Detekce a lokalizace vyjimecnych stavu v mestske doprave



Podobné dokumenty
TECHNICKÁ UNIVERZITA V LIBERCI

7. Rozdělení pravděpodobnosti ve statistice

Téma 22. Ondřej Nývlt

Odhady - Sdružené rozdělení pravděpodobnosti

10. Předpovídání - aplikace regresní úlohy

Odhad stavu matematického modelu křižovatek

Úvod do zpracování signálů

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

5 Parametrické testy hypotéz

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I

Základy teorie pravděpodobnosti

11 Analýza hlavních komponet

Stavový model a Kalmanův filtr

PRAVDĚPODOBNOST A STATISTIKA

cv3.tex. Vzorec pro úplnou pravděpodobnost

Základy počtu pravděpodobnosti a metod matematické statistiky

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Detekce interakčních sil v proudu vozidel

Základy teorie odhadu parametrů bodový odhad

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

Pravděpodobnost a aplikovaná statistika

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

Jednofaktorová analýza rozptylu

Zákony hromadění chyb.

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Cvičná bakalářská zkouška, 1. varianta

Fyzikální korespondenční seminář MFF UK

Petr Chvosta. vlevo, bude pravděpodobnost toho, že se tyč na počátku intervalu τ B nachází nad vpravo

Václav Jirchář, ZTGB

Výběrové charakteristiky a jejich rozdělení

Vytěžování znalostí z dat

KGG/STG Statistika pro geografy

Matematika PRŮŘEZOVÁ TÉMATA

Modely selektivní interakce a jejich aplikace

Matematické modelování dopravního proudu

1. Přednáška. Ing. Miroslav Šulai, MBA

A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Přednáška 2

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

7 Regresní modely v analýze přežití

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

Regresní analýza 1. Regresní analýza

13. cvičení z PSI ledna 2017

15. T e s t o v á n í h y p o t é z

oddělení Inteligentní Datové Analýzy (IDA)

4. Aplikace matematiky v ekonomii

12. cvičení z PST. 20. prosince 2017

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

Použitý rezistor (jmenovitá hodnota): R1 = 270 kω je přesný metalizovaný rezistor s přesností ± 0,1%.

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

Návrh a vyhodnocení experimentu

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Informační a znalostní systémy

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Základní statistické modely Statistické vyhodnocování exp. dat M. Čada ~ cada

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

INTENZITA DOPRAVY na komunikaci I/7 květen Hodnověrnost tvrzení je dána hodnověrností důkazů

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

KGG/STG Statistika pro geografy

Časové řady, typy trendových funkcí a odhady trendů

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.

PRAVDĚPODOBNOST A STATISTIKA

MIKROSIMULAČNÍ MODEL ÚSEKU DÁLNICE D1 S APLIKACÍ LINIOVÉHO ŘÍZENÍ DOPRAVY. Milan Koukol, FD Ústav dopravních systémů

Predikce roční spotřeby zemního plynu po ceníkových pásmech

RESEARCH REPORT. ÚTIA AVČR, P.O.Box 18, Prague, Czech Republic Fax: (+420) ,

Odhad střední chyby výměry parcely

Úvodem Dříve les než stromy 3 Operace s maticemi

Konvoluční model dynamických studií ledvin. seminář AS UTIA

Lineární regrese. Komentované řešení pomocí MS Excel

Parametrické rovnice křivky

Soustavy lineárních rovnic

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu

Dynamika soustav hmotných bodů

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

VK CZ.1.07/2.2.00/

Vlastnosti a modelování aditivního

České vysoké učení technické v Praze Fakulta dopravní Ústav aplikované matematiky, K611. Semestrální práce ze Statistiky (SIS)

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

Teorie náhodných matic aneb tak trochu jiná statistika

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.

Národní informační středisko pro podporu kvality

Detekce neznámých typů mutantů na základě odlišnosti kinetiky fluorescence

Časové řady, typy trendových funkcí a odhady trendů

Kendallova klasifikace

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Návrh a vyhodnocení experimentu

Biofyzikální ústav LF MU Brno. jarní semestr 2011

Bruno Ježek, Jan Vaněk, Karel Antoš, Miroslav Procházka. FVZ UO Hradec Králové

Luxmetr LS-BTA, lampička, izolepa, 32 kusů průhledné fólie (nejlépe obaly od CD).

