8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální roblé eretua obile, jehož existence by řestala být absolutně nesyslná. Max Planck Následující text navazuje na ředchozí 7. kaitolu, která ojednávala ředevší o energii a transforaci energie z hlediska terodynaiky. Nyní se budee zabývat alikacei terodynaických zákonů a entroií. 8. Ideální lyn a alikace rvního zákona terodynaiky Pro zjednodušení dalšího výkladu je nutné si zavést a definovat oje ideálního lynu. Molekuly ideálního stejnorodého lynu ovažujee za kuličky o stejné velikosti a hotnosti. Jsou dokonale ružné a jejich rozěry jsou vzhlede k rostoru, ve které se ohybují, zanedbatelně alé. Při srážkách olekul ulatňujee zákony echaniky - zákon zachování hybnosti a zachování energie. Dále zanedbáváe vzájená ůsobení olekul a tedy neuvažujee otenciální energii, takže vnitřní energie soustavy ideálního lynu je tvořena součte kinetických energií translačního ohybu olekul soustavy. Pokud se ideální lyn nachází v terodynaické rovnováze latí důležitá věta: Rovnoěrné rozložení olekul lynu, ři něž je v každé objeové jednotce týž očet olekul, je nejravděodobnější, takže ředstavuje rovnovážné rozdělení olekul, v něž se lyn vždy ustálí.
Hustota lynu je ak v každé ístě a čase stejná. Reálné lyny (nař. vodík, dusík, kyslík) se ři alých tlacích a nízkých hustotách chovají jako ideální. Stavová rovnice ideálního lynu Stav každé terodynaické soustavy je v dané čase určen stavovýi veličinai (tlak-, obje-, telota-, látkové nožství-n). Uvažuje nyní o lynné soustavě, která ři telotě a tlaku zaujíá obje. Dříve než uvedee tvar stavové rovnice, seznáíe se s eiricky odvozenýi zákony, které udávají vztah ezi dvěa stavovýi veličinai za ředokladu, že jedna z nich se neění. (a) Zákon Boyle-Marriotův vyjadřuje závislost ezi tlake a objee ři stálé telotě (konst.) a je vyjádřen vztahe:. konst. (8.) nebo-li., konst. (8.). Zěna stavu lynu ři konstantní telotě se nazývá zěna izoterická. Graficky se jedná o závislost () vyjádřené rovnoosou hyerbolou, kterou nazýváe izotera (viz obr. 8..). > konst konst Obr 8..: P diagra izoterické exanze ideálního lynu
(b) Zákony Gay-Lussacův a Charlesův analogicky vyjadřují závislost objeu na telotě lynu ři konstantní tlaku a závislost tlaku lynu na telotě ři konstantní objeu. Pro rvní říad ůžee tedy sát:, konst., (8.3) nebo-li obje lynu ři stálé tlaku je řío úěrný absolutní telotě. ento říad nazýváe izobarickou zěnou a říka závislosti () je izobara (viz obr. 8.. A). Pro druhý říad analogicky latí:, konst., (8.) nebo-li tlak lynu za stálého objeu je řío úěrný absolutní telotě. akový roces ak nazvee izochorickou zěnou a říka závislosti () je izochora (viz obr. 8.. B). ýše uvedené zákony latí jen ro ideální lyn. konst. konst. K K (A) (B) Obr. 8..: (A) izobarická zěna, (B) izochorická zěna Převeďe nyní lyn do stavu charakterizovaného veličinai, ři konst. Jde tedy o izochorickou zěnu, ro kterou v toto říadě latí:. (8.5) Dále rovedee izoterickou zěnu, ři které se zění tlak z hodnoty na a obje z hodnoty na. Následně ůžee nasat rovnici:. (8.6) 3
Dosadíe-li rovnici 8.5 do rovnice 8.6 dostanee stavovou rovnici ro ideální lyn: nebo konst. (8.7) Z řednášek z cheie víe, že odle Avogadrova zákona zaujíá jeden ol libovolného lynu ři dané tlaku a telotě vždy stejný obje. Naříklad ol libovolného lynu za norálních odínek, tj. ři 73K a tlaku,3. 5 Pa zaujíá obje,d 3, takže oto ůžee nasat rovnici 8.7 jako:, (8.8) R kde R je olární lynová konstanta (R [,3. 5 Pa.,. -3 3 ]/73K8,3JK - ol - ). Rovnice 8.8 latí ro ol lynu. Pokud chcee zobecnit rovnici ro n olů lynu, usíe dosadit za obje veličinu olárního objeu (definovaný vztahe /) a rovnice dostane následující tvar: kde n je očet olů. nr, (8.9) Měrná a olární teelná kaacita Na základě rovnice 7.9, kde jse nevzali v úvahu infinitesiální zěny, lze nasat obecnější výraz ro teelnou kaacitu soustavy a následně i ro ěrnou teelnou kaacitu: d K, (8.) d d c. (8.) d Měrná teelná kaacita lynů odstatně závisí na to, jaké zěně je lyn ři zahřívání odroben a nabývá roto různých hodnot. Pokud se ři zahřívání neění tlak lynu ale ouze jeho obje, hovoříe o ěrné teelné kaacitě za konstantního tlaku (c ). Analogicky - neění-li se obje lynu ale jen tlak, luvíe o ěrné teelné kaacitě za konstantního objeu (c ). Poěr těchto kaacit se nazývá Poissonova konstanta, kterou využijee ozději ři výkladu adiabatického děje: c. (8.) c
