METODA UZLOVÝCH NAPĚTÍ VÝPOČET ZKRATOVÝCH PROUDŮ V SÍTI VVN

Podobné dokumenty
Symetrické stavy v trojfázové soustavě

2.6. Vedení pro střídavý proud

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady

Stupeň Datum ZKRATOVÉ POMĚRY Číslo přílohy 10

Výpočet napětí malé elektrické sítě

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v

Určeno pro posluchače bakalářských studijních programů FS

Měření transformátoru naprázdno a nakrátko

20ZEKT: přednáška č. 3

1.1 Měření parametrů transformátorů

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu

Calculation of the short-circuit currents and power in three-phase electrification system

Přechodné jevy v elektrizačních soustavách

7 Měření transformátoru nakrátko

ZÁKLADY ELEKTROTECHNIKY pro OPT

Elektrárny A1M15ENY. přednáška č. 2. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, Praha 6

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

ČESKÁ TECHNICKÁ NORMA

Zkratové proudy II. Listopad Ing. René Vápeník

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

Určeno pro posluchače všech bakalářských studijních programů FS

USTÁLENÝ CHOD A ZKRATOVÉ POMĚRY V SÍTI 110 KV E.ON PŘI MŮSTKOVÉM PROVOZU TRANSFORMÁTORŮ T402 A T403 V TRANSFORMOVNĚ 400/110 KV SOKOLNICE

Určete počáteční rázový zkratový proud při trojfázovém, dvoufázovém a jednofázovém zkratu v označeném místě schématu na Obr. 1.

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM TRANSFORMÁTORU.

Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

Identifikátor materiálu: VY_32_INOVACE_355

6 Měření transformátoru naprázdno

2.4. Výpočty vedení obecně

Ochrany v distribučním systému

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

9 Měření na jednofázovém transformátoru při různé činné zátěži

12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ NEBO DISTRIBUČNÍ SOUSTAVĚ

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTIBUČNÍ SOUSTAVY ELPROINVEST s.r.o. Příloha1 Dotazníky pro registrované údaje. Schválil: ENERGETICKÝ REGULAČNÍ ÚŘAD

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. ENERGETIKY TŘINEC, a.s. DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

PRAVIDLA PROVOZOVÁNÍ. MOTORPAL,a.s.

Regulace napětí v distribuční soustavě vn a nn

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

Symetrizace 1f a 3f spotřebičů Symetrizace 1f a 3f spotřebičů

PŘÍLOHA 1 PPDS:DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

Osnova kurzu. Rozvod elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

MODELOVÁNÍ NESYMETRICKÉHO TŘÍFÁZOVÉHO VEDENÍ

Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Aplikovaná numerická matematika - ANM

PRAVIDLA PROVOZU LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ELEKTRICKÉ ENERGIE ÚJV Řež, a. s.

Transformátory. Teorie - přehled

Příloha P1 Určení parametrů synchronního generátoru, měření provozních a poruchových stavů synchronního generátoru

Odstupňování průřezů vinutí

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Základy elektrotechniky

Přenosové linky. Obr. 1: Náhradní obvod jednofázového vedení s rozprostřenými parametry

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

3. Střídavé třífázové obvody

VÝPOČET NASTAVENÍ DISTANČNÍ OCHRANY PRO VEDENÍ VVN

Měření výkonu jednofázového proudu

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

ITO. Semestrální projekt. Fakulta Informačních Technologií

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

teorie elektronických obvodů Jiří Petržela analýza obvodů s neregulárními prvky

ustáleném stavu Elektrické obvody používané v energetice, Skládají se z: vedení transformátorů a tlumivek spotřeby (zátěží)

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství

Identifikátor materiálu: VY_32_INOVACE_344

TEORIE ELEKTRICKÝCH OBVODŮ

přednáška č. 2 Elektrárny B1M15ENY Schéma vlastní spotřeby Příklady provedení schémat VS Výpočet velikosti zdrojů pro VS Ing. Jan Špetlík, Ph.D.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

TECHNICKÁ UNIVERZITA V LIBERCI

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra elektroenergetiky

0.1 Úvod do lineární algebry

Elektrotechnika. Václav Vrána Jan Dudek

Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Obvodové prvky a jejich

TRANSFORMÁTORY Ing. Eva Navrátilová

1 Zdroj napětí náhradní obvod

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. Dotazníky pro registrované údaje

Elektroenergetika 1. Elektrické části elektrárenských bloků

PRAVIDLA PROVOZOV ANI LOKÁLNÍ DISTIBUČNÍ SOUST A VY

Řešení elektrických sítí pomocí Kirchhoffových zákonů

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍCH DISTRIBUČNÍCH SOUSTAV DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

přednáška č. 2 Elektrárny A1M15ENY Ing. Jan Špetlík, Ph.D. Schéma vlastní spotřeby Příklady provedení schémat VS Výpočet velikosti zdrojů pro VS

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. VEOLIA PRŮMYSLOVÉ SLUŽBY ČR, a.s. PŘÍLOHA 1. Dotazníky pro registrované údaje

Pracovní list žáka (SŠ)

Studium tranzistorového zesilovače

Vliv přenosu jalového výkonu na ztráty v distribučních sítích. František Žák AMPÉR 21. březen 2018

IN-EL, spol. s r. o., Gorkého 2573, Pardubice. ČÁST I: JIŠTĚNÍ ELEKTRICKÝCH ZAŘÍZENÍ 15 Úvod 15

Elektroenergetika 1. Elektrické části elektrárenských bloků

Osnova kurzu. Základy teorie elektrických obvodů 3

2. Měření parametrů symetrických vedení

13 Měření na sériovém rezonančním obvodu

0.1 Úvod do lineární algebry

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VÍTKOVICE. Dotazníky pro registrované údaje

NÁLEŽITOSTI ŽÁDOSTI O PŘIPOJENÍ VÝROBNY ELEKTŘINY K PŘENOSOVÉ SOUSTAVĚ NEBO DISTRIBUČNÍ SOUSTAVĚ

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika

Transkript:

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF ELECTRICAL POWER ENGINEERING METODA ULOVÝCH NAPĚTÍ VÝPOČET KRATOVÝCH PROUDŮ V SÍTI VVN SEMESTRÁLNÍ PROJEKT SEMESTRAL PROJECT AUTOR PRÁCE AUTHOR ING. RENÉ VÁPENÍK BRNO 9

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Ústav elektroenergetiky Semestrální projekt Metoda uzlových napětí. Výpočet zkratových proudů v síti vvn. Ing. René Vápeník vedoucí: doc. Ing. Evžen Haluzík, CSc. Ústav elektroenergetiky, FEKT VUT v Brně, 9 Brno

BRNO UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering and Communication Department of Electrical Power Engineering Semestral Project The method of node voltage. Calculation of short-circuit currents in the system HV. by Ing. René Vápeník Supervisor: doc. Ing. Evžen Haluzík, CSc. Brno University of Technology, 9 Brno

ABSTRAKT Předmětem semestrální práce je výpočet zkratových poměrů pomocí metody uzlových napětí pro různé varianty chodu sítě. Součástí je i vytvoření softwarové podpory v programu vytvořeném pomocí PHP. KLÍČOVÁ SLOVA: Metoda uzlových napětí, zkraty, chod sítě naprázdno, chod sítě se zátěží

ABSTRACT The subject of the project is to calculate the short-circuit conditions using the method of node voltage for different variants of network operation. This includes the creation of software support program created by PHP. KEY WORDS: Method of node voltage, short circuits, remove the network load, network load operation.

