14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce
|
|
- Mária Štěpánková
- před 6 lety
- Počet zobrazení:
Transkript
1 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní používáme k popisu chování funkce na nějakém intervalu (po kterém se pohbujeme zleva doprava, jak je přirozené). Intuitivní představu těchto pojmů si každý udělá z Obrázku.. Obr..: Rostoucí, klesající a konstantní funkce Nní tto pojm definujme precizněji a definici ilustrujme na Obrázku.. Definice.. Nechť funkce = f(x) je definovaná na nějakém intervalu I. Nechť x, x jsou hodnot z tohoto intervalu. Potom řekneme, že a) f(x) je rostoucí na intervalu I, jestliže pro každé x < x platí f(x ) < f(x ). b) f(x) je klesající na intervalu I, jestliže pro každé x < x platí f(x ) > f(x ). c) f(x) je konstantní na intervalu I, jestliže pro libovolné x, x platí f(x ) = f(x ). Obr..: Růst a klesání podle definice Poznámka.. Nechť funkce = f(x) je definovaná na nějakém intervalu I. Nechť x, x jsou hodnot z tohoto intervalu. Potom řekneme, že a) f(x) je neklesající na intervalu I, jestliže pro každé x < x platí f(x ) f(x ). b) f(x) je nerostoucí na intervalu I, jestliže pro každé x < x platí f(x ) f(x ). ÚM FSI VUT v Brně 59
2 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text Podívejme se na funkci rostoucí, klesající a konstantní z hlediska derivací. Konkrétně nás budou zajímat znaménka derivací v bodech funkce. Hodnota derivace funkce = f(x) v bodě x 0 udává směrnici tečn ke grafu funkce = f(x) v bodě x 0. Názorně je situace uvedena na Obrázku., a proto nás nepřekvapí následující věta. Věta.. Nechť = f(x) je funkce spojitá na uzavřeném intervalu a, b a diferencovatelná na otevřeném intervalu (a, b). a) Je-li f (x) > 0 pro všechna x (a, b), potom je f(x) rostoucí na a, b. a) Je-li f (x) < 0 pro všechna x (a, b), potom je f(x) klesající na a, b. a) Je-li f (x) = 0 pro všechna x (a, b), potom je f(x) konstantní na a, b. Obr..: Růst a klesání znaménka derivací Poznámka.. Směrnice přímk = kx + q (tj. číslo k) je definována jako tangenta úhlu α, který tato přímka svírá s kladným směrem os x. Hodnotu měřenou proti směru otáčení hodinových ručiček považujeme za kladnou, hodnotu měřenou po směru otáčení hodinových ručiček považujeme za zápornou. Tak například hodnot 0 o a 50 o udávají směr stejné přímk. Podívejte se na příklad na Obrázku.. Obr..: Směrnice přímk Příklad.5. Určete interval, ve kterých jsou následující funkce rostoucí, a ve kterých jsou klesající. Namalujte nejprve obrázek, z něj včtěte řešení a výsledek potvrďte výpočtem. a) f(x) = x x +, b) f(x) = x. ÚM FSI VUT v Brně 60
3 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text Řešení. a) Z grafu funkce f(x) na Obrázku.5 vidíme, že funkce je klesající pro x a rostoucí pro x. Pro určení řešení výpočtem potřebujeme derivaci funkce f(x), tj. f (x) = x = (x ). Odtud vplývá, že f (x) < 0 pro < x <, a proto podle Vět. je funkce klesající na (,. f (x) > 0 pro < x <, a proto je funkce rostoucí na, ). b) Z grafu funkce f(x) na Obrázku. vidíme, že funkce je rostoucí pro všechna x (, ). Spočtěme derivaci funkce f(x), tj. f (x) = x. Odtud vplývá, že f (x) > 0 pro < x < 0, f (x) > 0 pro 0 < x <, a proto je funkce rostoucí na (, ) x Obr..5: f(x) = x x + 0 x Obr..6: f(x) = x Příklad.6. a) Za pomoci grafu (viz Obrázek.6) funkce f(x) = x + x x + odhadněte, ve kterých intervalech je funkce rostoucí a kd klesající. b) Užitím Vět. potvrďte váš odhad. Řešení. a) Z grafu funkce f(x) na Obrázku.6 vidíme, že funkce je klesající pro x, rostoucí pro x 0, klesající pro 0 x a rostoucí pro x x Obr..7: f(x) = x + x x + ÚM FSI VUT v Brně 6
