PRUŽNOST A PEVNOST II

Podobné dokumenty
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW:

Energetické principy a variační metody ve stavební mechanice

Pružnost a plasticita II CD03

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

ÚVOD DO MODELOVÁNÍ V MECHANICE

Rozdíly mezi MKP a MHP, oblasti jejich využití.

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Prostorové konstrukce. neznámé parametry: u, v w. (prvky se středostranovými uzly)

Přednáška 1 Obecná deformační metoda, podstata DM

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice

Martin NESLÁDEK. 14. listopadu 2017

METODA KONEČNÝCH PRVKŮ VE STAVEBNÍ MECHANICE

Autor: Vladimír Švehla

Téma 12, modely podloží

Kontraktantní/dilatantní

ANALÝZA KONSTRUKCÍ. 5. přednáška

4. Napjatost v bodě tělesa

1 Ohyb desek - mindlinovské řešení

Nelineární problémy a MKP

1.1 Shrnutí základních poznatků

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Zjednodušený 3D model materiálu pro maltu

7 Lineární elasticita

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

Vícerozměrné úlohy pružnosti

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Cvičení 7 (Matematická teorie pružnosti)

Lineární stabilita a teorie II. řádu

Pružnost a plasticita CD03

Co jsme udělali: Au = f, u D(A)

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

Mechanika s Inventorem

Sedmé cvičení bude vysvětlovat tuto problematiku:

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

7. Základní formulace lineární PP

ZÁKLADY MATEMATICKÉ TEORIE PRUŽNOSTI

Globální matice konstrukce

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Pružnost a pevnost I

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Obr. 0.1: Nosník se spojitým zatížením.

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

Zjednodušená deformační metoda (2):

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Pružnost a pevnost. zimní semestr 2013/14

Statika soustavy těles.

(Poznámka: V MA 43 je věta formulována trochu odlišně.)

ČVUT UPM 6/2013. Eliška Bartůňková

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

1 Stabilita prutových konstrukcí

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím

Typy nelinearit. jen v tahu (jen v tlaku), pružnost, plasticita, lomová mechanika,... ), geometrická nelinearita velká posunutí, pootočení.

Obecný Hookeův zákon a rovinná napjatost

12. Prostý krut Definice

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

10. Elasto-plastická lomová mechanika

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

Betonové konstrukce (S) Přednáška 3

1. Úvod do pružnosti a pevnosti

Princip virtuálních prací (PVP)

16. Matematický popis napjatosti

1 Modelování pružného podloží

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

ÚVOD DO MODELOVÁNÍ V MECHANICE

Postup při výpočtu prutové konstrukce obecnou deformační metodou

Pružnost a plasticita II DD6

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

PRUŢNOST A PLASTICITA

Nelineární úlohy při výpočtu konstrukcí s využitím MKP

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

PRUŽNOST A PLASTICITA I

Nejpoužívanější podmínky plasticity

Otázky pro Státní závěrečné zkoušky

PRUŽNOST A PLASTICITA

Křivé pruty. Kapitola Úvod

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

Vícerozměrné úlohy pružnosti

Geometricky válcová momentová skořepina

Analýza napjatosti PLASTICITA

DIPLOMOVÁ PRÁCE. České vysoké učení technické v Praze Fakulta stavební. Prvky pro analýzu deskových a skořepinových konstrukcí.

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

Transkript:

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Přednášející Doc. Ing. Alois Materna, CSc., MBA Kancelář: LP F 206 Telefon: 597 321 919 E-mail: alois.materna@vsb.cz 2

Náplň předmětu 1. základní úloha teorie pružnosti 2. plošné konstrukce: stěny, desky, skořepiny 3. energetické principy, variační metody, metoda konečných prvků 4. modely podloží, stabilitní úlohy, nelineární mechanika 3

Doporučená literatura (1) Teplý, B. Šmiřák, S.: Pružnost a plasticita 2., VUT v Brně, Brno, 1992 (skriptum) Šmiřák, S.: Energetické principy a variační metody v teorii pružnosti, VUT v Brně, Brno, 1998 (skriptum) Servít a kol.: Teorie pružnosti a plasticity I., SNTL, Praha, 1981 (celostátní učebnice) 4