SENAM OBRÁKŮ Obr. - Schéma sítě... Obr. - Topologická mapa sítě... Obr. -3 Náhrada napěťového zdroje zdrojem proudovým... Obr. -4 Topologická mapa sítě s vyznačenou orientací větví...3 Obr. -5 Snímek vstupního formuláře skriptu...4 Obr. -6 Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry...6 Obr. -7 Snímek obrazovky se zobrazením výsledků...6 Obr. -8 Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry...8 Obr. -9 Snímek části obrazovky se zobrazením výsledků skriptu...8 Obr. - Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry... Obr. - Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry... Obr. - Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry...3 Obr. -3 Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry...4 Obr. - Schéma sítě vvn...7 Obr. - Náhradní schéma sítě vvn...9

SENAM TABULEK Tab. - Parametry soustavy...7 Tab. - Parametry generátorů...7 Tab. -3 Parametry transformátorů...8 Tab. -4 Parametry vedení...8 Tab. -5 Přepočtené parametry zdrojů připojených do jednotlivých uzlů...9 Tab. -6 Parametry jednotlivých větví...3 Tab. -7 Tabulka odběru z jednotlivých uzlů...35 Tab. -8 Parametry v uzlech při chodu se zátěží...35 Tab. -9 Proudy tekoucí jednotlivými větvemi (vedeními) při chodu se zátěží...36 Tab. - Shrnutí výsledků velikosti zkratových proudů (v A)...37 Tab. - Fázové napětí v jednotlivých uzlech při zkratu (ve V)...4 Tab. - Příspěvek jednotlivých zdrojů do zkratu (v A)...4 Tab. -3 Velikost zkratového proudu (v A)...4 Tab. -4 Proudy v jednotlivých vedeních...4 Tab. -5 Fázové napětí v jednotlivých uzlech při zkratu (ve V)...4 Tab. -6 Příspěvek jednotlivých zdrojů do zkratu (v A)...4 Tab. -7 Velikost zkratového proudu (v A)...43 Tab. -8 Proudy v jednotlivých vedeních...43 Tab. -9 Fázové napětí v jednotlivých uzlech při zkratu (ve V)...44 Tab. - Příspěvek jednotlivých zdrojů do zkratu (v A)...44 Tab. - Velikost zkratového proudu (v A)...45 Tab. - Proudy v jednotlivých vedeních...45 Tab. -3 Proud do zátěže při zkratu (ve A)...46 Tab. -4 Fázové napětí v jednotlivých uzlech při zkratu (ve V)...47 Tab. -5 Příspěvek jednotlivých zdrojů do zkratu (v A)...47 Tab. -6 Velikost zkratového proudu (v A)...48 Tab. -7 Proudy v jednotlivých vedeních...48 Tab. -8 Proud do zátěže při zkratu (ve A)...49 Tab. -9 Velikosti náhradních sousledných impedancí (v Ω)...5 Tab. - Velikosti náhradních impedancí složkové soustavy (v Ω)...5 Tab. - Velikosti zkratových proudů pro různé typy zkratu (v ka)...5

SENAM SYMBOLŮ A KRATEK A Ampér, jednotka proudu E - ekvivalentní napětí zdroje HTML Hyper Text Markup Language I modul proudu '' I ki - počátečný souměrný zkratový proud v i tém uzlu I odi modul proudu odběru z i-tého uzlu [ I R ] -redukovaná matice proudových zdrojů [ I v ] - matice proudů v jednotlivých větvích [ I z ] - matice proudových zdrojů [ I z ] - matice proudů dodávaných ze zdroje [ K ] - incidenční matice MVA Megavoltampér PHP Hypertext Preprocessor S Modul zdánlivého výkonu S Siemens, jednotka vodivosti U modul napětí [ U ] - matice uzlových napětí U i modul napětí v i-tém uzlu [ U R ] - redukovaná matice uzlových napětí V Volt, jednotka napětí VA Voltampér, jednotka zdánlivého výkonu WWW -World Wide Web Y modul admitance [ Y ] - uzlová admitanční matice Y k modul admitance zkratu [ Y k ] - matice admitance zkratu [ Y od ] - diagonální matice náhradních admitancí odběru proudu Y odi modul náhradní admitance proudu odběru z i-tého uzlu [ Y R ] - redukovaná uzlová admitanční matice

[ Y v ] - diagonální matice větvových admitancí [ Y z ] - diagonální matice admitancí zdroje modul impedance - modul netočivé složky impedance - modul sousledné složky impedance - modul zpětné složky impedance k modul impedance zkratu ka kiloampér kv - kilovolt v x označení větve vn vysoké napětí vvn velmi vysoké napětí zvn zvlášť vysoké napětí

OBSAH ÚVOD.... POPIS MATEMATICKÉHO MODELU..... VÝPOČET KRATU V SÍTI BE ÁTĚŽE (S NULOVÝM ODPOREM KRATU)...7.. VÝPOČET OBVODU V SÍTI BE ÁTĚŽE (NENULOVÝ PŘECHODOVÝ ODPOR KRATU)...8..3 VÝPOČET CHODU SÍTĚ S ODBĚRY.....4 VÝPOČET KRATU V SÍTI SE ÁTĚŽÍ (S NULOVÝM ODPOREM KRATU).....5 VÝPOČET KRATU V SÍTI SE ÁTĚŽÍ (S NENULOVÝM ODPOREM KRATU)...4. SHRNUTÍ:...5.. DALŠÍ POSTUP DOPOČET JINÝCH TYPŮ KRATŮ...5 PRAKTICKÝ VÝPOČET CHODU REÁLNÉ SÍTĚ...7. VSTUPNÍ PARAMETRY...7. VÝPOČET METODOU ULOVÝCH NAPĚTÍ...9.. VÝPOČET CHODU SÍTĚ BE ÁTĚŽE PŘI KRATU V ULU A PRO NULOVÝ ODPOR KRATU...3.. VÝPOČET CHODU SÍTĚ BE ÁTĚŽE PŘI KRATU V ULU A PRO NENULOVÝ ODPOR KRATU34..3 VÝPOČET USTÁLENÉHO CHODU SÍTĚ SE ÁTĚŽÍ...34..4 VÝPOČET USTÁLENÉHO CHODU SÍTĚ SE ÁTĚŽÍ A PRO NULOVÝ ODPOR KRATU...36..5 VÝPOČET USTÁLENÉHO CHODU SÍTĚ SE ÁTĚŽÍ A PRO NENULOVÝ ODPOR KRATU...36.3 ÁVĚR...37 POUŽITÁ LITERATURA...39 PŘÍLOHA A SHRNUTÍ VÝSLEDKŮ PRO CHOD DANÉ SÍTĚ BE ÁTĚŽE A PRO NULOVÝ ODPOR KRATU...4 PŘÍLOHA B SHRNUTÍ VÝSLEDKŮ PRO CHOD DANÉ SÍTĚ BE ÁTĚŽE A PRO NENULOVÝ ODPOR KRATU OHMY...4 PŘÍLOHA C SHRNUTÍ VÝSLEDKŮ PRO CHOD DANÉ SÍTĚ SE ÁTĚŽÍ A PRO NULOVÝ ODPOR KRATU...44 PŘÍLOHA D VÝPOČET USTÁLENÉHO CHODU SÍTĚ SE ÁTĚŽÍ A PRO NENULOVÝ ODPOR KRATU OHMY...47 PŘÍLOHA E VELIKOST JEDNOTLIVÝCH TYPŮ KRATU PRO CHOD BE ÁTĚŽE...5