U všech látek je c >c, je tedy vždy >. Pro terodynaické úvahy zavádíe ještě oje olární teelná kaacita: d d za konstantního tlaku C a za konstantního objeu C, (8.3) n d n d kde n je látkové nožství. Alikace rvního zákona terodynaiky Budee-li zabývat izochorický děje, ři které soustava řijíá telo δ a její telota se zvýší o d, ak se získané telo sotřebuje ouze na zvýšení vnitřní energie, rotože d je rovno nule (obje se neění). o znaená, že v rovnici 7. rvního terodynaického zákona vyadne člen ro ráci: de vnitřní δ. yjádříe-li telo oocí olární teelné kaacity (8.3) a za tlak dosadíe do rovnice 7. výsledek ze stavové rovnice, lze nasat rvní větu terodynaiky ro n olů lynu jako: d δ C d + nr (8.) terodynaice rozlišujee čtyři základní terodynaické děje. Proveďe nyní diskuzi jednotlivých rocesů: (a) Děj izochorický - zde je konst., tzn., že d, lyn nekoná ráci a tedy: k devnitřni C d C ( k ), (8.5) kde je očáteční k konečná telota. (b) Děj izobarický - zde je konst., ale obje se ění, tudíž člen ro ráci je nenulový a soustava koná ráci roti vnější silá, ale zároveň i roste její vnitřní energie: k k devnitřni + δ C d + d C ( k ) + ( k ). (8.6) elo získané výěnou s okolí se rovná zvýšení jeho vnitřní energie a ráci, kterou soustava vykoná roti vnější silá. (c) Děj izoterický - zde je konst., tzn., že d nebo-li C d, ůžee I. zákon terodynaiky řesat do tvaru: δ d d. (8.7) 5
Při izoterické ději se telo získané soustavou výěnou s okolí sotřebuje jen na vykonání ráce a vnitřní energie se neění, tzn.: d. (8.8) zhlede k tou, že tlak není konstantní a je funkcí objeu, lze ho vyjádřit oocí stavové rovnice ( R /), kterou dosadíe do rovnice (8.8): R d R ln. (8.9) říadě, že soustava koná ráci, a obje se zvětšuje ( > ), jedná se o izoterickou exanzi, ři níž soustava řijíá z okolí telo (+δ) a koná stejnou ráci (-δ), tedy δ -δ. Pokud se obje soustavy zenšuje jde o izoterickou koresi, ( < ), ři níž je ráce sotřebována (+δ) a soustava dodává do okolí telo (-δ), tedy -δ δ. (d) Děj adiabatický Nyní řeše izolovanou soustavu, která si s okolí neůže vyěňovat telo, tzn, že δ. Z rvní věty lyne: δ de. (8.) ýraz 8. znaená, že ři adiabatické ději soustava koná ráci na úkor své vnitřní energie a latí: vnitřni C d C d C ( ) C ( ). (8.) δ Pokud je ráce vykonaná soustavou kladná, hovoříe o adiabatické exanzi, ři níž klesne telota ( > ) a vnitřní energie soustavy se zenší. Pokud je ráce záorná, jedná se o adiabatickou koresi, ři níž je vykonána ráce (okolí) na soustavě, telota soustavy vzroste ( > ) a vnitřní energie se zvýší. Odvoďe si nyní vztah ro závislost tlaku na objeu ři adiabatické ději. Z rovnice 8. lyne: C d + d. (8.) Protože tato rovnice 8. obsahuje tři stavové veličiny, vyjádříe si telotu (d) oocí objeu a tlaku ze stavové rovnice, ze které diferenciací dostanee: d + d d + d Rd d. (8.3) R 6
Dosadíe-li za d do rovnice 8., dostanee: C ( C d + d + d R + R d kterou zintegrujee: )d + C d +, d Použijee-li tzv. Mayerův vztah (bez odvození: C C +R ) a vydělíe C, ůžee oocí rovnice 8. ro Poissonovu konstantu vyjádřit rovnici: d + d, ln + ln ln K, a následně o odlogaritování dostanee: konst., (8.) což je rovnice ro adiabatický děj, která se nazývá Poissonova rovnice. ato rovnice udává závislost ezi tlake a objee. zhlede k tou, že telota zde není konstantní je často vhodné vyjádřit si závislosti ezi objee a telotou a ezi tlake a telotou. Uvedee si zde tyto závislosti alesoň bez odvození: a (8.5) Grafický vyjádření rovnice 8. je křivka, kterou nazýváe adiabata (viz. obr. 8..3). Poissonova rovnice řioíná svý tvare rovnici Boyle-Mariotteovu ro izoterický děj. Obě rovnice vyjadřují funkční závislost (). Nicéně, C > C a tedy >. Stlačíe-li lyn z objeu na adiabaticky, vzroste tlak lynu více, kdyby korese roběhla izotericky. Obr. 8..3: Srovnání adiabaty s izoterou. 7