4 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text b) Derivací funkčního předpisu dostáváme f (x) = x + x x = x(x + x ) = x(x + )(x ). Analzujme nní znaménka jednotlivých členů (tj. jednotlivých závorek ) a odtud odvoďme znaménko pro f (x). interval (x)(x + )(x ) znaménko f (x) závěr x < ( )( )( ) f(x) je na (, klesající < x < 0 ( )(+)( ) + f(x) je na, 0 rostoucí 0 < x < (+)(+)( ) f(x) je na 0, klesající x > (+)(+)(+) + f(x) je na, ) rostoucí B. Lokální extrém funkce Definice.7. Řekneme, že funkce f má v bodě x 0 R lokální maximum (resp. lokální minimum) právě kdž existuje rzí okolí O(x 0 ) {x 0 } takové, že O(x 0 ) {x 0 } D(f) a zároveň pro x O(x 0 ) {x 0 } platí f(x) f(x 0 ), resp. f(x) f(x 0 ). Analogick definujeme ostré lokální maximum, pro které platí f(x) < f(x 0 ) a ostré lokální minimum, pro které platí f(x) > f(x 0 ). Definice.8. Nechť funkce f má v bodě x 0 R derivaci f (x 0 ). Bod, pro které platí f (x 0 ) = 0 nazveme stacionární bod. Jinými slov můžeme říci, že stacionární bod jsou bod, podezřelé z etrému. Lokální extrém v nich nasat může, ale také nemusí. Blo b jistě nepraktické, kdbchom lokální extrém všetřovali pomocí funkčních hodnot v jejich rzím okolí. Přesto je to možné, pokud si uvědomíme vazbu na růst a klesání funkce a tím pádem i na znaménko první derivace (tj. sgnf (x)). Velký pozor si ovšem musíme dát na bod, ve kterých první derivace neexistuje. I to jsou potenciální adepti na extrém. C. Konvexní a konkávní funkce Znaménko derivace funkce f(x) nám prozradí, kde je graf funkce rostoucí a kde klesající. Ovšem nic nám neřekne o způsobu zakřivení. Podívejme se například na Obrázek.8. Graf je rostoucí vlevo i vpravo od vznačeného bodu. Ovšem vlevo leží nad tečnou a vpravo pod tečnou sestrojenou v tomto bodě. Obr..8: Konvexní nad tečnou, konkávní pod tečnou Definice.9. Leží-li graf funkce f(x) na nějakém okolí bodu B nad tečnou sestrojenou v tomto bodě, řekneme, že f(x) je konvexní v bodě B. Leží-li graf funkce f(x) pod tečnou, řekneme, že f(x) je konkávní v bodě B. ÚM FSI VUT v Brně 6
5 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text Potřebujeme ovšem nějaký spolehlivý nástroj, který lze snadno použít při výpočtech. Ten nám dává následující věta. Věta.0. Nechť je funkce f(x) dvakrát diferencovatelná na nějakém intervalu I. a) Je-li f (x) > 0 na I, pak je f(x) konvexní na intervalu I. b) Je-li f (x) < 0 na I, pak je f(x) konkávní na intervalu I. Příklad.. Najděte interval, na kterých jsou funkce konvexní, a na kterých jsou konkávní. a) f(x) = x x +, b) f(x) = x, c) f(x) = x x +. Řešení. a) Výpočtem prvních dvou derivací získáme f (x) = x a f (x) =. Vzhledem k tomu, že f (x) > 0 pro všechna x, je funkce f(x) konvexní na (, ). To souhlasí se situací na Obrázku x Obr..9: f(x) = x x + 0 x Obr..0: f(x) = x b) Výpočtem prvních dvou derivací získáme f (x) = x a f (x) = 6x. Vidíme, že f (x) < 0 pro x < 0 a f (x) > 0 pro x > 0. Ted funkce f(x) je konkávní na (, 0 a konvexní na 0, ). To souhlasí se situací na Obrázku.. c) Výpočtem prvních dvou derivací získáme f (x) = x 6x a f (x) = 6x 6 = 6(x ). Vidíme, že f (x) < 0 pro x > a f (x) > 0 pro x <. Ted funkce f(x) je konkávní na (, a konvexní na, ). To souhlasí se situací na Obrázku.. 0 x Obr..: f(x) = x x + ÚM FSI VUT v Brně 6