Úvod ÚVOD Předmětem projektu je výpočet proudových a napěťových poměrů v síti vvn při třífázovém zkratu. Výpočet je proveden v několika variantách. Výpočet je proveden pomocí metody uzlových napětí a jsou uvažovány varianty výpočty bez zatěže a se zátěží a rovněž tak případy nulového a nenulového odporu zkratu. Tento model je podpořen skriptem naprogramovaný pomocí PHP, který je k dispozici na www stránkách http://www.stud.feec.vutbr.cz/~xvapen/vypocty/mun.php. První část této práce je věnován detailnímu popisu algoritmu řešení na jednoduchém příkladu. Účelem je na nejjednodušším příkladě osvětlit použité algoritmy řešení. Druhá část je věnována výpočtu části distribuční sítě vvn s použitím daného skriptu.. Popis matematického modelu Předpokládejme tuto jednoduchou síť, napájenou dvěmi transformátory s různě nastavenými odbočkami, bez odběru. G 3 V,5 V3,5 V,5 3,6 V,5 G 4,5 V Obr. - Schéma sítě v v 3 v Obr. - Topologická mapa sítě 3 Do uzlu č. je připojen zdroj napětí U=3 V s vnitřní impedancí.5 Ω. Do uzlu č. je připojen zdroj napětí U=4,5 V s vnitřní impedancí.6 Ω. Impedance větví v až v 3 je,5 Ω.

Úvod Nejprve přepočteme zdroje napětí na zdroje proudu. Y Obr. -3 Náhrada napěťového zdroje zdrojem proudovým U 3 V I = = = 5333,33 A (.),5Ω Y = = 66,66 S (.) Pro zdroj připojený do uzlu dostáváme I Y = 45A = 6,66S Dále přepočteme impedance jednotlivých větví na admitance. Pro jednotlivé větve v až v 3 je admitance S. V dalším kroku sestrojíme diagonální matici větvových admitancí. Prvky na i-tém řádku a i- tém sloupci tvoří admitance i-té větve. Ostatní prvky jsou nulové. Y v (.3) [ ] = S Stejným způsobem vytvoříme diagonální matici admitancí zdroje propojených do jednotlivých j-tých uzlů. 66,66 Y z (.4) [ ] = 6,66 S

Úvod 3 Dále vytvoříme incidenční matici K. Ta má i řádek (jednotlivé řádky představují větve) a j sloupců (jednotlivé sloupce přestavují uzly). Než ji vytvoříme, musíme si orientovat (stanovit směry toku proudu) jednotlivé větve. v v 3 v 3 Obr. -4 Topologická mapa sítě s vyznačenou orientací větví Incidenční matici vytvoříme tak, že prvek v i-tém řádku v j-tém sloupci odpovídá, pokud i- tá větev vychází z j-tého sloupce a odpovídá - pokud, i-tá větev vchází do j-tého uzlu. První větev vychází z uzlu číslo a vchází do uzlu č.. První řádek matice tedy odpovídá: [ ] = K (.5) Druhá větev vychází z uzlu číslo a vchází do uzlu č. 3. Druhý řádek matice tedy odpovídá: [ ] = K (.6) A třetí větev vychází z uzlu číslo a vchází do uzlu č. 3. Třetí řádek matice tedy odpovídá: [ ] K (.7) 3 = Výsledná incidenční matice K má tvar K = (.8) Dále vypočítáme uzlovou admitanční matici dle vztahu T [ Y ] = [ K ][ Y ][. K ] + [ Y ]. (.9) v z Tuto matici můžeme rovněž sestavit přímo z topologické mapy sítě. Prvky na hlavní diagonále tvoří součet admitancí všech větví z uzlu vycházejících včetně admitance příslušného zdroje připojeného do daného uzlu. Ostatní prvky tvoří zápornou hodnotu admitance mezi i-tým uzlem na i-tém řádku a j-tým uzlem v j-tém sloupci.

Úvod 4 Admitance zdrojů tvoří další větve mezi i-tým uzlem a uzlem č. představující zem. Pokud bychom ale při vytváření výše uvedených matic uvažovali i uzel č., dostali bychom další řádek a další sloupec, které by byl lineární kombinací ostatních a pro řešení může být vynechán. Na následujícím obrázku jsou znázorněny jednotlivé kroky zadávání potřebných údajů do formuláře: Obr. -5 Snímek vstupního formuláře skriptu

Úvod 5 Po výpočtu dostáváme uzlovou admitanční matici 7,66 Y (.) 4 [ ] =,66 S Pro další výpočet sestavíme proudovou matici zdrojů: 5333,33 I z (.) [ ] = 45 A Dle následujícího vztahu vypočteme napětí v jednotlivých uzlech: [ U ] [ Y ].[ I ] = (.) Dostáváme výsledek 3,4 U (.3) 35, [ ] = 39,8 V Vynásobením diagonální admitanční matice, incidenční matice v jednotlivých uzlech dostaneme proudy tekoucí jednotlivými větvemi a matice napětí [ I ] [ Y ][. K ][ U ] = (.4) v v. Výsledek 8,8 I v (.5) 9,4 [ ] = 9,4 A Proud dodávaný ze zdroje určíme dle vztahu [ I ] [ I ] [ Y ][ U ] = (.6) z z. Výsledek 8,6 I z (.7) [ ] = 8,6 A

Úvod 6 Tím máme proveden kompletní výpočet ustáleného chodu dané sítě bez zátěže (naprázdno). 3 V - 8,6 A 3,4 V v -8,8 A 39,8 V 4,5 V + 8,6 A v 3-9,4 A +9,4 A v 3 35, V Obr. -6 Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry Obr. -7 Snímek obrazovky se zobrazením výsledků

Úvod 7.. Výpočet zkratu v síti bez zátěže (s nulovým odporem zkratu). Předpokládejme síť jako v předchozím příkladu. Pro výpočet zkratu v i-tém uzlu (při nulovém přechodovém odporu zkratu) se tento uzel spojí s uzlem. V matematickém vyjádření to představuje následujícím kroky. Definujeme redukovanou uzlovou impedanční matici Yr, kterou vytvoříme tak, že z uzlové admitanční matice Y vynecháme i-tý sloupec a i-tý řádek. V následujícím výpočtu předpokládejme zkrat v uzlu č., vynecháme tedy druhý řádek a druhý sloupec. 7,66 Y R 4 (.8) [ ] = S V matici zdrojů vynecháme i-tý řádek 5333,33 I R (.9) [ ] = A Dle následujícího vztahu vypočteme napětí v jednotlivých uzlech: [ U ] [ Y ].[ I ] R = (.) R Dostáváme výsledek R, U R (.) [ ] = V Napětí v uzlu č. je rovno. Výsledná matice napětí jednotlivých uzlů je, U (.) [ ] = V Proudy v jednotlivých větvích již spočítáme stejně jako v předchozím příkladě. Dostáváme: 44, v v (.3), [ I ] = [ Y ][. K][. U ] =, A Stejným způsobem spočítáme proud dodávaný ze zdrojů 66,3 z z (.4) [ I ] = [ I ] [ Y ][. U ] = 45 A

Úvod 8 kratový proud, tzn. proud tekoucí z uzlu č. (obecně z i-tého uzlu) do země dostaneme jako rozdíl bilance proudu v uzlu a proudu do uzlu dodávaného ze zdroje dle vztahu: I '' ki n = K j= ji. I vj I zi (.5) Bilanci proudů v i-tém uzlu dostaneme tak, že prvky i-tého sloupce incidenční matice vynásobíme příslušené prvky matice větvových proudů (j až n, kde n je počet větví.). V našem konkrétním případě tedy dostáváme: (.44,) +.(,) ) + (.,) 45 = 4685,3 A I (.6) '' k = naménko minus označuje proud tekoucí z uzlu. Velikost (absolutní hodnota) tohoto proudu odpovídá součtu proudu dodávaných zdroji. Při výpočtu jsme neuvažovali odběry. 3 V +66,3 A, V v 44, A V 4,5 V + 45 A v 3 +, A -, A v 4685,3 A 3 V Obr. -8 Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry Obr. -9 Snímek části obrazovky se zobrazením výsledků skriptu.. Výpočet obvodu v síti bez zátěže (nenulový přechodový odpor zkratu) Další případ, který může v obvodu nastat je zkrat v i-tém uzlu s nenulovým přechodovým odporem. Uvažujeme zkrat v uzlu č. 3 a přechodovou impedanci zkratu k =5 Ω. Tomu odpovídá admitance Y k =, S. Vytvoříme si příslušnou admitanční matici. Ta bude obsahovat až na prvek v i-tém řádku a i- tém sloupci, kde bude přechodová admitance zkratu. Ostatní prvky budou nulové.