8. Kruhový děj, ráce lynu a Carnotův cyklus Kruhový děje rozuíe roces, ři které soustava rochází rocese s určitý očte stavových zěn, řičež se nakonec vrací zět do ůvodního stavu. Jedná se tedy o děj, kdy se neění vnitřní energie systéu: d E d E. (8.6) vnitřni vnitřni Systé však ůže v některých fázích kruhového děje řijíat z okolí telo (+ ) a v jiných fázích telo odevzdávat okolí (- ). Celkové řijaté telo je oto - a užití II. zákona terodynaiky (rovnice 7.) dostanee: δ δ. (8.7) Celková ráce, kterou soustava běhe jednoho cyklu vykoná, se tedy rovná -. Jinak řečeno ůže soustava běhe kruhového děje řijíat od okolí telo a vykonávat ak ekvivalentní ráci. Pro teoretické úvahy v rovnovážné terodynaice je důležitý tzv. vratný děj. Aby kruhový děj byl jako celek vratný, usí být vratné všechny fáze, kterýi systé rochází. Je také nutné si uvědoit, že vratné děje jsou liitní, idealizované říady, a reálné systéy rochází vždy nevratnýi rocesy. Stejně je tou tak i u Carnotova cyklu, který je též vratný kruhový děje. Carnotův cyklus roce 8 francouzský inženýr Nicolas-Léonard-Sadi Carnot (796-83) osal teoretický teelný stroj, dnes označovaný jako Carnotův stroj. ento idealizovaný stroj racuje na rinciu vratného kruhového děje, který se nazývá Carnotův cyklus. e své době byl tento cyklus, jako yšlenkový exerient, veli důležitý ro další rozvoj nejen teoretické terodynaiky, ale řisěl i k rozvoji teelných strojů. e své vědecké ublikaci, Réflexions sur la uissance otrice du feu, et sur les achines rores a déveloer cette uissance, také Sadi Carnot vyslovil následující teoré (Carnotův): Účinnost vratného teelného stroje nezávisí na racovní látce, ale na telotách ohřívače a chladiče, nebo-li na řijaté tele a odevzdané ratný teelný stroj á axiální účinnost. 8
Účinnost teelného stroje je definována jako odíl ráce vykonané v růběhu jednoho cyklu a tela dodaného běhe jednoho cyklu: η. (8.8) Carnotův cyklus je tvořen čtyři stavovýi vratnýi ději (viz obr. 8..): ) izoterická exanze (ři telotě ) ) adiabatická exanze 3) izoterická korese (ři telotě ) ) adiabatická korese Obr. 8..: Carnotův cyklus, kde >. 9
Carnotův teelný stroj racuje se dvěa lázněi ohřívače s telotou a chladiče s telotou. Uvažuje dále jako racovní édiu ol ideálního lynu, který je uzavřen v dokonale teelně izolované válci s íste, který se ohybuje bez tření. álec uvedee do styku s oběa lázněi, ohřívače i chladiče, o telotách >. Předokládeje, že teelná kaacita obou lázní je tak veliká, aby se ři teelné výěně s lyne ve válci telota lázní nezěnila. Nyní roveďe diskuzi jednotlivých fází Carnotova cyklu, jehož diagra je na obr. 8..: Obr. 8..: diagra Carnotova cyklu. (a) Izoterická exanze yjdee ze stavu A, kde je lyn charakterizován stavovýi veličinai, a je v teelné kontaktu s ohřívače o telotě. Díky styku s ohřívače získává lyn energii rostřednictví tela. Probíhá tedy izoterická exanze ři telotě, kdy se lyn rozene z objeu na, tlak klesne z hodnoty na a systé řejde do stavu B (viz obr. 8..). Platí, že, (8.9)