Induktivní statistika. z-skóry pravděpodobnost

Jana Vránová, 3. lékařská fakulta UK

Transkript:

Detekce a lokalizace vyjimecnych stavu v mestske doprave 1 Uvod Reakce globalnchrdcchsystemu.nezpristoupmekezkoumanvyjimecnychstavuvdoprave,vymezme rdcho systemu na nastale vyjimecne stavy v doprave je velice dulezitou soucast vsech nejdrve to, co v teto praci budeme povazovat za vyjimecny stav. Vyjimecnymstavemvdopraverozummemimoradnoudopravnsituaci,jejzdopad se podstatnym zpusobem odraz v merenych dopravnch datech. oblasti, Poznamka: apriorn znalosti Metody, o chovan ktere pouzvame, automobilu jsou v dane zalozeny oblasti na a informaci zejmena na o strukture on-line merenych zkoumane dopravnch dopravn datech. realna data Struktura nesou oblasti informaci je dana, o okamzitem apriorn informace den v oblasti. vypovda Vsechny o"prumernych" dopravn udalosti, vlastnostech ktere oblasti se v merenych a pouze datech mysli,ze neodraz, bychom jsou potrebovali pro nas prmo nedosazitelne, nastalou poruchu a nelze merit! je detekovat Pozadujeme ani rdit. pouze, Tm aby samozrejme se porucha nemame v nekterych na datech projevila, abychom ji mohli na zaklade techto velicin predpovedet. V prpade vyjimecneho stavu je situace odlisna od"beznych situac". Rozdlu je nekolik vyjimecna dobu trvan, situace nastava vetsinou ve velmi kratkem casovem intervalu a ma prechodnou dopad nastale vyjimecne situace na stav dopravnho systemu je vetsinou dosti podstatny, jednotlivychskupinpodobnychvyjimecnychstavu(alesponcododopadunastavdopravnho systemu) byva konecny pocet. Vyjimecne mens mnozstv stavy udalost, lze samozrejme majcch(vetsinou klasikovat negativn) podle rady vliv hledisek na dopravn a zahrnovat system pod a vymykajcch ne vets nebo beznym dopravnm podmnkam. My se pridrzme vyctu provedeneho v praci [1]. Zde je uvedena se pomerne pro jejich siroka detekci. skala ruznych vyjimecnych dopravnch stavu vcetne jejich vyhodnocen a navodu V urovnrozpoznavanvyjimecnychstavuvubecajejichprpadnouklasikac,tj.urcenmkdeajaky teto zprave se vsak nebudeme ani tak zabyvat klasikac jednotlivych stavu jako obecnou vyjimecny stavu, a to stav prekazky nastal. ve Budeme vozovce. se Jako pritom jednotlive drzet jedineho, vyjimecne nejpodstatnejsho stavy budeme uvazovat druhu z ruzna vyjimecnych kdektetoblokadedoslo.otazkoubude:(i)poznamevubec,zenekdevoblastidoslokzablokovan msta, jzdnho pri techto pruhu? experimentech (II) pozname, jsou (i) na za kterem jak dlouho mste jsme k tomuto schopni zablokovan vyjimecny doslo? stav zaregistrovat, Zajmave okolnosti (ii) s 1

jakou abychom jistotou si jej jsme vubec schopni vsimli,(iv) vyjimecny jak silny stav dopad detekovat,(iii) mus mt vyjimecny jak dlouho stav, mus abychom vyjimecny jej stav zachytili. trvat, stavu Resen by vyjimecnych nastoupilo urcite stavu expertnrzen, zde nechavame bud' stranou jiz existujc a predpokladame, nebo navrzene ze po dopravnmi detekci vyjimecneho operatory. 2 Formulace ulohy Pro a Svornosti. testovan Detailn byla vybrana planek liniova teto mikrooblast oblasti, konkretne sectyrmi jejch krizovatkami, ctyrech rzenych konkretne krizovatek, ulice Zborovska Obrazku 1. je na Obrazek 1: Realna oblast jejz model byl pouzit pro testovan 2