Úvod 9 Y k (.7), [ ] = S Uzlovou admitanční matici obvodu dostaneme jako součet matic: T [ Y ] = [ K ][ Y ][. K ] + [ Y ] + [ Y ]. (.8) v z k Po výpočtu dostáváme uzlovou admitanční matici 7,66 Y (.9) 4, [ ] =,66 S Následující výpočty jsou stejné jako v první příkladě. Matice uzlových napětí je: 3, U (.3) 3, [ ] = [ Y ].[ I ] = 38,6 V Proudy v jednotlivých větvích již spočítáme stejně jako v předchozím příkladě. Dostáváme: 7, v v (.3) 3,7 [ I ] = [ Y ][. K ][. U ] = 3,9 A Stejným způsobem spočítáme proud dodávaný ze zdrojů 3,4 z z (.3) [ I ] = [ I ] [ Y ][. U ] = 48 A Velikost zkratového proudu bude: (.( 7,) ) + (.3,9) + (.3,7) = 44,6 A I (.33) '' k3 =

Úvod 3 V -3,4 A 3, V v -7, A 38,6 V 4,5 V + 48 A v 3 +3,7 A 3,9 A v 3, V 3 44,6 A Obr. - Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry..3 Výpočet chodu sítě s odběry V našem případě bude odběr představovat proudu z uzlu č. o velikosti A. Ten nasimuluje admitancí I od Yod = = =,4 S (.34) max( U ) 4,5 jednotlivých admitancí simulujících zátěž vytvoříme diagonální matici:,4 Y od (.35) [ ] = S Vytvoříme uzlovou admitanční matici dle vztahu: T [ Y ] = [ K ][ Y ][. K ] + [ Y ] + [ Y ]. (.36) v z od Po výpočtu dostáváme uzlovou admitanční matici 7,7 Y (.37) 4, [ ] =,66 S Následující výpočty jsou stejné jako v první příkladě. Matice uzlových napětí je: 3,3 U (.38) 35, [ ] = [ Y ].[ I ] = 39,8 V

Úvod Proudy v jednotlivých větvích již spočítáme stejně jako v předchozím příkladě. Dostáváme: 9, v v (.39) 9,5 [ I ] = [ Y ][. U ] = 9,5 A Stejným způsobem spočítáme proud dodávaný ze zdrojů 8,97 z z (.4) [ I ] = [ I ] [ Y ][. U ] = 8,5 A Proudy tekoucí z uzlů dostaneme vynásobením diagonální matice zátěže a matice uzolvých napětí: 9,54 od od (.4) [ I ] = [ Y ][. U ] = A Tento vypočtený proud se liší od proudu zadaného. Je to způsobeno tím, že průchodem proudu obvodem dochází k úbytkům napětí a to má za následek, že v místě odběru není jmenovité napětí zdroje (námi uvažovaných 4,5 V), ale napětí nižší. Provedeme tudíž korekci admitance zátěže a to tak, že místo námi uvažovaných 4,5 V dosadíme vypočtené napětí v daném uzlu, znovu vypočteme admitanci simulující zátěž: I od Y od = = =,43 S (.4) U 3,3 i A celý výpočet zopakujeme. Již při druhém výpočtu dodáváme tyto, přesnější hodnoty: 3,3 U (.43) 35, [ ] = [ Y ].[ I ] = 39,8 V 9, v v (.44) 9,5 [ I ] = [ Y ][. K][. U ] = 9,5 A 8,53 z z (.45) [ I ] = [ I ] [ Y ][. U ] = 8,53 A

Úvod 9,99 od od (.46) [ I ] = [ Y ][. U ] = A 3 V -8,97 A 3,3 V v -9, A 39,8 V 4,5 V + 8,5 A -9,54 A v 3-9,5 A 9,5 A v 3 35, V Obr. - Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry..4 Výpočet zkratu v síti se zátěží (s nulovým odporem zkratu) V předchozích případech byly shrnuty základní varianty výpočtu chodu sítě. Výpočet zkratu (ať již s nulovým či nenulovým odporem) v síti s odběry je již kombinací předchozích zevrubně popsaných postupů. Následujíc část je omezena jen na výsledky. Pro zkrat v uzlu č. s nulovou přechodovou impedancí zkratu dostáváme:, U (.47), [ ] = [ Y ].[ I ] = V 439,9 v v (.48) [ I ] = [ Y ][. K ][. U ] = A 669,4 z z (.49) [ I ] = [ I ] [ Y ][. U ] = 45 A 9,54 od od (.5) [ I ] = [ Y ][. U ] = A '' a zkratový proud I = 4684, 88 A k

Úvod 3 3 V +669,4 A, V v 439,9 A V 4,5 V + 45 A -9,54 A v 3 +, A -, A v 4685,3 A 3, V Obr. - Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry

Úvod 4..5 Výpočet zkratu v síti se zátěží (s nenulovým odporem zkratu) Předpokládejme zkrat v uzlu č. 3 a přechodový odpor zkratu 5 Ω. Matice uzlových napětí je: 9,9 U (.5) 3, [ ] = [ Y ].[ I ] = 38,6 V Proudy v jednotlivých větvích již spočítáme stejně jako v předchozím příkladě. Dostáváme: 7,4 v v (.5) 3,6 [ I ] = [ Y ][. K][. U ] = 3 A Stejným způsobem spočítáme proud dodávaný ze zdrojů 6, z z (.53) [ I ] = [ I ] [ Y ][. U ] = 48,4 A A proudy dodávané do zátěže: 9,98 od od (.54) [ I ] = [ Y ][. U ] = A Velikost zkratového proudu bude: I (.( 7,4) ) + (.3) + (.3,6) = 44,6 A '' k3 = 3 V +6, A 9,9 V v -7,4 A 38,6 V 4,5 V + 48,4 A v 3-9,98 A +3,6 A 3, A v 3, V 3 44,6 A Obr. -3 Topologická mapa sítě s vyznačenými napěťovými a proudovými poměry