a současně se ři izoterické ději neění vnitřní energie soustavy (de vnitřní ), lyn odebírá z ohřívače telo + a vykoná ráci (- ): ln R. (8.3) Grafický znázornění izoterické exanze je na obr. 8.. izotera A B. (b) Adiabatická exanze Soustava se nachází ve stavu B. Nyní dokonale izolujee lyn od ohřívače, tzn., že ohřívač není v teelné kontaktu s lyne. Plyn si nevyěňuje energii s okolí ( ) a adiabaticky se rozíná z objeu na 3, tlak klesne z hodnoty na 3 a telota rovněž klesne z hodnoty na. Platí rovnice 33 Soustava koná ráci na úkor své vnitřní energie a tedy latí. (8.3) E C ) C ( ). (8.3) vnitřni ( Křivkou adiabatické exanze diagrau, obr. 8..., je adiabata B C. Soustava dosěla ze stavu (,, ) na konec cesty ta, kde á hodnoty 3, 3,. K dokončení cyklu je otřeba uskutečnit cestu zět do výchozího stavu A. (c) Izoterická korese Na začátku této fáze uvedee systé do teelného kontaktu s chladiče a ůsobení vnějších sil vykonáe ráci na systéu, nebo-li rovedee izoterickou koresi. lak vzroste ( 3 < )a obje klesne ( 3 > )za konstantní teloty, tedy latí (8.33) 33 nitřní energie lynu se neění (de vnitřní ), vnější síly vykonají ráci na systéu (+ 3 ) a lyn odevzdá chladiči stejně velkou energii rostřednictví tela (- ): R 3 3 R ln. (8.3) 3 Izotera C D je ak grafický znázornění izoterické korese v diagrau na obr. 8... (d) adiabatická korese Až soustava dosěje do bodu D (obr. 8..), oět dokonale izolujee lyn od chladiče, což znaená, že chladič není v teelné kontaktu s lyne. Plyn dále adiabaticky stlačujee až se systé dostane do výchozího stavu A, řičež telota vzroste na (> ), tlak vzroste z na a obje klesne na ( > ). Zase latí, že. (8.35)
Práce, kterou vykonají vnější síly ři adiabatické koresi, zvětší vnitřní energii systéu na ůvodní hodnotu, ři čež latí: ( ) vnitřni C E. (8.36) Adiabata D-A je graficky znázorněna na obr. 8... Celková ráce vykonaná běhe celého Carnotova cyklu je součte všech rací vykonaných nebo sotřebovaných v jednotlivých fázích, tedy: ) ( ) ( ) ( ) ( 3 celková + + + + + ( ) ( ) 3 celková ln ln C R C R + 3 celková ln ln R R (8.37) Nyní si z rovnic (8.9), (8.3), (8.33) a (8.35) vyjádříe vztahy ezi říslušnýi objey. Po vynásobení rovnic áe 3 3 3 3 3 3 (8.38) ztah 8.38 dosadíe do vztahu 8.37 ro celkovou ráci ři jedno Carnotově cyklu a řeíšee na tvar: celková ln ) ( ln ln R R R (8.39) Jelikož je > a > je >, jedná se o racovní zisk ři Carnotově cyklu, jenž je v diagrau 8.. znázorněn růžovou lochou. Je tedy zřejé ze vztahu 8.39, že adiabatické děje k celkovéu racovníu zisku neřisívají a odílejí se na ně jen izoterické děje. Nyní si dosazení do rovnice 8.8 vyjádříe účinnost Carnotova stroje: celková ) ln ( ) ln ( R R η, (8.) to znaená, že o úravě a s oužití vzorce 8.37 dostanee: η, (8.) což je důkaz Carnotova teoréu.
ideální Carnotově cyklu jsou všechny jeho fáze vratné. Proto celý tento děj ůže robíhat oboustranně. Probíhá-li kruhový děj ve sěru, který je ostuně určen stavy A, B, C, D, A (viz obr. 8..), hovoříe o říé cyklu a jde o teelný stroj. Probíhá-li ve sěru oačné, tzn. A, D, C, B, A, ak se jedná o neříý cyklus a robíhá takto: (a) Plyn se adiabaticky rozíná a telota klesne z na. (b) Plyn se izotericky rozíná ři telotě, a aby telota neklesala, odebere z chladiče telo. (c) Plyn je adiabaticky stlačen a jeho telota vzroste z na. (d) Plyn je izotericky stlačen ři telotě, a aby telota nevzrostla, odevzdá lyn ohřívači telo. ýsledke je skutečnost, že lyn odebírá z chladnější lázně telo a řijíá z okolí energii rostřednictví echanické ráce, která se ění v telo. Jinak řečeno odevzdá lyn ohřívači telo A+. ýsledke je ochlazení chladiče a zařízení ak racuje jako chladící stroj. 8.3 Druhá věta terodynaiky a entroie vratných i nevratných dějů eelné stroje racující na rinciu vratného kruhového děje jsou schony soustavně ěnit telo na ráci. Nicéně žádný stroj, ani racující za ideálních odínek (vratně, cyklicky, bez tření a jiných ztrát), neřeění veškeré telo odebrané z ohřívače zcela na ráci. ždy je část tela (tedy ) ředána okolí nebo-li chladiči, což á za následek vzrůst jeho teloty. elo nelze zcela řeěnit na echanickou ráci, rotože ři této řeěně je část tela ředána z tělesa telejšího na těleso chladnější. ato část tela se ze systéu nenávratně vytratí a je v teelné stroji nevyužitelná. souladu s rvní větou terodynaiky se energie saozřejě neztrácí, ale ění se ve foru éněcennou - telo. Jinak řečeno - ři řeěně teelné energie na jiné druhy energie vždy část zůstává ve forě tela, avšak jiné druhy energie lze ěnit v teelnou beze zbytku. Rudolf Clausius (8-888) na základě těchto oznatků rozšířil a zobecnil závěry Sadiho Carnota o teelných strojích do forulace druhého zákona terodynaiky (865): Při styku dvou soustav s různýi telotai řechází telo vždy z tělesa telejšího na chladnější a nikdy naoak. 3