Oblast skutecnosti se naleza krizovatek, v mste z nichz maleho zbylych smchovskeho sest je nerzenych okruhu. a Tato intenzita oblast provozu obsahuje v nich ve nen velka. Proto jsme brali v uvahu jen uvedene ctyri svetelne rzene krizovatky. Model modelujenaobrazku2. teto mikroblasti byl vytvoren pomoc dopravnho simulatoru simulovan AIMSUN. Schema 2 14 1jj 3jj 44 5jjj 6677 8jjjj 99 11 11 13 j 3 5 8 Obrazek 2: Mikrooblast se zkoumanymi vyjimecnymi stavy Mikrooblast Obr. 1. Je zde je tvorena vyznaceno ctyrmi csel krizovatkami v krouzku, serazenymi ktera oznacuj v jedne msta, linii kde - podrobnosti byla postupne viz csly. umst'ovana blokada. Silnejs svisle usecky oznacuj meric detektory, oznacene rovnez Na tektorech vyznacenych v oblasti mstech (viz obr. 1-2) byla byla simulovana merena data porucha (obsazenosti ve forme dopravnho stojcho proudu) automobilu. pro stav Na bez de- poruchy(zadne i; i=1;2:::;).prostavbezporuchyakazdyporuchovystav(urcitadobastanautomobiluna stojc auto) a poruchovych stavu(porucha i odpovda autu stojcmu v pozici zvolene pozici) je tedy k dispozici 13 datovych souboru, charakterizujcch stav oblasti. Otazka porucha je:(i) skutecne lze vubec existuje tmto jako zpusobem pravdiva?(iii) poruchu jak detekovat?(ii) dlouhe je treba s meren jakou jistotou jak pro lze o-line, tvrdit,ze tak i tato on-line identikaci, aby zskana informace o poruse byla dostatecna? pro 3

3 Model smesi distribuc a jeho odhad VtetokapitolenaznacmezakladyteorieodhadusmesovehomodelumetodouQuasi-Bayes.Protoze zmnena velmi ucinne teorie odmocninove je znacne obtzna algoritmy, a jej zustaneme programova jen u realizace odvozen vyuzva zakladnch dosti vztahu neprehledne aniz bychom ale zato prevadeli do podoby algoritmu. Ten zpracovan v systemu MIXTOOLS vytvorenem v AS UTIA je AV CR-viz[2]. Uplnateorieodhadusmesovychmodelujepopsanav[3]. Komponenty modelu Predpokladame dt; t2t. Modely n modelu, jsou popsany indexovanych svymi podmnenymi prirozenymicsly hustotami c2f1;2;:::;ng=c pravdepodobnosti a modelovana hp data f(dtjd(t 1);c; c): Dale smesoveho predpokladame, modelu, tj. ze ze v prave kazdem jen casovem tato komponenta okamziku odraz je aktivn skutecny pouze stav jeden sledovaneho model- komponenta systemu. Ukazatel Aktivity ct=cznamena,zevokamzikutjeaktivnkomponentac. jednotlivych komponent oznacuje ukazatel- nahodna velicina ct s hodnotami 1;2;:::;n. Pravdepodobnosti predpokladame konstantn aktivity a rovny jednotlivych c, tedy komponent c, bez znalosti aktualnch dat dt, f(ct =cjd(t 1);)=f(ct =cj)=c Poznamka: Vyrazem f(ct=c) myslme fct(c)=p(ct=c) kde P(:) oznacuje pravdepodobnost. V jadrujc okamziku, tento kdy stav namerme je data dt, mame dals informaci o skutecnem aktualnm stavu. Hp vy- f(ctjd(t)): Nahodna posloupnost ct je neznama a jej hodnoty nelze merit a je treba je odhadovat. 4 Odhad modelu smesi distribuc 4.1 Vnitrn popis smesi Sdruzena hp dat a ukazatele Tatohppopisujejakdata,takiukazatele f(dt;ctjd(t 1); ;): (1) ze Je data to sdruzena dt pochaz hp, z parametrizovana komponenty ct. vektorem parametru[ ;]. Tato hp urcuje pravdepodobnost, 4