Úvod 5 Příslušný PHP skript je navržen tak, že korekce admitance zátěže se provádí jen při výpočtu ustáleného stavu. Při výpočtu zkratu se tato korekce neprovádí, neboť v důsledku zkratu dochází k poklesu napětí a tím i poklesu proudu zátěže a korekcí tohoto proudu bychom zkreslili výpočet.. Shrnutí: Výpočtem jsme ukázali, že zkratový proud v nezatíženém obvodu je největší, zatím co v zatíženém obvodu bude menší o proud, který teče do zátěže. Toto zjednodušení ale nemusí obecně platit. de záleží na charakteru zátěže. Pokud se bude jednat o čistě ohmickou zátěž např. elektrotepelných spotřebičů, bude toto tvrzení pravdivé. Avšak pokud zátěž budou tvořit velké motory, naopak při zkratu síti se začnou chovat jako generátory a zkratový proud mohou zvýšit... Další postup dopočet jiných typů zkratů de jsme provedli výpočet třífázového zkratu při různých stavech sítě a pro různou velikost přechodového odporu zkratu. Jiné typy zkratu můžeme následně dopočítat dle následujícího postupu: Máme danou velikost ekvivalentního zdroje napětí E a vypočítanou velikost zkratového proudu. Jednoduchým způsobem můžeme vypočítat velikost sousledné složky náhradní impedance dle vztahu. E'' = (.55) (3) I V dalších výpočtech předpokládejme, že pro velikosti impedance složkové soustavy platí: = (.56) = (.57),8. Velikosti zkratových proudů dostaneme dle následujících vztahů[]: Trojfázový zkrat: E' ' = (.58) ''(3) I k I = Jednofázový zkrat ''() I k 3. I = 3. + + E' ' = (.59) Dvoufázový zkrat

Úvod 6 '() ' ' ' 3. 3. E I I k + = = (.6) Dvoufázový zemní zkrat ( ) ( ) ) ''(,. ''.. 3... 3. E I I N k + + + = + = (.6)

Praktický výpočet chodu reálné sítě 7 PRAKTICKÝ VÝPOČET CHODU REÁLNÉ SÍTĚ Předmětem projektu je porovnání různých variant výpočtu třífázového zkratu na vybrané části ES České republiky a daném místě poruchy. Pro výpočet byla vybrána část distribuční sítě kv napájená z uzlové transformovny / kv Milín. Do této sítě pracují dvě elektrárny a to VE Kamýk a PE Příbram. PE Příbram G G G G PS ČEPS Milín Příbram Brod () (3) 97 975 97 973 (4) Příbram město T 974 () VE Kamýk G G G3 G4 976 969 968 G G G G 964 (7) 96 Slapy (8) Mirovice 965 (6) 96 Sedlčany (5) Obr. - Schéma sítě vvn. Vstupní parametry Technické údaje jsou fiktivní! kratový výkon přenosové soustavy ČEPS Tab. - Parametry soustavy Místo kratový výkon soustavy [MVA] Reaktance [Ω] Uzel Milín 35 = 3, 46Ω X S Tab. - Parametry generátorů Stanice Označení Výkon [MVA] e k [%] Reaktance [Ω]

Praktický výpočet chodu reálné sítě 8 PE Příbram G 4 = 36, 3Ω PE Příbram G 4,3 = 8, 4Ω VE Kamýk G X HG =Ω VE Kamýk G X HG =Ω VE Kamýk G3 X HG3 = Ω VE Kamýk G4 X HG4 =Ω X TG X TG Tab. -3 Parametry transformátorů Stanice Označení Výkon [MVA] u k [%] Reaktance [Ω] Milín T = 7, 6Ω PE Příbram T 4 = 33, 75Ω X T PE Příbram T X T = Ω VE Kamýk T X TG = Ω VE Kamýk T X TG =Ω VE Kamýk T3 X TG3 =Ω VE Kamýk T4 X TG4 =Ω X T Tab. -4 Parametry vedení Vedení Označení Měrná reaktance [Ω.km - ] délka [km] Reaktance [Ω] Slapy Sedlčany V96,4 34 = 3, 6Ω X V96 Slapy VE Kamýk V96,4 6 =, 4Ω X V96 VE Kamýk Mirovice V964,4 7 =, 8Ω X V964 Sedlčany Mirovice V965,4 36 = 4, 4Ω X V965 Milín - Mirovice V968,4 X V968 = 4Ω Milín Mirovice V969,4 X V969 = 4Ω Milín Příbram Brod V97,4 9 = 3, 6Ω X V97 Milín Příbram Brod V97,4 9 = 3, 6Ω X V97 Milín Příbram Město V973,4 4 = 5, 6Ω X V973 Milín Příbram Město V974,4 4 = 5, 6Ω X V974

Praktický výpočet chodu reálné sítě 9 Příbram Město PE Příbram V975,4 =, 8Ω X V975 Sedlčany Příbram Město V976,4 36 = 4, 4Ω X V976. Výpočet metodou uzlových napětí Obr. - Náhradní schéma sítě vvn Přepočet zdrojů Tab. -5 Přepočtené parametry zdrojů připojených do jednotlivých uzlů Uzel č. Napětí [V] Impedance [Ω] Proud [A] Admitance [S] / 3,7 5 94,3,933 3 / 3 59,3 7,97.69 7 / 3 6,5 49,73.65 Příslušná matice proudů má tvar:

Praktický výpočet chodu reálné sítě 3 594,3 7,97 I (.) 49,73 [ ] = A Matice admitancí zdrojů:,933,69 Y z (.),65 [ ] = S V následující tabulce jsou shrnuty parametry jednotlivých větví Tab. -6 Parametry jednotlivých větví Větev č. Vedení Větev mezi uzly Reaktance [Ω] Admitance [S] V97 3,6,778 V97-3,6,778 3 V973 4 5,6,786 4 V974 4 5,6,786 5 V968-8 4,5 6 V969-8 4,5 7 V975 3 4,8,5 8 V976 4 6 4,4,694 9 V96 5 6 3,6,735 V96 5 7,4,96 V965 6 8 4,4,694 V964 7-8,8,96

Praktický výpočet chodu reálné sítě 3 Sestavíme diagonální matici větvových admitancí [ ] =,6,96,735,694,5,5,5,786,786,778,778 Y v (.3) Následně sestavíme incidenční matici [ ] = K (.4)

Praktický výpočet chodu reálné sítě 3 [ ] Výsledná uzlová admitační matice má tvar,56,5556,357,5,5556,5556,669,5,357,5,6765,694 Y = (.5),697,735,96,694,735,3,694,96,53,96,5,694,96,66.. Výpočet chodu sítě bez zátěže při zkratu v uzlu a pro nulový odpor zkratu Pro výpočet zkratu v místě uzlu x vynecháme z uzlové admitanční matice [ Y ] x-tý sloupec a x-tý řádek a vytvoříme tak redukovanou uzlovou admitanční matici [ Y R ]. Pro výpočet zkratu v místě uzlu 5 vynecháme z matice 5 řádek a 5 sloupec. Obdobně z matice proudu 594,3 7,97 I R (.6) 49,73 [ ] = A,56,5556,357,5,5556,5556,669,5 YR =,357,5,6765,694 S (.7),694,3,694,53,96,5,694,96,66 [ ] Vynásobením matic dostaneme napětí v jednotlivých uzlech [ U ] [ Y ][. I ] R = (.8) R R

Praktický výpočet chodu reálné sítě 33 [ ] Dostáváme výsledek 37364 37364 3646 U R = 365 V (.9) 73 9 3343 Napětí v uzlu č. 5 je rovno. Výsledná matice napětí jednotlivých uzlů je 37364 37364 3646 365 U (.) 73 9 3346 [ ] = V Proudy v jednotlivých větvích již spočítáme stejně jako v předchozím příkladě. Dostáváme: [ I ] = [ Y ][. K ][. U ] = A 34,6 34,6 984,7 984,7 v v 456,8 (.) 96, 67, 94,4 743,9 5,5