Forulací druhého zákona terodynaiky bylo vysloveno několik, všechny však hovoří o totéž. Uveďe si zde ještě větu Maxe Plancka (858-97): Není ožné sestrojit eriodicky racující teelný stroj, který by nedělal nic jiného, než jen odebíral telo z ohřívače a konal rovnocennou ráci. Druhá věta terodynaiky tak oezuje obecnou latnost rvní věty terodynaiky. eelný stroj, který by byl schoen řeěnit veškerou teelnou energii na ráci, tzn. ěl by % účinnost, se nazývá eretuu obile. druhu a nelze jej tedy sestrojit. cyklus): raťe se nyní ke Carnotově teoréu a vztahu o účinnosti Carnotova stroje (vratný Po úravě dostanee: η.,,. (8.) Obecně se oěr tela (řijatého nebo odevzdaného) ku telotě, ři které se řenos uskutečňuje, nazývá redukované telo a rovnici lze také řesat do tvaru:, (8.3) tzn., že ři vratné Carnotově cyklu je celkové redukované telo rovno nule. Představe si obecnější říad kruhového děje, ři něž robíhá teelná výěna ři více telotách. Z akroskoického hlediska robíhá kruhový děj ři sojitě se ěnících telotách a teelná energie je rovněž ředávána sojitě (na atoární úrovni to saozřejě nelatí - kvantová teorie). Poto ůžee rovnici 8.3 řesat do tvaru: d, (8.) vrat Rovnice 8. se někdy také nazývá rovnicí Clausiovou. Je zřejé, že se rovnice 8.3 vztahuje k vratnéu cyklu, tzn. energie se v sytéu běhe cyklu zachovává. Polože si ale
otázku, jak se zění situace, když budou jednotlivé děje v cyklu nevratné, tj. když uskutečníe exanzi tak rychle, že se tlak na ustuující ístu nestačí vyrovnávat na hodnotu odovídající stavové rovnici R / nebo když ři zětné koresi nastanou ztráty tření. Poto bude ráce vykonaná ři rvní ději (izoter. exanzi) a jí odovídající odběr tela z ohřívače enší, než by odovídalo rovnici 8.3 latné ro vratný děj. Zatíco ráce vynaložená na zětnou cestu a energie ředaná okolí (chladiči) teelný řenose ři izoterické koresi bude naoak větší, než odovídá rovnici 8.3. o znaená, že účinnost ři nevratné cyklu je enší. Z ohřívače se do chladiče řevede teelný řenose ve srovnání s vratnou realizací děje větší nožství energie, což se děje na úkor jejího využití ro řeěnu na echanickou ráci kde nevrat < nebo (8.5) d <, (8.6) nevrat nevrat je vetší než. Obecně tedy latí: d. (8.7) Entroie vratných a nevratných dějů Pokusíe se nyní shrnout ředchozí úvahy a závěry. První věta terodynaiky definuje řeěnu tela v jiné druhy energie, avšak již nehovoří o to, za jakých odínek a jak k této řeěně dochází. odstatě je rvní věta terodynaiky z fyzikálního hlediska jen jinak vyjádřený zákon zachování energie. Energie neůže vzniknout ani se ztratit saa od sebe nebo-li echanická ráce se ůže řeěnit v ekvivalentní telo a naoak. ato transforace energie tedy ůže robíhat neoezeně v obou sěrech. Druhá věta terodynaiky ná však říká, že oboustranný roces není neoezený, a roto oezuje rvní větu terodynaiky: echanickou ráci ůžee zcela řeěnit na telo, avšak získané telo nelze (z Carnotova cyklu) transforovat na echanickou ráci beze zbytku. šechny reálné děje v řírodě robíhají jednosěrně a sějí saovolně do rovnovážného stavu. ento rovnovážný stav (stav klidu) ůžee orušit a obrátit děj tak, aby se vrátil do očátečního stavu, je k tou však zaotřebí vnější zásah. ději, ve které se 5