Tato sdruzena hp muze byt rozlozena takto (1)=f(dtjd(t 1);ct; ;) f(ctjd(t 1); ;)= =f(dtj't 1;ct; ct) f(ctj)=ct f(dtj't 1;ct; ct) kde f(dtjd(t 1);ct; ;)=f(dtj't 1;ct; ct) (2) je popis jedne komponenty(konkretne s indexem ct), a f(ctjd(t 1); ;)=f(ctj)=ct (3) je Poznamka: pravdepodobnostn Z predchozho popis ukazatele plynou pozadavky ct. na model 1. kazda komponenta c=1;2;:::;n ma sve vlastn parametry c, 2. data hloubkyradu dt jsou zavisla modelu), jen na datech, obsazenych v regresnm vektoru 't 1 (tj. minulych datech az do 3. ukazatel je nezavisly na parametrech component c, 4. ukazatel je podmnene nezavisly na starych datech, je-li znam parametr ukazatele- vektor, 5. pravdepodobnosti komponent vcase t bez znalosti dt jsou stacionarn. 4.2 Vnejs popis smesi Hp dat bez ohledu na aktivitu component Tuto hp lze dostat dvema zpusoby(presne a s aproximac): Prvn zpusob je presny a je dan marginalizac hp(1) vzhledem k ukazateli ct f(dtjd(t 1); ;)= = X f(d t;ctjd(t 1); ;)= X ctf(dt;ctjd(t 1); ;): (4) ct2c ct2c kde jsme pouzili vztah(3). Druha dem.zesdruzenepravdepodobnostisepakpodosazenbodovehoodhadustanehpjedinepromenne, moznost je aproximace. Ta spocva v nahrazen ukazatele ct nejakym jeho bodovym odha- a ale to vede dt. Tak na spocitatelne dostaneme marginaln algoritmy pro hp. odhadovan. Tento postup Touto nen, cestou vzhledem dostavame k aproximaci, optimaln, zato f(dtjd(t 1); ;)/f(dt;^ctjd(t 1); ;); (5) podmnena kde ct je bodovy stredn odhad hodnota(viz poctany dale). na zaklade starych dat d(t 1). Bodovy odhad je poctan jako 5

4.3 Odhad [ ; ] - (Bayesuv vzorec) Bayesuv vzorec pro odhad parametru[ ;] ma tvar f( ;jd(t)) / = f(dtjd(t f( ;jdt;d(t 1); ;)f( ;jd(t 1)) 1)) (6) coz vnejsho je rekurze, popisu ktera smesi prepoctava f(dtjd(t 1); ;). hp pro jmenovany Protoze Bayesuv parametr. vztah Pro (6) jej ma pouzit soucinovy se vyzaduje tvar a znalost popissmesijedanvetvarusouctu(4),dostavamevysledekvtvarsoucinusouctu,cozjevypocetne vnejs nevhodne. se Resen,kterejespocitatelne,dostanemesvyuzitmaproximovanehovztahu(5).Tojecesta,kterou budeme dale zabyvat. 4.4 Odhad [ ; ] - (pro statistiky) Modely komponent v exponencialnm tvaru Komponenty vyjadrme pomoc hp z exponencialn trdy f(dtj't 1;c; c)=expfqc( )s('t 1)g; c2c (7) kde nentam). qc( ) je parametricka funkce c-te komponenty a s('t 1) je statistika(spolecna vsem kompo- Soucinovy tvar modelu a apriorn hp Pro soucinovemtvaru dals odvozen je vyhodne formalne vyjadrit jak model, tak i apriorn hp v nasledujcm ctf(dtj't 1;ct; ct) = ctexpfqct( )s('t Y [ 1)g cexpfqc( )s('t 1)g](c;ct) c2c = Y c(c;ct) Y c2c c2c expfq c( )s('t 1)(c;ct)g (8) a f( ;jd(t 1)) = Y c(t 1) Y c2c c2c expfq c( )S(t 1)g; (9) kde(t Poznamka: 1)aS(t (c;ct) 1)jsoustatistikyhpparametruvcaset je Diracova -funkce, denovana takto 1. (c;ct)= forc=ct 6=ct 6

