Syntetická geometrie I

Podobné dokumenty
Syntetická geometrie I

Kružnice, úhly příslušné k oblouku kružnice

Syntetická geometrie I

Syntetická geometrie I

8 Podobná (ekviformní) zobrazení v rovině

Syntetická geometrie I

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

5. P L A N I M E T R I E

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

Vlastnosti kružnice. Bakalářská práce. Jihočeská univerzita v Českých Budějovicích Fakulta pedagogická Katedra matematiky

Obrázek 101: Podobné útvary

Užití stejnolehlosti v konstrukčních úlohách

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.

Základy geometrie - planimetrie

Shodné zobrazení v rovině

Shodná zobrazení v rovině

Cyklografie. Cyklický průmět bodu

1. Planimetrie - geometrické útvary v rovině

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Digitální učební materiál

Syntetická geometrie II

Syntetická geometrie I

9. Planimetrie 1 bod

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

Definice 3. Kruhová inverze určená kružnicí ω(s, r) (viz Obr. 6) je zobrazení, které každému bodu X S přiřadí bod X tímto způsobem:

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Cesta z roviny do prostoru od vlastností kružnic ke kulové inverzi

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

PLANIMETRIE úvodní pojmy

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

Geometrická zobrazení

Syntetická geometrie I

Mongeovo zobrazení. Osová afinita

Opakování ZŠ - Matematika - část geometrie - konstrukce

Geometrie trojúhelníka

Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.

SHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

P L A N I M E T R I E

Univerzita Karlova v Praze Pedagogická fakulta

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

Geometrie trojúhelníka Martin Töpfer

Syntetická geometrie I

Rozpis výstupů zima 2008 Geometrie

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného

Syntetická geometrie I

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Polibky kružnic: Intermezzo

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Pracovní listy MONGEOVO PROMÍTÁNÍ

Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r.

Mongeovo zobrazení. Řez jehlanu

PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)

Trojúhelník. Jan Kábrt

Obrázek 34: Vznik středové kolineace

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

MONGEOVO PROMÍTÁNÍ - 2. část

Čtyři body na kružnici

10. Analytická geometrie kuželoseček 1 bod

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Pomocný text. Kruhová inverze

Extremální úlohy v geometrii

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

Kulová plocha, koule, množiny bodů

Úlohy MO z let navržené dr. Jaroslavem Švrčkem

Počítání v planimetrii Michal Kenny Rolínek

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

Maturitní nácvik 2008/09

O podobnosti v geometrii

ZÁKLADY PLANIMETRIE. 1.1 Přímka. Základy planimetrie, Jaroslav Reichl, 2013

Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen

Planimetrie. Přímka a její části

p ACD = 90, AC = 7,5 cm, CD = 12,5 cm

Úvod. Cílová skupina: 2 Planimetrie

Kuželoseč ky. 1.1 Elipsa

MATEMATIKA. Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

UNIVERZITA KARLOVA V PRAZE

Analytická geometrie kvadratických útvarů v rovině

M - Pythagorova věta, Eukleidovy věty

5 Pappova věta a její důsledky

Transkript:

Kružnice Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/

& přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr

Úhly v kružnici Věta (O obvodovém a středovém úhlu) Velikost středového úhlu je rovna dvojnásobku velikosti každého obvodového úhlu příslušného k témuž oblouku. Důkaz (Výčtem možností) AVB - obvodový úhel ASB - středový úhel a) S AV BSV - rovnoramenný SBV = BVS = α BSV = π 2α BSA = 2α

Úhly v kružnici Věta (O obvodovém a středovém úhlu) Velikost středového úhlu je rovna dvojnásobku velikosti každého obvodového úhlu příslušného k témuž oblouku. Důkaz (Výčtem možností) AVB - obvodový úhel ASB - středový úhel b) S je vnitřní bod úhlu AVB C SV k převedeme na úhly AVC, BVC AVB = AVC + BVC