systé vzdaluje od rovnováhy, je nutno systéu dodávat energii z okolí či jiného terodynaického systéu, který následně íří sá do rovnovážného stavu. akže druhá věta terodynaiky dělí děje neodorující rvní větě na ty, které ohou robíhat saovolně, a na ty, které saovolně robíhat neohou. Proto v této souvislosti Rudolf Clausius (8-888) definoval takovou stavovou funkci, která by se ěnila ři saovolných dějích. ato funkce, která je kvantitativní írou stuně nevratnosti děje a tí i saovolnosti děje a kritérie rovnovážného stavu, se nazývá entroie (z řeckého slova "τροπη" - transforace, vnitřní zěna). Z definice tedy vylývají následující vztahy: d d S, (8.8) B d S SB SA. (8.9) Entroie á ro druhou větu terodynaiky stejný význa, jako vnitřní energie ro rvní větu terodynaiky. Jednotkou entroie je J.K -. Zěna entroie systéu je dána jako odíl řírůstku tela ři vratné ději za konstantní teloty. Entroie á následující vlastnosti: a) Její hodnota závisí jen na stavu systéu a ne na cestě, o níž se systé do daného stavu dostal. Je to aditivní veličina, což znaená, že zěna entroie charakterizující určitý děj je rovna součtu zěn entroií jednotlivých dílčích rocesů, ze kterých se děj skládá. b) Zěna entroie udává sěr, který děj robíhá a je také írou "vzdálenosti" soustavy od rovnováhy. Určíe si nyní zěnu entroie ři vratné dějí ideálního lynu ři řechodu ze stavu, kde á obje, telotu, do stavu s objee a telotou. Dosadíe-li do rvní věty terodynaiky za telo z rovnice 8.8, dostanee ro nekonečně alou vratnou zěnu systéu: ds C d + d, (8.5) vydělení rovnice telotou, dosazení ze stavové rovnice za tlak a zintegrování dostáváe: A S S S +. (8.5) C ln R ln 6
Z rovnic 8.8 a 8. zároveň také lyne, že ro všechny vratné rocesy usí být logicky zěna entroie: d S. (8.5) vrat Jinak řečeno rovnice 8.5 znaená, že ři vratných rocesech zůstává sua entroie zachována. Dosazení de vnitřní C d do rovnice 8.5 dostáváe sojení rvní a druhé věty terodynaiky, které se často nazývá základní rovnicí terodynaiky ro vratné děje: de vnitřni ds d (8.53) Kruhový děj je nevratný, jeli alesoň jedna jeho část nevratná. Je-li tedy děj jako celek nevratný, ak latí d nevrat d + tedy d < nevrat vrat vrat d <, (8.5) d. (8.55) Ze sojení rovnic 8.5 a 8.55 je tedy zřejé, že entroie ři kruhové ději, jehož alesoň jedna část je nevratná, roste. Přírůstek entroie je ak kladný a je írou nevratnosti děje. Pro izolovanou soustavu (d ), kde robíhají jen adiabatické děje, je ak entroie S >. (8.56) izolované soustavě, která není v rovnovážné stavu (různé tlaky a teloty), robíhají saovolné děje (tlaky a teloty se vyrovnávají) a soustava sěje do rovnovážného stavu. ento roces bude robíhat tak dlouho, dokud entroie nedosáhne největší ožné hodnoty za daných odínek. ýše uvedené lze shrnout a jinak forulovat druhou větu terodynaiky: všechny sontánní děje vedou ke vzrůstu entroie celku, který se skládá jak ze saotného systéu, tak i z jeho okolí. Z rovnice 8.5 je zřejé, že ři izoterické exanzi entroie roste (jelikož a > ) a ři izoterické koresi zase klesá. Při této úvaze ale určujee ouze zěnu entroie, nikoliv její absolutní hodnotu. uto absolutní hodnotu lze určit jedině okud víe, kde leží nulový bod entroie. O existenci tohoto nulového bodu nás inforuje třetí věta terodynaiky, která byla orvé forulovaná althere Nernste (86-9): ři 7
telotě rovné absolutní nule nabývá entroie cheicky čisté látky nulové hodnoty. Mateaticky lze třetí větu terodynaiky vyjádřit: li S (8.57) 8. Statistická interretace entroie Prozatí jse se zabývali entroií jako ouze fenoenologickou veličinou charakterizující akroskoický stav soustavy. Entroii však ůžee definovat i statistický zůsobe. Ludwig Boltzann (8-96) navrhnul vztah, který vyjadřuje souvislost ezi ikroskoický stave a entroií: S k ln, (8.58) kde k B,38. -3 J.K - je Boltzannova konstanta (ozn. R k B N A, N A je Avogadrovo číslo) a je tzv. terodynaická ravděodobnost. ato veličina je definována jako očet ikroskoických stavů stavebních jednotek (atoy, olekuly, elektrony, atd.) systéu (hoty), kterýi je ožné uskutečnit jeden konkrétní akroskoický stav. Následující říklad ukáže blíže, co terodynaická ravděodobnost znaená. Představe si krabici obsahující lyn s určitý očte olekul N v její levé olovině a N v ravé olovině (viz obr. 8..). Celkový očet olekul (jsou nerozlišitelné) v celé krabici je tedy N N + N. každé okažiku se bude určitá olekula nacházet buď v levé nebo v ravé části krabice, rotože obě části krabice jse obrazně rozdělili tak, že ají stejný obje. B Obr. 8..: Izolovaná krabice obsahující N N + N olekul Na obrázku 8.. je znázorněn jeden z ožných akrostavů, které jsou rozlišitelné, tzn., že áe určitý očet olekul N a N. Nejse už ale schoni rozlišit, jestli se určitá olekula nachází v N nebo N. uto situaci nazvee ikrostave, který je tedy nerozlišitelný. A je jisté, že každý ikrostav á v dané akrostavu stejnou ravděodobnost. 8