6 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text Věta.. Nechť x 0 je stacionární bod funkce f(x).. Platí-li f (x 0 ) = 0 f (x 0 ) > 0, pak je v bodě x 0 ostré lokální minimum.. Platí-li f (x 0 ) = 0 f (x 0 ) < 0, pak je v bodě x 0 ostré lokální maximum. D. Globální (absolutní) extrém funkce Definice.. Nechť f(x) je funkce a M D(f). Jestliže existuje bod x 0 M tak, že pro všechna x M platí f(x) f(x 0 ) (resp. f(x) f(x 0 )), pak řekneme, že funkce f(x) nabývá v bodě x 0 globálního maxima (resp. globálního minima) na množině M. Někd se místo pojmu globální minimum nebo maximum používá pojem absolutní minimum nebo maximum. Věta.. Je-li f(x) spojitá na a, b, pak na a, b nabývá globálních extrémů a to buď v bodech lokálních extrémů nebo v krajních bodech intervalu. Poznámka.5. Při všetřování globálních extrémů na uzavřeném intervalu se postupuje tak, že všetříme nejprve lokální extrém a určíme i jejich funkční hodnot. Tto funkční hodnot pak porovnáme s funkčními hodnotami v krajních bodech intervalu. Nejvšší funkční hodnota určí bod, ve kterém nastává globální maximum a nejnižší funkční hodnota určí bod, ve kterém nastává globální minimum. Pozor, globální extrém může nastat současně ve více bodech. E. Inflexní bod Bodům, ve kterých graf přechází z konvexního na konkávní a naopak, budeme věnovat zvláštní pozornost. Definice.6. Přechází-li graf spojité funkce f(x) v bodě B = [x 0, f(x 0 )] z jedné stran tečn na druhou, říkáme, že f(x) má v bodě B (tj. pro x 0 ) inflexní bod. Viz Obrázek.. Obr..: Inflexní bod podle definice Příklad.7. Například funkce f(x) = x má inflexní bod pro x = 0, tj. v bodě [0, 0] (viz Obrázek.). Funkce f(x) = x x + má inflexní bod pro x =, tj. v bodě [, ] (viz Obrázek.). Funkce f(x) = x x + nemá žádné inflexní bod (viz Obrázek.5). ÚM FSI VUT v Brně 6
7 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text 0 x Obr..: f(x) = x 0 x Obr..: f(x) = x x x Obr..5: f(x) = x x x Obr..6: f(x) = x + x x + Příklad.8. Použijte Obrázek.6 k hrubému odhadu souřadnic inflexních bodů funkce f(x) = x + x x + a zkontrolujte své odhad výpočtem. Řešení. Graf přechází z konvexního na konkávní někde mezi a, řekněme zhruba pro x =, 5 a z konkávního na konvexní někde mezi 0 a, řekněme pro x = 0, 5. Pro přesný výpočet inflexního bodu potřebujeme druhou derivaci funkce f(x). f (x) = x + x x a f (x) = 6x + x = (x + x ). Položíme druhou derivaci rovnu nule, tj. x + x = 0. A zjistíme bod, kde se mění funkce z konvexní na konkávní, nebo naopak. To nastává pro x = 7, a pro x = + 7 0, 55. Pro úplnost výpočet doplníme tabulkou. interval znaménko f (x) závěr x < 7 + f(x) je na (, 7 konvexní 7 < x < + 7 f(x) je na 7, + 7 konkávní x > f(x) je na + 7, ) konvexní ÚM FSI VUT v Brně 65
8 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text Příklad.9. Najděte inflexní bod funkce f(x) = sin x na intervalu 0, π. Na závěr výsledk porovnejte s grafem Řešení. Výpočtem prvních dvou derivací obdržíme f (x) = cos x a f (x) = sin(x). Ted f (x) < 0 pro 0 < x < π a f (x) > 0 pro π < x < π. Což implikuje, že graf je konkávní pro 0 < x < π a konvexní pro π < x < π, a ted inflexní bod je pro x = π,, tj. v bodě [π, 0]. To souhlasí s Obrázkem x Obr..7: f(x) = sin x, 0 x π 0 x Obr..8: f(x) = x Poznámka.0. V předchozích příkladech inflexní bod funkce f(x) splňoval podmínku