Úhly v kružnici Věta (O obvodovém a středovém úhlu) Velikost středového úhlu je rovna dvojnásobku velikosti každého obvodového úhlu příslušného k témuž oblouku. Důkaz (Výčtem možností) AVB - obvodový úhel ASB - středový úhel c) S je vnější bod úhlu AVB C SV k převedeme na úhly AVC, BVC AVB = BVC AVC

Úhly v kružnici Věta (O obvodovém a středovém úhlu) Velikost středového úhlu je rovna dvojnásobku velikosti každého obvodového úhlu příslušného k témuž oblouku. Důkaz (Výčtem možností) AVB - obvodový úhel ASB - středový úhel d) pro tupý AVB C SV k převedeme na úhly AVC, BVC AVB = BVC + AVC

Úhly v kružnici Věta (O úsekovém úhlu) Úsekový úhel daného oblouku je shodný se všemi obvodovými úhly příslušnými k danému oblouku, Důkaz AB, t - úsekový úhel ABS je rovnoramenný DBS je pravoúhlý SD je osa úhlu ASB DSA = DSB = α DBS = π 2 α AB, t = α

Úhly v kružnici Aplikace: množina G všech vrcholů V úhlu AVB o velikosti α, jejíchž ramena procházejí body A B. konstrukce tečny daným bodem

Obvod a obsah Obvod kružnice: O = 2πr Obsah kružnice: S = πr 2 Délka oblouku kružnice: l = α 2π O = 2παr 2π = αr Obsah kruhové výseče: S výseče = α 2π S = παr 2 Obsah kruhové úseče: S úseče = S výseče S = αr 2 2π = αr 2 2 2 1 2 r 2 sin α = 1 2 r 2 (α sin α)

Mocnost bodu ke kružnici Definice (Mocnost bodu ke kružnici) Mocnost bodu A ke kružnici k(s, r) nazýváme číslo M(A, k) = AS 2 r 2. M(A, k) > 0 A je vně k AS 2 r 2 = AT 2 > 0 M(A, k) = 0 A k AS 2 r 2 = 0 M(A, k) < 0 A je uvnitř k AS 2 r 2 = AD 2 < 0

Mocnost bodu ke kružnici Věta Je dána kružnice k a bod A. Bodem A ved me libovolnou sečnu s kružnice k. Průsečíky sečny s a kružnice k označme X, Y. Pro body X a Y platí: { M(A, k) pokud A k nebo A je vně k (1) AX AY = M(A, k) pokud A je uvnitř k (2) Důkaz (1) AX AY = ( AP XP )( AP + YP ) AX AY = AP 2 XP 2 AX AY = AS 2 SP 2 (r 2 SP 2 ) AX AY = AS 2 r 2 = M(A, k)

Mocnost bodu ke kružnici Věta Je dána kružnice k a bod A. Bodem A ved me libovolnou sečnu s kružnice k. Průsečíky sečny s a kružnice k označme X, Y. Pro body X a Y platí: { M(A, k) pokud A k nebo A je vně k (1) AX AY = M(A, k) pokud A je uvnitř k (2) Důkaz (2) AX AY = ( XP AP )( AP + YP ) AX AY = XP 2 AP 2 AX AY = r 2 SP 2 ( AS 2 SP 2 ) AX AY = r 2 AS 2 = M(A, k)

Mocnost bodu ke kružnici Konstrukce (Dáno: kružnice k, X, Y k, M(A, k) > 0. Sestrojte bod A XY ) Pro M(A, k) > 0 platí M(A, k) = AS 2 r 2 Bod A leží na XY a na kružnici l(s, AS = M(A, k) + r 2 ). Postup: 1 t; t je tečna ke k v bodě X 2 k 1 ; k 1 (X, M(A, k)) 3 Q; Q t k 1 4 l; l(s, SQ ) 5 A l XY