erodynaická ravděodobnost ná říká, kolik ikrostavů ůže nastat v dané akrostavu, ateaticky vyjádřeno: N! N. (8.59)!! Platí-li N N (neusořádaný systé), je zřejé, že terodynaická ravděodobnost dosáhne axiální ožné hodnoty a tudíž i entroie bude axiální. ento závěr je zcela v souladu s tvrzení, že sěje-li systé saovolně do rovnováhy, ak entroie vzrůstá až dosáhne za daných odínek axiální hodnoty. Má-li rovnoěrně rozložené olekuly v celé krabici (N N ), jedná se o rovnovážný stav a taky o nejravděodobnější situaci. Uveďe si ještě konkrétní výočet ro izolovanou krabici, kterou znovu rozdělíe na levou a ravou olovinu, a která bude obsahovat 6 olekul (viz tabulka 8.). Z tabulky je zřejé, že čtvrtý akrostav á největší očet ikrostavů, a tudíž největší entroii. Jedná se totiž o rovnovážný stav, kdy jsou olekuly lynu rovnoěrně rozloženy v celé krabici. N abulka 8. Makrostav erodynaická ravděodobnost (očet ikrostavů) Entroie Číslo (N ;N ) S [J.K - ] (6;) 6!/(6!!) (5;) 6!/(5!!) 6,7. -3 3 (;) 6!/(!!) 5 3,7. -3 (3;3) 6!/(3!3!),3. -3 5 (;) 6!/(!!) 5 3,7. -3 6 (;5) 6!/(!5!) 6,7. -3 7 (;6) 6!/(!6!) 8.5 Entroie a inforace Z ředchozích úvah lze entroii také interretovat jako veličinu vyjadřující íru chaosu. erodynaickou ravděodobnost a entroii lze oužít i ke stanovení íry inforace soustavy. ezěe si text nasaný na této stránce, který je vytvořen jedinou kobinací ísen. (Je nyní otázkou jakou inforaci bude obsahovat text ro člověka, který jej bude číst. o je dost subjektivní záležitost. Pro člověka, který neuí číst, je inforace na této stránce nulová. Nyní doufeje, že člověk s 9
technický vzdělání, který uí číst, si z tohoto textu odnese inforaci o vyšší hodnotě:-).) Kroě této jediné kobinace ísen lze dosáhnout zcela náhodného rozdělení jednotlivých ísen, jestliže necháe očítač dostatečný očte kroků rozházet ísena na této stránce. Při každé kroku, kdy necháe náhodně vybrané íseno řesunout na zcela náhodně vybrané ísto, dosahujee stále nižší inforační hodnoty. Je veli álo ravděodobné, že se ná odaří i ři velké očtu okusů alesoň jednou sestavit text,či alesoň některá slova, do ůvodní odoby. Existuje saozřejě větší ravděodobnost tvorby slabik, enší ravděodobnost vzniku delších slov či vět a rakticky zanedbatelná je ravděodobnost tvorby vět či odstavců. akto zřeházený text ůže ředstavovat systé a jednotlivá ísenka částice (nař. olekuly), z nichž se systé skládá. Jak lyne z našich úvah, udává ravděodobnost stavu systéu četnost výskytu daného rozložení částic ři nohokrát oakovaných okusech, res. očet zůsobů, kterýi lze dané rozložení částic uskutečnit. idíe, že existuje úlný vztah ezi ravděodobností systéu a stuně jeho neusořádanosti. Stavy s ravidelný usořádání (axiální usořádání soustavy) ají na rozdíl od stavů s nahodilý usořádání veli alou ravděodobnost výskytu. Pokud jde o stueň inforace, ak ná stránka usořádaná do slov a vět dává určitou inforaci. Rozházení textu oklesne usořádanost a také stueň inforace. Protože odle Boltzannovy rovnice 8.58 existuje úěrnost ezi entroií a ravděodobností, nabízí se ožnost stanovit oocí entroie i íru inforace soustavy. ztah ezi entroií a inforací byl odvozen a ublikován v roce 877 Ludwige Boltzanne (8-96) a stal se jední ze základů teorie inforace. Podle této teorie je inforace obsažená v nějaké textu či zrávě obecně dána oklese entroie čtenáře či říjece zrávy a naoak. Systé o entroii S řijetí zrávy obsahující inforaci I sníží svou entroii na S. Lze tedy vyjádřit vzat ezi entroií a inforací: S konst.i (8.6) Hodnotu konstanty ve vztahu 8.6 stanovíe následující zůsobe. Množství inforace obsažené v nějaké zrávě je dáno logarite odílu ravděodobnosti jevu o získání inforace a ravděodobností jevu řed ziske inforace : log, (8.6) I Zěna entroie odovídající zěně ravděodobnosti z na je S k ln (8.6)