Bayesuv vzorec pro soucinovy tvar hp Dosadme Y soucinove tvary hp(8) and(9) do Bayesova vzorce(6) a dostaneme c(t) expfqc( )S(t)g = Y c(c;ct) Y c2c c2c c2c expfq c( )s('t 1)(c;ct)g Y c(t 1) Y c2c c2c expfq c( )S(t 1)g = Y c[(c;ct)+(t 1)] Y c2c c2c expfq c( )[s('t 1)(c;ct)+S(t 1)]g Z teto rekurze pro hp zskame rekurzi pro statistiky S(t) (t) = (t S(t 1)+(c;ct) () 1)+(c;ct)s('t 1) (11) kterarka: prepoctej pouze tu statistiku, jejz komponenta byla v case t aktivn. ale Tato tato rekurze promenna ale nen vyskytuje prakticky pouze pouzitelna, ve funkci nebot', budeme obsahuje aproximovat neznamou celou promennou tuto funkci. ct. Protoze se 4.5 Aproximace Msto funkce (c;ct) dosadme jej stredn hodnotu (c;ct)e[(c;ct)jd(t)]wc(t): () Vypocet stredn hodnoty E[(c;ct)jd(t)]= Z (c;ct)f(ctjd(t))dct=f(cjd(t))wc(t); c2c ; coz vyzaduje znalost hp f(cjd(t)); c2c. Konstrukce hp f(cjd(t)) Potrebnou hp lze zskat takto f(cjd(t))=f(cjdt;d(t 1))/f(dt;cjd(t 1))=f(dtjc;d(t 1))f(cjd(t 1)): Posledn dve hp mohou byt parametrizovany f(dtjc;d(t 1)) f(dt; cjc;d(t 1))d c= f(dtjc;d(t 1); c)f( cjd(t 1))d c= = Z f(dtj't 1;c; c)f( cjd(t 1))d c 7

a f(cjd(t 1)) f(c;cjd(t 1))dc= f(cjd(t 1);c)f(cjd(t 1))dc= = Z cf(cjd(t 1))dc Tak dostavame wc(t)=f(cjd(t))= Z f(dtj't 1;c; c)f( cjd(t 1))d c Z cf(cjd(t 1))dc (13) vzavislostinaznamychhp,konkretnejsoutomodelykomponentaukazateleaapriornhpprevzata z minuleho kroku identikace. Poznamka: pravdepodobnostn ukazatel Aproximace s hp rozdeluje w(t). Situace puvodn je zachycena deterministicky na nasledujcm ukazatel ct obrazku: s"dirakovskou" hp (c;ct) na 6c (c;ct) b - wc(t) - - - --- Obrazek 3. Efekt aproximace ukazovatele Zatmco ukazatel pripoust puvodn ukazovatel jako aktivn ukazuje"s i sousedn jistotou" komponenty na jedinou s prslusnymi komponentu, pravdepodobnostmi aproximovany aktivit. 8

5 Experimenty Pro mikrooblasti rekonstrukci ve forme stavu, smesi ktery distribuc. urcuje msto O-line simulovane odhadneme poruchy, model pouzijeme pro bezporuchovy odhad modelu vsechny poruchove poruchove stavy, a s pouzitm vsech dat, ktera mame k dispozici. Tyto modely stav a uschovame.on-linemermedatasdanouporuchouaodhadujemeprslusnymodel.porovnanmonline modelu modelu s ostatnmi s jednotlivymi a pro ktery modely model zskanymi je vzdalenost o-line minimaln, zjistme minimaln tu poruchu vzdalenost prohlasme odhadnuteho za aktualn. Experiment ma tedy dve casti: 1. Cast ucen, kdy je pouzita setrvala porucha po dobu 15 dn, 2. pri Casttestovan,kdejsoupouzitaaktualndatavdobetrvan4.5,7.5,15a22,5min.Tytocasy, periode vzorkovan 1.5 min, odpovdaj trem, peti, deseti a patnacti aktualnm vzorkum. c. Pro 5. prezentaci Vzajemnou jsme pozici vybrali detektoru poruchu 5 a c. stojcho 5 a pro vozidla test byla zpusobujcho pouzita data poruchu (obsazenost) 5 je mozno na detektoru na obrazku 2. Na nasledujcch obrazcch jsou vysledky testu aktualnch dat pri poruse 5. Kazdy nalezt z zpracovavaneho obrazku ma dvecasti. aktualnho Na vzorku, leve strane na ose je y vynesen je odhadcsla prubeh poruchy. odhadu Jako poruchy vysledny - na ose odhad x je poruchy porad bereme nejcastejs odhad z jednotlivych kroku. V smesinaucenenajednotliveporuchy.vyhravataporucha,kterajenejcastejimaximaln.videalnm prave casti kazdeho obrazku jsou vyneseny nenornovane logaritmicke likelihoody pro vsechny prpade idealn stav by mel vsak byt nenastava, jeden prubeh coz svedc s urcitym o tom, odstupem ze informace trvale o poruse maximaln nen v a datech ostatn mnoho. mens. Tento Obrazek 3:Porucha5,trivzorkydat=4.5minuty 9