Mocnost bodu ke kružnici

Mocnost bodu ke kružnici Konstrukce (Dáno: kružnice k, X, Y k, M(A, k) < 0. Sestrojte bod A XY ) Pro M(A, k) < 0 platí M(A, k) = r 2 AS 2 Bod A leží na XY a na kružnici l(s, AS = r 2 + M(A, k)). Postup: 1 k t ; k t (XS) 2 k 1 ; k 1 (X, M(A, k)) 3 Q; Q k t t k 1 4 l; l(s, SQ ) 5 A l XY

Mocnost bodu ke kružnici

& Kružnice opsaná k(s o, r) BS o S c sin γ = c 2r 2r = c sin γ = b sin β = S = 1 2ab sin γ S = abc 4r a sin α

& Kružnice vepsaná k(s v, ρ) ρ = S ABC = s (s a)(s b)(s c) s S ABC = S ABSv + S BCSv + S ACSv S ABC = 1 2 ρc + 1 2 ρa + 1 2 ρb S ABC = ρ a+b+c 2 = ρs AT c S v = ATb S v dle Ssu ( AS v, ρ, π 2 ) AT c = AT b = x BT c = BT a = y CT a = CT b = z a + b + c = 2x + 2y + 2z s = x + y + z s a = x xyz ρ = x + y + z

& Kružnice připsané k a, k b, k c

Vzájemná poloha 2 Definice (Soustředné kružnice) Dvě kružnice se nazývají soustředné, jestli mají společný střed. Definice (Středná) Spojnice středů dvou kružnic se nazývá jejich středná. totožné soustředné k 2 uvnitř k 1 S 1 = S 2 S 1 = S 2 S 1 S 2 r 1 = r 2 r 1 r 2 S 1 S 2 < r 1 r 2

Vzájemná poloha 2 vnitřní dotyk k 1 a k 2 se protínají ve 2 bodech vnějši dotyk S 1 S 2 S 1 S 2 S 1 S 2 S 1 S 2 = r 1 r 2 r 1 r 2 < S 1 S 2 < r 1 + r 2 S 1 S 2 = r 1 + r 2

Vzájemná poloha 2 k 1 a k 2 leží vzájemně vně S 1 S 2 S 1 S 2 > r 1 + r 2

Vzájemná poloha 2 Definice (Ortogonální kružnice) Dvě kružnice, které se protínají, se nazývají vzájemně kolmé (ortogonální), jsou-li vzájemně kolmé jejich tečny ve společných průsečících. S 1 S 2 S 1 S 2 = r 2 1 + r 2 2

Stejnolehlost dvou kružnic Věta (Stejnolehlost dvou kružnic) Necht jsou dány dvě kružnice k 1 (S 1, r 1 ), k 2 (S 2, r 2 ). Platí, že: jsou-li k 1, k 2 soustředné, potom mezi nimi existuje 1 stejnolehlost. jsou-li S 1 S 2 a současně r 1 = r 2, potom mezi nimi existuje 1 stejnolehlost. jsou-li S 1 S 2 a současně r 1 r 2, potom mezi nimi existují 2 stejnolehlosti. Vnitřní stejnolehlost se středem I na úsečce S 1 S 2. Vnější stejnolehlost se středem E vně úsečky S 1 S 2.

Stejnolehlost dvou kružnic Věta (Stejnolehlost dvou kružnic) S 1 = S 2 H(S 1, r 2 r1 ) S 1 S 2 r 1 = r 1 H(I(středS 1 S 2 ), 1)

Stejnolehlost dvou kružnic Věta (Stejnolehlost dvou kružnic) S 1 S 2 r 1 r 1

Stejnolehlost dvou kružnic Věta (Stejnolehlost dvou kružnic) S 1 S 2 r 1 r 1

Stejnolehlost dvou kružnic Věta (Stejnolehlost dvou kružnic) S 1 S 2 r 1 r 1

Stejnolehlost dvou kružnic Věta (Stejnolehlost dvou kružnic) S 1 S 2 r 1 r 1

Stejnolehlost dvou kružnic Aplikace: sestrojení tečen dvou kružnic. S 1 S 2 r 1 r 1