Jednotkou inforace je bit, což je nožství inforace obsažené v odovídající zrávě o jevu, jehož ravděodobnost je rovna / (záis zrávy v binární kódu). Ze vztahů 8.6 a 8.6 je zřejé, že k řevedení nožství inforace, vyjádřeného v bitech, na zěnu entroie, je třeba řevést logaritus ři základu na řirozený logaritus a vynásobit Boltzannovou konstantou. Ze vztahu 8.6 lyne S k ln k ln I I log I, (8.63) ki ln,3866. 3.,6937,957. Pro hodnotu konstanty ze vztahu 8.6 tedy dostanee S 3 I, (8.6) kde - S [J.K - ] je úbytek entroie soustavy a I [bit] je inforace. Entroie ůže být také cháána jako střední hodnota inforace na jeden sybol zrávy. ato yšlenka byla orvé vyslovena a vzorec odvozen a ublikován v roce 956 Claude Elwoode Shannone (96-): H K s i 3 I. P i ln P i, (8.65) kde P i je ravděodobnost jevu a konstantu K lze odvodit stejně jako v říadě Boltzannovy entroie. akto vyjádřená inforace á saozřejě jiné jednotky [bit] než Boltzannova. 8.6 erodynaická funkce - entalie ředchozích odstavcích jse si vysvětlili oje entroie, která je kritérie rovnováhy. Entroii však ůžee jednoduše oužít ro izolované systéy (nevyěňuje si s okolí hotu ani energii), kterých je v reálné světě oravdu álo. Kdybycho entroii chtěli oužít ro ois rocesů v uzavřených systéech (vyěňuje si s okolí ouze energii) nebo dokonce v otevřených systéech (vyěňuje si s okolí jak energii tak i hotu), useli bycho začít studovat nerovnovážnou terodynaiku a to je vravdě dosti náročná oblast fyziky a cheie. Kritériu rovnováhy na základě entroie je říliš obecné. raxi konáe obvykle ěření, ři něž soustava s okolí interaguje. Pokud chcee tyto exerienty i nadále oisovat oocí rovnovážné terodynaiky, je nutné definovat rovnováhu i v říadě, že systé interaguje s okolí. Budee tedy hledat vhodnější terodynaickou funkci, než je entroie. ato funkce by ěla být nezávislá na okolních
systéech. Poocí rvní věty terodynaické ůžee vyjádřit olární teelnou kaacitu jako: d devnitřni d C +. (8.66) d d d Z rovnice 8.66 je zřejé, že ři izochorické ději (d ) dostanee ro olární teelnou kaacitu za konstantního objeu vztah: C E vnitřni d. (8.67) Podobně si zde bez odvození uveďe i vztah ro olární teelnou kaacitu za konstantního tlaku: C ( Evnitřni + d, (8.68) kde (E vnitřní + ) je nová stavová funkce, kterou nazýváe teelný obsah soustavy neboli entalii H. Jedná se o terodynaickou funkci, která á ro izobarické děje odobný význa jako vnitřní energie. edy: H E vnitřni +. (8.69) Pro olární teelnou kaacitu za konstantního tlaku ůžee nasat: C ( H. (8.7) d Fyzikální interretaci entalie ůžee rovést následující úvahou. Má-li být araetre soustavy tlak, nesí jeho hodnota záviset na vlastnostech lynu. oho lze dosáhnout tak, že soustavu vytvoříe oocí nádoby uzavřené íste, na který oložíe závaží o hotnosti. lak lynu v nádobě g/s oto závisí jen na vnějších odínkách, tzn. na hotnosti závaží, loše ístu S a na tíhové zrychlení. Entalie lynu v nádobě je oto: g H E + Evnitřni + Sh Evnitřni + gh S vnitřni, kde h je výška slouce lynu od íste. Entalie lynu v nádobě se skládá z vnitřní energie lynu a z otenciální energie závaží. Energii, kterou lyn získá teelný řenose z okolí, zde sotřebuje nejen na zvětšení vnitřní energie lynu, ale také na zvětšení otenciální energie závaží (lyn koná ráci). Přioeňe si teď rvní větu terodynaiky d de vnitřní + d, kterou ale lze vyjádřit i oocí entalie E vnitřní H (viz rovnice 8.69). Pokud rovnici 8.69 zdiferencujee a dosadíe ji do rvní věty terodynaiky: d dh d d + d,