Praktický výpočet chodu reálné sítě 34 Stejným způsobem spočítáme proud dodávaný ze zdrojů 439 457 z z (.) 76 [ I ] = [ I ] [ Y ][. U ] = A kratový proud, tzn. proud tekoucí z uzlu č. 5 (obecně z i-tého uzlu) do země dostaneme jako rozdíl bilance proudu v uzlu a proudu do uzlu dodávaného ze zdroje dle vztahu: n '' I. ki = K ji I vj I zi = 36 A (.3) j= V příloze A jsou uvedeny hodnoty vypočítané pro zkrat v jednotlivých uzlech... Výpočet chodu sítě bez zátěže při zkratu v uzlu a pro nenulový odpor zkratu Při výpočtu jsme předpokládali velikost impedance zkratu ohmy. Postup výpočtu je popsán v čl.... Výsledky jsou uvedeny v příloze B...3 Výpočet ustáleného chodu sítě se zátěží Odběry z jednotlivých uzlů nasimulujeme pomocí admitancí připojených mezi daný uzel a referenční zem (uzel ). V následující tabulce jsou nadefinovány velikosti odběru z jednotlivých uzlů. Současně jsou zde uvedeny hodnoty náhradních admitancí včetně korigovaných hodnot. V prvním přiblížení provedeme výpočet náhradní admitanci při uvažování jmenovitého napětí. Díky úbytkům napětí je ale skutečné napětí v jednotlivých uzlech nižší. V dalších, opakujících se výpočtech jsou uvažovány již vypočtené (nižší) hodnoty napětí v jednotlivých uzlech. Již po druhé korekci odchylka vypočtené zátěže je minimální od zátěže zadané. Přesný postup výpočtu je popsán v čl...3.

Praktický výpočet chodu reálné sítě 35 Tab. -7 Tabulka odběru z jednotlivých uzlů Uzel č. Název uzlu Odběr [MW] Účiník cos ϕ Proud [A] Náhradní admitance [S] Náhradní admitance po. korekci Náhradní admitance po. korekci Milín -,5,95 -,76,43,45,45 Příbram Brod -5,95-8,87,35,365,367 3 PE Příbram -3,95-6,57,6,74,74 4 Příbram Město -6,95-43,65,6,374,379 6 Sedlčany -9,95-4,97,653,745,749 7 VE Kamýk -,95-5,5,86,9,9 V následujících tabulkách jsou shrnuty výsledky výpočtů pro chod dané sítě s definovanou zátěží. Tab. -8 Parametry v uzlech při chodu se zátěží č. Název Fázové napětí [V] Dodávka ze zdroje [A] Výkon zdroje [MVA] Odběr z uzlu [A] Odběr z uzlu [MVA] TR Milín 674,5 58, 47,5 -,76 -,5 TR Příbram Brod 659,4, -8,86-5,6 3 PE Příbram 6394,4 5,5 9,5-6,57-3, 4 TR Příbram město 6365,6, -43,63-6, 5 TR Slapy 64,8,, 6 TR Sedlčany 59987,9, -4,96-8,89 7 VE Kamýk 675,9 45,6 8,3-5,5 -, 8 TR Mirovice 6663,,,

Praktický výpočet chodu reálné sítě 36 Tab. -9 Proudy tekoucí jednotlivými větvemi (vedeními) při chodu se zátěží č. větve Číslo vedení Proud [A] V97 4,4 V97 4,4 3 V973 67, 4 V974 67, 5 V968 9,3 6 V969 9,3 7 V975 35,9 8 V976 6, 9 V96 3,8 V96-3,8 V965-46,9 V964 8,..4 Výpočet ustáleného chodu sítě se zátěží a pro nulový odpor zkratu Postup výpočtu je popsán v čl...4. Výsledky jsou uvedeny v příloze C...5 Výpočet ustáleného chodu sítě se zátěží a pro nenulový odpor zkratu Postup výpočtu je popsán v čl...5. Výsledky pro uvažovaný odpor zkratu ohmy jsou uvedeny v příloze D.

Praktický výpočet chodu reálné sítě 37.3 ávěr Při těchto výpočtech jsme zanedbávali činný odpor a uvažovali pouze moduly impedancí vedení, transformátorů a zdrojů. Výpočet byl rovněž zjednodušen zanedbáním příčných admitanci vedení. Díky těmto zjednodušujícím předpokladům jsme mohli výpočet provádět jen v oboru reálných čísel. Tab. - Shrnutí výsledků velikosti zkratových proudů (v A) átěž ne ano ne ano Přechodový odpor zkratu [Ω] -783, -786,4-68,9-66,5-648,6-6359, -533,5-555,8 3-653, -68, -554,4-58,5 krat v uzlu č. 4-6486,4-6456,5-5386, -538,7 5-36,6-354, -34,8-356, 6-4495, -443,7-3937,6-386, 7-4477, -4389,7-394, -3835,4 8-6676,6-667,3-556,7-5438,9 Velikost zkratového proudu je nejvyšší v případě chodu dané sítě bez zátěže a se zanedbatelnou velikostí přechodového odporu zkratu. Vliv zátěže na velikost zkratu je poměrně malý, činí cca % z velikosti zkratového proudu. Oproti tomu výrazný vliv na velikost zkratového proudu má vlastní velikost přechodové impedance zkratu. Tento vliv bude tím větší, čím menší je impedance dané sítě. Dle vzorců uvedených v čl... byli následně dopočteny velikosti zkratových proudů pro různé typy zkratu. Tyto hodnoty byly vypočteny pouze pro stav sítě bez zátěže a pro ideální kovový zkrat se zanedbatelnou impedancí. Při výpočtech jsme předpokládali, že pro velikosti impedance složkové soustavy platí:

Praktický výpočet chodu reálné sítě 38 = (.4) = (.5),8. Velikosti zkratových proudů byly vypočteny dle následujících vztahů[]: Trojfázový zkrat E' ' = (.6) ''(3) I k I = Jednofázový zkrat ''() I k 3. I = 3. + + E' ' = (.7) Dvoufázový zkrat ''() I k 3. I = 3. + E' ' = (.8) Dvoufázový zemní zkrat I ''(, N ) k = 3.. ( + ) ( + ). I = 3... E''. + + (.9) Výsledky jsou uvedeny v příloze E.

Použitá literatura 39 POUŽITÁ LITERATURA [] ARRILLAGA J.,ARNOLD C.P., Computer analysis of power systems, University of Canterbury, Christchurs, New ealand. [] BLAŽEK V., Přenosové sítě, Brno 7, VUT. [3] BROŽA P., Tvorba WWW stránek pro úplné začátečníky, Praha 999, Computer Press, ISBN 8-76-64-9 [4] BUBENÍK, F.,PULTAR, M., PULTAROVÁ, I. Matematické vzorce a metody. Praha 997, ČVUT, ISBN 8--643-9. [5] BUDINSKÝ B., CHARVÁT J., Matematika I, Praha 987, SNTL. [6] CASTAGNETTO J., RAWAT H., SCHUMANN S., SCOLLO C., VELIATH D., Programujeme PHP profesionálně, Praha, Computer Press, ISBN 8-76-3-. [7] HODINKA, M., FECKO, Š., NĚMEČEK F., Přenos a rozvod elektrické energie, Praha 989, SNTL, ISBN 8-3-65-3. [8] KOLCUN M., CHLADNÝ V., VARGA L., Počítačová analýza elektrizačnej sústavy, Technická univerzita Košice 6, ISBN 8-873-453-4. [9] MIKULEC, M., HAVLÍČEK, V., áklady teorie elektrických obvodů, Praha 997, ČVUT, ISBN 8--6-X. [] MIKULEC, M., HAVLÍČEK, V., áklady teorie elektrických obvodů, Praha 998, ČVUT, ISBN 8--778-8. [] SEDLAČEK J., VALSA J., Elektrotechnika II, Brno 3, VUT. [] TOMAN P., Teorie souměrných složek, [disk]. Brno 5, VUT. [cit.9-5-]