Obrazek 4:Porucha5,petvzorkudat=7.5minuty Obrazek 5:Porucha5,desetvzorkudat=15minut

Obrazek 6: Porucha 5, patnact vzorku dat = 22.5 minuty Zuvedenychobrazkujepatrne,zeporuchac.5bylaspravnedetekovanavevsechprpadech.Odhad zetrdatjedostinejisty,aleukazujese,zepetaktualnchvzorkujeprodetekciporuchydostacujc. Prouplnostuvadmevysledkypro3,5,a15vzorkudatprovsechnytypyporuch,tj.poruchu1 az a poruchy 13. Csla 2,3,.. poruch jsou je oznaceny mozno sledovat jako 1,2,.. na obrazku 2, pricemz pripomname: 1 je bezporuchovy stav Vysledkyjsouuvedenyvtabulkach,kdevprvnmradkujeskutecnecsloporuchyvdruhemradku je cslo odhadu poruchy. skutecnaporucha odhadnutaporucha 1 2 5 3 4 4 5 6 7 6 8 9 11 13 13 Rozhodovan po trech vzorcch = 4.5 minuty skutecnaporucha odhadnutaporucha 1 2 3 4 4 5 6 7 6 8 9 11 13 13 Rozhodovan po peti vzorcch = 7.5 minuty skutecnaporucha odhadnutaporucha 1 2 3 4 5 6 7 6 8 9 11 13 13 Rozhodovan po deseti vzorcch = 15 minut 11

skutecnaporucha 1 2 3 4 5 6 7 8 9 11 13 odhadnutaporucha 1 2 3 4 5 6 2 8 9 13 Rozhodovan po patnacti vzorcch = 22.5 minuty Z velmi uvedeneho dobre. je patrne, ze jiz rozhodovan s peti vzorky, tj. daty merenymi po dobu 7.5 minuty je 6 Zaver Provedene zruznychdopravnchsituac,prokazaly,zeuvedenacestajeperspektivn.vyhodoutohotoprstupu pokusy, testujc schopnost pravdepodobnostn smesi popsat a rozlisit dopravn data je,zejepostavennaglobalnmpohledunadopravnoblast,atedyjevpodstatenezavislynajejm konkretnm dostupne informace, vyberu. Zahrnut i kdyz se porucha vsech merenych na nekterych dat do detektorech odhadu rovnez neprojev. zajist'uje Cestou, maximaln ktera zde vyuzit naznacena, se bude dale pokracovat a budou se testovat dals zlepsen. Jednm z nich, napr. byla pro testy brat ne jenom merene obsazenosti, ale dvojice[obsazenost, intenzita], ktere predstavuj je elementarn stavy dopravy. Reference [1] udalost-oblastsmchova",tech.rep.,eltodo,praha4,novodvorska14,praha,17.prosince Drbohlav J. Pliska Z. Pribyl P.,TichyT., \Navrh expertnho systemuproresen mimoradnych 2005. [2] Praha, P.Nedoma,M.Karny,T.V.Guy,I.Nagy,andJ.Bohm, 2003. Mixtools.(Program), UTIAAV CR, [3] Dynamic M.Karny,J.Bohm,T.V.Guy,L.Jirsa,I.Nagy,P.Nedoma,andL.Tesar, Advising: Theory and Algorithms, Springer, London, 2005. OptimizedBayesian