovědná studia, obor
VícePoužití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital
V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí
Více10. cvičení - LS 2017
10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro
VíceFunkce, elementární funkce.
Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
VíceUčební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
VíceMatematická analýza pro informatiky I. Derivace funkce
Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz
VíceMetody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
VíceUniverzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční
VíceMatematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné)
Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné) 0. Úvod a opakování (značení, operace s množinami apod.) 1. Reálná čísla a jejich vlastnosti Uspořádané těleso Komutativní
VíceFunkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
VíceMatematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
VícePoznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.
2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VíceMATEMATIKA I. Marcela Rabasová
MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.
VíceKFC/SEM, KFC/SEMA Elementární funkce
Elementární funkce Požadované dovednosti: lineární funkce kvadratická funkce mocniná funkce funkce s asolutní hodnotou lineárně lomená funkce exponenciální a logaritmická funkce transformace grafu Lineární
Více