Přílohy 4 Příloha A Shrnutí výsledků pro chod dané sítě bez zátěže a pro nulový odpor zkratu Tab. - Fázové napětí v jednotlivých uzlech při zkratu (ve V) Uzel krat v uzlu č. č. Název 3 4 5 6 7 8 TR Milín 535.5 659.689 3383.863 37364.8834 986.49 338.557 79.8849 TR Příbram Brod 659.689 3383.863 37364.8834 986.49 338.557 79.8849 3 PE Příbram 3798.74 4644.64 845.3644 3646.394 648.86 344.7 8.645 4 TR Příbram město 993.89 3985.55 465.6958 365.759 598.36 33.8 8.78 5 TR Slapy 68.436 77.768 735.3387 494.3456 734.96 988.999 7896.475 6 TR Sedlčany 3887.534 476.98 83.684 9357.3 73.5867 635.969 6698.5563 7 VE Kamýk 964.6684 8953.6934 83.668 7893.4835 9.659 473.468 88.538 8 TR Mirovice 675.569 96.748 6787.6849 359.393 3346.6 56.3475 683.3987 Tab. - Příspěvek jednotlivých zdrojů do zkratu (v A) droj krat v uzlu č. Uzel č. Název 3 4 5 6 7 8 TR Milín 594.33 4848.79 4376.483 4675.7643 438.736 39.3374 93.5867 497.643 3 PE Příbram 6.95 84.9 7.97 56.755 456.8594 64.3875 53.8749 854.8964 7 VE Kamýk 899.8898 736.4348 75.695 753.959 75.984 678.568 49,778 94.573

Přílohy 4 Tab. -3 Velikost zkratového proudu (v A) krat uzlu č. 3 4 5 6 7 8-783,3-648.69-653,34-6486.488-36.5653-4494.987-4477,79-6676.595 Tab. -4 Proudy v jednotlivých vedeních Vedení krat v uzlu č. č. větve Číslo vedení 3 4 5 6 7 8 V97 34.34 V97 34.34 3 V973-534.534-437.468 36.963 389.9654 34.6663 589.9699 64.53-38.96 4 V974-534.534-437.468 36.963 389.9654 34.6663 589.9699 64.53-38.96 5 V968-48.893-34.85-48.749-5.83 984.6955 6.989 387.788 697.7 6 V969-48.893-34.85-48.749-5.83 984.6955 6.989 387.788 697.7 7 V975 6.95 84.9-58.98 56.755 456.8594 64.3875 53.8749 854.8964 8 V976-6.5-5.845-68.936-649.795 96.9 84.37 65.8855 377.953 9 V96 5.739 76.539 33.958 355.6863-67.67 936.3943-943.654 88.83 V96-5.739-76.539-33.958-355.6863-94.4486-936.3943 943.654-88.83 V965 53.687 5.774-75.778-94.6-743.946-754.6-9.798 465.775 V964 684.759 559.99 37.7757 398.76-5.4663-58.375-484.96 85.975

Přílohy 4 Příloha B Shrnutí výsledků pro chod dané sítě bez zátěže a pro nenulový odpor zkratu ohmy Tab. -5 Fázové napětí v jednotlivých uzlech při zkratu (ve V) Uzel krat v uzlu č. č. Název 3 4 5 6 7 8 TR Milín 563,8 63,4 48, 886, 435, 3353, 368, 9949,7 TR Příbram Brod 563,8 664,9 48, 886, 435, 3353, 368, 9949,7 3 PE Příbram 56, 85, 38,7 474, 3983, 373,4 368,4 6, 4 TR Příbram město 4964,9 3,6 374,5 77,5 38855, 3635,9 3594, 55, 5 TR Slapy 835,6 498,3 4843,7 559, 6485,6 93, 6444,8 7558, 6 TR Sedlčany 568,3 9,6 5,9 854,4 6879,8 7875, 7686,9 6568,3 7 VE Kamýk 9835, 6435,9 7744, 563,9 464,8 756, 7847,9 835, 8 TR Mirovice 397,9 44,4 437,5 59, 36498,4 34,3 3363, 33,4 Tab. -6 Příspěvek jednotlivých zdrojů do zkratu (v A) droj krat v uzlu č. Uzel č. Název 3 4 5 6 7 8 TR Milín 475,379 434,63 3666,766 388,689 89,697 796,54 544,84 463,373 3 PE Příbram 87,746 685,6395 897,3 877,47 4,79 546,966 459,4 76,38 7 VE Kamýk 7,87 6,779 59,485 66,759 649,879 594,559 9, 747,6

Přílohy 43 Tab. -7 Velikost zkratového proudu (v A) krat uzlu č. 3 4 5 6 7 8-68,8946-533,478-554,3553-5386,39-34,7759-3937,635-393,9565-556,779 Tab. -8 Proudy v jednotlivých vedeních Vedení krat v uzlu č. č. větve Číslo vedení 3 4 5 6 7 8 V97 666, V97 666, 3 V973-48,8-364, 873,9 984,6,7 56,8 56, -97,4 4 V974-48,8-364, 873,9 948,6,7 56,8 56, 97,4 5 V968-336, -85, -4,8-43, 884, 88,4 6,3 9, 6 V969-336, -85, -4,8-43, 884, 88,4 6,3 9, 7 V975 87,7 685,6-457, 877,5 4, 547, 459, 76,4 8 V976-49,8-4,3-59,5-539,6 83,6 58,6 57,3 3,6 9 V96 73, 46,9 78,9 95,4-499,6 8,3-86,6 7,8 V96-73, -46,9-78,9-95,4-743, -8,3 86,6-7,8 V965 3, 4,6 3,6-44, -668, -536,7-55,3 384,4 V964 548,8 465,9 3,3 33,7 -,3-6, -77,3 674,

Přílohy 44 Příloha C Shrnutí výsledků pro chod dané sítě se zátěží a pro nulový odpor zkratu Tab. -9 Fázové napětí v jednotlivých uzlech při zkratu (ve V) Uzel krat v uzlu č. č. Název 3 4 5 6 7 8 TR Milín 446,3 649,4 337,4 36555,4 89, 3697,5 78,3 TR Příbram Brod 645,9 394,6 36465,7 889, 369,7 69,9 3 PE Příbram 377, 444,5 845, 35443, 68,5 3558, 66,8 4 TR Příbram město 966, 378,7 49,7 357,4 558,5 364,4 977,6 5 TR Slapy 678,7 6889, 776,3 483, 65,7 9474,4 786, 6 TR Sedlčany 389,8 44,6 68,7 99,7 97,8 864, 6567, 7 VE Kamýk 937,3 878,7 669, 78, 985, 63, 877, 8 TR Mirovice 665,7 783,5 6669, 35,3 3689,3 494,5 63,8 Tab. - Příspěvek jednotlivých zdrojů do zkratu (v A) droj krat v uzlu č. Uzel č. Název 3 4 5 6 7 8 TR Milín 594,397 4856,557 4385,8364 468,858 54,884 38,3939 967,4489 494,47 3 PE Příbram 7,3787 87,469 7,973 56,786 473,78 63,4 538,88 857,467 7 VE Kamýk 9,356 739,76 78,96 755,48 7,634 68,7444 49,789 94,7534