f (x) = 0. Pokaždé však z f (x) = 0 neplne, že b v daném bodě musel být inflexní bod. Ukažme si to na následujícím příkladu. Příklad.. Najděte inflexní bod (pokud vůbec existuje) funkce f(x) = x. Řešení. Výpočtem prvních dvou derivací obdržíme f (x) = x a f (x) = x. Ted f (x) > 0 pro každé x (, ), proto je funkce konvexní na (, ) a tudíž nemá žádné inflexní bod. Upozorněme na skutečnost, že pro x = 0 sice platí, že f (x) = 0, ale o inflexní bod nejde, viz Obrázek.8. Dosud jsme o inflexních bodech mluvili jen v souvislosti se změnou funkce z konvexní ne konkávní a naopak. Uvědomme si, že inflexní bod jsou bod na křivce, ve kterých se mění směrnice tečen. Je-li funkce konvexní, směrnice, tečen narůstá a je-li konkávní, tak směrnice tečen klesá. (Viz Obrázek.9.) Ukažme si to na příkladu z fzik. Obr..9: Konvexní a konkávní podle směrnic tečen ÚM FSI VUT v Brně 66
9 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text Příklad.. Předpokládejme, že voda je nalitá do lahve, která má tvar jako na Obrázku.0 a její objem narůstá konstantní rchlostí. Pozorujme, jak při této rchlosti narůstá výška hladin vzhledem k času t. Zpočátku se bude výška hladin zvšovat pomalu, protože láhev má širokou podstavu. Se zužováním láhve se bude výška hladin zvšovat rchleji až do nejužšího místa, kterým je hrdlo. Od té chvíle se bude výška hladin zvšovat pomaleji, protože se láhev opět rozšiřuje. Tudíž hrdlo je bodem, ve kterém se mění rchlost změn výšk hladin v závislosti na čase t z rostoucí na klesající. Obr..0: Výška hladin v láhvi v závislosti na čase Při všetřování průběhu funkce je třeba mít v ruce snadný rozhodovací aparát. Tím je následující věta. Věta.. Je-li f (x 0 ) = 0 f (x 0 ) 0, pak je x 0 inflexní bod. Poznamenejme, že inflexní bod může funkce f(x) mít buď v bodech, kde f (x 0 ) = 0 nebo v bodech, kde f (x) neexistuje. F. Asmptot Názorně si pod pojmem asmptota představujeme přímku, ke které se graf funkce f(x) nekonečně blíží. Při bližším pohledu si uvědomíme, že tto přímk můžeme rozdělit na dva případ:. Buď přímka, která je asptotou směrnici nemá (např. asmptot funkce f(x) = tg x).. Nebo přímka asmptotu má (například u hperbol). Poznámka.. Přímka, která směrnici nemá (tj. přímka bez směrnice) má rovnici x = x 0, kde x 0 R. Graf přímk bez směrnice je přímka kolmá k ose x (tzn. je rovnoběžná s osou ). Definice.5. Přímka x = x 0 se nazývá asmptota bez směrnice právě kdž funkce f(x) má nevlastní limitu (tj. ± ) v bodě x 0 zleva nebo zprava. Poznámka.6. Bod na ose x, které jsou podezřelé z toho, že jimi prochází asmptota bez směrnice jsou bod vřazené z definičního oboru D(f). Například je-li pro nějakou funkce f(x) definičním oborem D(f) = R { }, pak při všetřování asmptot bez směrnice počítáme tto dvě jednostranné limi lim f(x) =..., x + lim f(x) =... x Pokud alespoň jedna z nich vjde + nebo, pak je přímka x = asmptotou bez směrnice. ÚM FSI VUT v Brně 67
10 . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text Poznámka.7. Asmptot bez směrnice může být nekonečně mnoho, viz graf funkce f(x) = tg x. Definice.8. Nechť u je přímka, která není rovnoběžná s osou. Nechť d(x) značí vzdálenost bodu [x, f(x)] od této přímk. Řekneme, že přímka u je asmptota se směrnicí právě kdž d(x) = 0 nebo lim d(x) = 0. x lim x Poznámka.9. Libovolná funkce f(x) může mít maximálně dvě asmptot se směrnicí. Při všetřování asmptot se směrnicí u funkce f(x) hledáme ve skutečnosti přímku = kx+q. Při výpočtu směrnice a posunutí vužijeme následující tvrzení. Věta.0. Přímk = k x + q a = k x + q jsou asmptotou se směrnicí funkce f(x) právě kdž existují vlastní čísla k, a q, (tj. čísla různá od ± ) taková, že platí a q, = k, = f(x) lim x ± x (.) lim f(x) k,x (.) x ± ÚM FSI VUT v Brně 68