Mongeova věta Věta (Mongeova věta) Jsou-li k 1, k 2, k 3 kružnice s nekolineárními středy a různými poloměry, pak platí pro vnější a vnitřní středy stejnolehlosti každých dvou z těchto kružnic: všechny 3 vnější středy stejnolehlosti (E 12, E 23, E 13 ) leží v přímce každé dva vniřní středy stejnolehlosti a jeden vnějši leží v přímce 3 vnitřní středy stejnolehlosti (I 12, I 23, I 13 ) neleží v přímce

Mongeova věta

Mongeova věta Věta (Mongeova věta) Důkaz Je jednoduchý Vnější stejnolehlost mezi k 1 a k 2 je H 12 (E 12, r 2 r1 ). Vnitřní stejnolehlost mezi k 1 a k 2 je H 12 (I 12, r 2 r1 ). Vnější stejnolehlost mezi k 2 a k 3 je H 23 (E 23, r 3 r2 ). Vnitřní stejnolehlost mezi k 2 a k 3 je H 23 (I 23, r 3 r2 ). Vnější stejnolehlost mezi k 1 a k 3 je H 13 (E 13, r 3 r1 ). Vnitřní stejnolehlost mezi k 1 a k 3 je H 13 (E 13, r 3 r1 ). H 13 = H 23 H 12 a E 13 leží na přímce E 12 E 23 H 13 = H 23 H 12 a I 13 leží na přímce I 12 E 23 atd.

Stejnolehlost - kružnicový dodatek Věta Každou přímou vlastní podobnost lze rozložit na stejnolehlost a otočení se stejným středem. Důkaz Přímá vlastní podobnost je zadána 2 páry odpovídajících si bodů X, Y X, Y. 1) XY X Y, potom existuje stejnolehlost. 2) XY X Y K XY X Y. Sestrojíme kružnice opsané k x (XX K ), k y (YY K ):2a) k x, k y mají společný právě bod K rotace se středem K : X X 1, Y Y 1 a následně stejnolehlost se středem K : X 1 X, Y 1 Y.

Stejnolehlost - kružnicový dodatek Věta Každou přímou vlastní podobnost lze rozložit na stejnolehlost a otočení se stejným středem. Důkaz 2a)

Stejnolehlost - kružnicový dodatek Věta Každou přímou vlastní podobnost lze rozložit na stejnolehlost a otočení se stejným středem. Důkaz 2b) k x, k y mají společné body K, S obvodové úhly SXK = SX K ; SYK = SY K, takže použijeme rotaci se středem S o úhel XSX : X X 1, Y Y 1. a potom stejnolehlost se středem S : X 1 X, Y 1 Y.

Stejnolehlost - kružnicový dodatek Věta Každou přímou vlastní podobnost lze rozložit na stejnolehlost a otočení se stejným středem. Důkaz 2b)

Stejnolehlost - kružnicový dodatek Věta Každou nepřímou vlastní podobnost lze rozložit na stejnolehlost a osovou souměrnost, jejíž osa prochází středem stejnolehlosti. Věta Každá vlastní podobnost má právě jeden samodružný bod. Důkaz Důsledek předešlých dvou vět je, že existuje alespoň jeden samodružný bod. Kdyby existovali dva samodružné body, tak jejich vzdálenost se zachovává a jde o shodnost.

Chordála dvou kružnic Definice (Chordála) Množina bodů, které mají stejnou mocnost k dvoum nesoustředným kružnicím se nazývá chordála. Chordála je přímka kolmá ke středné (bez důkazu). Konstrukce k 1 k 2 ve dvou bodech

Chordála dvou kružnic Konstrukce k 1 k 2 v jednom bodě

Chordála dvou kružnic Konstrukce k 1 a k 2 nemají společný bod Použijeme třetí kružnici, která má 2 společné body s oběma kružnicemi. Průsečík jejich chordál se nazývá potenční střed a leží na chordále k 1 a k 2.