Přílohy 45 Tab. - Velikost zkratového proudu (v A) krat uzlu č. 3 4 5 6 7 8-786,456-6359,67-68,69-6456,544-354,63-443,79-4389,6934-667,37 Tab. - Proudy v jednotlivých vedeních Vedení krat v uzlu č. č. větve Číslo vedení 3 4 5 6 7 8 V97, 379,5,3 9, 4,9 9,7,6 7,3 V97, 379,5,3 9, 4,9 9,7,6 7,3 3 V973-59,6-47, 5,5 379,9 64,8 63,9 95, -4,9 4 V974-59,6-47, 5,5 379,9 64,8 63,9 95, -4,9 5 V968-46,4-334,3-44, -48,7 966,5 989,9 366, 679,6 6 V969-46,4-334,3-44, -48,7 966,5 989,9 366, 679,6 7 V975 6,3 83,5-537, 56,5 463,6 65, 59,6 854, 8 V976-6, -43,7-595,8-64,3 99,8 77, 645,9 375,7 9 V96 7, 8, 335,8 357,6-65,6 97,6-9, 9,8 V96-7, -8, -335,8-357,6-98,7-97,6 9, -9,8 V965 5,3 3, -8, -98,8-744,3-73, -33,4 456, V964 68,6 555,5 37,4 396,3-88,8-47,9-49, 8,

Přílohy 46 Tab. -3 Proud do zátěže při zkratu (ve A) Uzel krat v uzlu č. č. Název 3 4 5 6 7 8 TR Milín, -,5 -,7494 -,656 -,66 -,33 -,443 -,487 TR Příbram Brod,, -,5-8,89-49,8737-39,495-43,46-4,633 3 PE Příbram -,346-3,96, -,39-9,74-7,384-8,6665-3,4736 4 TR Příbram město -7,58-3,798-9,5894, -83,467-6,755-74,6-8,58 5 TR Slapy,,,,,,,, 6 TR Sedlčany -6,76-5,98 -,634-6,33-38,4474, -38,587 -,496 7 VE Kamýk -,8 -,766 -,878 -,675 -,836 -,8, -,7969 8 TR Mirovice,,,,,,,,

Přílohy 47 Příloha D Výpočet ustáleného chodu sítě se zátěží a pro nenulový odpor zkratu ohmy Tab. -4 Fázové napětí v jednotlivých uzlech při zkratu (ve V) Uzel krat v uzlu č. č. Název 3 4 5 6 7 8 TR Milín 43,9 9998, 3936,7 68,4 398, 3999, 35364,6 9688, TR Příbram Brod 4,4 5,7 3878, 69, 38986, 398, 3577,8 9639,7 3 PE Příbram 536, 43,6 6,9 338,8 3849,8 3443,8 355,3, 4 TR Příbram město 475, 864, 357,8 637,5 3774,7 34,4 3485,4 654,3 5 TR Slapy 776, 444, 445,8 48,5 63, 8769,8 597, 748,9 6 TR Sedlčany 534,7 39, 579,9 865,9 5943,3 77,4 6677,6 646,3 7 VE Kamýk 96,7 663,7 74,7 537,5 4,9 77,8 767,8 89, 8 TR Mirovice 374,8 89,9 47,8 89,3 356,6 9539, 358, 877,8 Tab. -5 Příspěvek jednotlivých zdrojů do zkratu (v A) droj krat v uzlu č. Uzel č. Název 3 4 5 6 7 8 TR Milín 4764,54 458,893 369,3897 39,69 78,5978 846,3 65,3659 487,735 3 PE Příbram 8,978 693, 899,65 879,759 49,35 557,5845 476,95 73,64 7 VE Kamýk 75,386 68,935 596,649 63,386 65, 599,8467 9,937 75,6869

Přílohy 48 Tab. -6 Velikost zkratového proudu (v A) krat uzlu č. 3 4 5 6 7 8-66,4698-555,8465-58,4573-538,7473-356,48-386,3-3835,47-5438,93 Tab. -7 Proudy v jednotlivých vedeních Vedení krat v uzlu č. č. větve Číslo vedení 3 4 5 6 7 8 V97 8,5 635, 6,3 4,8 6,7,5 4, 3,4 V97 8,5 635, 6,3 4,8 6,7,5 4, 3,4 3 V973-47,5-33, 86,3 97,3 44, 534,8 9,6-7,6 4 V974-47,5-33, 86,3 97,3 44, 534,8 9,6 7,6 5 V968-37, -7,9-33,5-36,7 867,6 865, 96,,5 6 V969-37, -7,9-33,5-36,7 867,6 865, 96,,5 7 V975 87,7 686,9-483,6 876,6 48,9 549, 467,3 77,3 8 V976-4,3-3,6-49, -5,8 87,5 457,4 567,6 33, 9 V96 79, 56, 84,7 3, -443,5 8,3-79,9 8, V96-79, -56, -84,7-3, -7,6-8,3 79,9-8, V965,9 85,4-4,4-54,4-67,4-55, -7, 365,9 V964 544,5 46,5 39,4 37,9-63,8-4,9 -, 668,

Přílohy 49 Tab. -8 Proud do zátěže při zkratu (ve A) Uzel krat v uzlu č. č. Název 3 4 5 6 7 8 TR Milín -,565 -,987 -,877 -,985 -,7759 -,4995,67 -,8946 TR Příbram Brod -6,966-4,3767-3,6578-9,58-53,37-45,7-48,49-6,86 3 PE Příbram -4,45-6,494 -,7877-3,9 -,4393-8,356-9,6644-5,8 4 TR Příbram město -35,69-5,93-3,44-5,337-89,7484-7,45-8,9349-49,54 5 TR Slapy 6 TR Sedlčany -6,86-39,55-36,7-3,7876-45,3969-3,53-46,689-8,537 7 VE Kamýk -,789 -,368 -,497 -,35 -,98 -,473 -,697 -,6438 8 TR Mirovice

Přílohy 5 Příloha E Velikost jednotlivých typů zkratu pro chod bez zátěže Tab. -9 Velikosti náhradních sousledných impedancí (v Ω) átěž Přechodový odpor zkratu [Ω] krat v uzlu č. 3 4 5 6 7 8 ne 8,98 9,999,33 9,79 7,5848 4,88 4,848 9,5 ano 8,5 9,987,3974 9,8363 8,6 4,334 4,4676 9,588 ne,98,998,33,799 9,5846 6,86 6,848,5 ano,6,834,56,945,8 6,4479 6,5584,6767 Při praktických výpočtech se předpokládá pro zkrat ideální spojení se zanedbatelnou impedancí a rovněž se nepředpokládá odběr z jednotlivých uzlů. Hodnoty v následujících tabulkách jsou vypočteny pro tento stav (vstupní hodnoty jsou v prvním řádku tabulky.9) Tab. - Velikosti náhradních impedancí složkové soustavy (v Ω) Impedance krat v uzlu č. 3 4 5 6 7 8 Sousledná 8,98 9,999,33 9,79 7,5848 4,88 4,848 9,5 pětná ( = ) 8,98 9,999,33 9,79 7,5848 4,88 4,848 9,5 Netočivá ( =,8. ) 6,4878 7,979 8,57 7,838 4,678,33,3478 7,697

Přílohy 5 Tab. - Velikosti zkratových proudů pro různé typy zkratu (v ka) Typ zkratu krat v uzlu č. 3 4 5 6 7 8 Třífázový 7,83 6,4 6,5 6,49 3,6 4,49 4,48 6,68 Jednofázový 8,39 6,87 6,59 6,95 3,87 4,8 4,8 7,5 Dvoufázový 6,78 5,55 5,33 5,6 3,3 3,89 3,88 5,78 Dvoufázový zemní 8,5 6,67 6,4 6,75 3,76 4,68 4,66 6,95