IX. Vyšetřování průběhu funkce
IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21
Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceDiferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
VíceFunkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
Více7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
VícePrůběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:
Průběh funkce Průběh funkce Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:. Určení definičního oboru. 2. Rozhodnutí, jestli je funkce sudá, lichá, periodická nebo nemá ani
Více{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
VíceAplikace derivace a průběh funkce
Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
VíceDerivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
VíceMATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
VícePříklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )
Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 10. přednáška Blanka Šedivá KMA zimní semestr 016/017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 016/017 1 / 1 Použití derivace pro vyšetřování průběhu funkce
VícePavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
VíceZlín, 23. října 2011
(. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,
VíceMatematika 2 Průběh funkce
Matematika 2 Průběh funkce Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 1 Základní věty diferenciálního počtu Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
Více5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
VíceDerivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff
Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných
VíceMonotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
Více[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu
1..1 Průběh funkce III (prohnutí Předpoklad: 111 Pedagogická poznámka: Při poctivém probírání b tato látka zabrala dvě celé vučovací hodin. Studenti z toho nebudou příliš nadšení, je zde příliš mnoho definic
VíceStručný přehled učiva
Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném
Více2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost
.7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,
VíceD(f) =( 1, 1) [ ( 1, 1) [ (1, 1). 2( x)3 ( x) 2 1 = 2(x) 3. (x) 2 1 = f(x) Funkce je lichá, není periodická
Vyšetříme funkci f(x): f(x) = 2x3.. Stanovme definiční obor funkce D(f) a zjistíme,ve kterých bodech je funkce sojitá D(f) =(, ) [ (, ) [ (, ). 2. Počítáme f( x) = 2( x)3 ( x) 2 = 2(x) 3 (x) 2 = f(x) Funkce
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VíceRolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b
Průběh unkce Rolleova věta Mějme unkci, která má tto vlastnosti : a) je spojitá v a, b b) v každém bodě a,b má derivaci c) (a) = (b). b Potom eistuje v a, alespoň jeden bod c, v němž ( c) : 1, 3 0 1 1
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VíceDefinice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
VíceJAK ČTEME Z DERIVACÍ PRŮBĚH PŮVODNÍCH FUNKCÍ? Pozn: veškeré funkce mají ve vnitřních bodech definičního oboru první derivaci. 1.
JAK ČTEME Z DERIVACÍ PRŮBĚH PŮVODNÍCH FUNKCÍ? Pozn: veškeré funkce mají ve vnitřních bodech definičního oboru první derivaci. 1. Monotonie (1) Dostaneme zadanou např. funkci y = sin x. (2) Když si funkci
VíceVýsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:
Výsledky Př.. Určete intervaly monotónnosti a lokální extrémy funkce a) y < y > y < y > -2 0 3 Funkce je rostoucí v intervalech. Funkce je klesající v intervalech b) y < y > y < - Funkce je rostoucí v
VíceVypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
Více1.1 Příklad z ekonomického prostředí 1
1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a
Více, f g jsou elementární funkce.
Průběh funkce použité definice a věty Definice. Řekneme, že funkce je spojitá na otevřeném intervalu (a, b), jestliže je spojitá v každém vnitřním bodě tohoto intervalu. Řekneme, že funkce je spojitá na
Vícec ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =
VíceKonvexnost, konkávnost
20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R
VíceOznačení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).
9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)
VíceMatematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceMatematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
VíceFunkce dvou a více proměnných
Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:
VíceMatematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
VíceMatematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Více10. cvičení - LS 2017
10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro
VíceJe založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
VíceLineární funkce, rovnice a nerovnice
Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je
Více22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace
22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech
VíceMatematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Více1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
Více1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
VíceZavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
VíceDiferenciální počet funkce jedné proměnné 1
Diferenciální počet funkce jedné proměnné Limita funkce Pojem limita můžeme česk vjádřit jako mez, případně hranice Zavedení pojmu limita si objasníme na příkladu Příklad : Funkce f ( ) Obr 6: Graf funkce
VíceMatematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceDerivace vyšších řádů, aplikace derivací
Derivace vyšších řádů, aplikace derivací Značení derivací vyšších řádů Máme funkci f: y = f x f x druhá derivace funkce y = f x f k x k-tá derivace funkce y = f x Derivace vyšších řádů počítáme opakovaným
Více2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
VíceMASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii
MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou
VícePřednáška 11, 12. prosince Část 5: derivace funkce
Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,
VíceVzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
VíceBakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
VíceNMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8
VíceFunkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
VíceDIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,
DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, LIMITA FUNKCE, DERIVACE FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
VíceOtázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
Vícef( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
VíceLOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce
VíceMATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
VíceDerivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
VícePřijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
VícePrůvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
VícePřijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;
VícePřijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
VícePřijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
VícePřijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný
VíceDerivace a průběh funkce příklady z písemných prací
Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±
Více6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH
Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle
Více1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
VíceI. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
VíceVýznam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
VíceVypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VícePísemná zkouška z Matematiky II pro FSV vzor
Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,
VícePoznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.
@083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x
VíceFUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
VíceExtrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Vícefakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz
VícePoužití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT. Monotónie. Konvexita. V této části budou uvedena některá použití derivací.
V této části budou uvedena některá použití derivací. Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou itu zprava. Samozřejmě obdobné tvrzení platí pro itu zleva
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceMATEMATIKA I - vybrané úlohy ze zkoušek v letech
MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné
VíceFunkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
Vícey = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).
III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce
Více1. Definiční obor funkce dvou proměnných
Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou
VíceMatematika B 2. Úvodní informace
Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno
VíceMatematická analýza pro informatiky I. Derivace funkce
Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz
VíceAplikace derivace ( )
Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické
VíceVIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Více