Doporučená literatura (2) Servít a kol.: Teorie pružnosti a plasticity II., SNTL, Praha, 1984 (celostátní učebnice) Timoshenko. S. Gere, J.: Mechanics of Materials, Van Nostrand Company, New York, 1972 Boresi, A. Schmidt, R.: Advanced Mechanics of Materials, John Wiley & Sons, 2003 5

Další studijní materiály http://fast10.vsb.cz/brozovsky/ http://fast10.vsb.cz/randyskova/ (SSK II poslední přednášky) http://fast10.vsb.cz/studijni-materialy/metoda-kp/ 6

Základní předpoklady látka studovaného tělesa je spojitá látka je homogenní (ve všech místech stejné vlastnosti) látka je isotropní (ve všech směrech stejné vlastnosti) látka se chová lineárně pružně (tzv. Hookeův zákon) těleso je vystaveno jen malým deformacím 7

Isotropní a anisotropní materiál isotropní: ve všech směrech stejné vlastnosti anisotropní: v různých směrech různé vlastnosti ortotropní: různé vlastnosti ve vzájemně kolmých směrech 8

Energetické principy 1. přetvárná práce vnějších sil, 2. deformační energie, 3. princip virtuálních prací, 4. potenciální energie systému. 9

Přetvárná práce vnějších sil (1) F a b w w(b) Přetvárná práce v. s.: F df F dle Le d L e = F (w) d w, (1) L e = w 0 F (w) d w. (2) w dw w(b) 10

Přetvárná práce vnějších sil (2) Lineárně pružná odezva konstrukce: F F df dle Le w Clapeyronova věta: L e = 1 F w. (3) 2 dw w(b) 11

Přetvárná práce vnějších sil (3) Lagrangeova věta: Z (2) plyne: F = F (w) = d L e d w (4) a pro případ obecného počtu sil: F i = L e u i, (5) 12

Přetvárná práce vnějších sil (4) a F w Le * F b w(b) Doplňková (komplementární) přetvárná práce v. s.: d L e = w(f ) d F, (6) L e = F 0 w(f ) d F. (7) F df dle * Pro lineárně pružnou odezvu konstrukce: dw w(b) w L e = L e = 1 F w. (8) 2 13

Přetvárná práce vnějších sil (5) Castiglianova věta: Z (7) plyne: w = w(f ) = d L e d w (9) a pro případ obecného počtu sil: F i = L e F i, (10) 14

Potenciální energie vnitřních Dokonale pružné těleso plně akumuluje energii odpovídající vykonané přetvárné práci: Π i = L e (11) 15

Přetvárná práce vnitřních sil Vnitřní síly brání deformaci, proto: L i = L e (12) a L i 0 (13) tedy: Π i = L i. (14) 16

Deformační energie (1) Příspěvek normálových napětí: σ dσ σ W* * dw dw W ε W σ = Wσ = ε 0 σ 0 σ(ε) d ε, (15) ε(σ) d σ. (16) Příspěvek smykových napětí: dε W ε = Wε = γ 0 τ 0 τ(γ) d γ, (17) γ(τ) d τ. (18) 17

Deformační energie (2) Lineárně pružná odezva materiálu: σ W* Příspěvek normálových napětí: σ dσ dw* dw W ε W σ = W σ = 1 2 σ ε. (19) Příspěvek smykových napětí: dε W ε = W ε = 1 2 τ γ. (20) 18

Deformační energie (3) Tedy potenciální energie vnitřních sil (pro lin. pružnou odezvu materiálu): Π i = = 1 2 V d V (21) V (σ x ε x + σ y ε y + σ z ε z + τ xy γ xy + τ yz γ yz + τ zx γ zx ) d V. V maticovém zápisu: Π i = Π i = V σt ε d V. (22) 19

Přímý prut (bez vlivu smyku) Normálové síly (σ = N A ): Π i,n = 1 2 V 1 E σ2 x dv = = 1 2 l N 2 E A d x (23) Momenty (σ = M y I ): Π i,m = 1 2 V 1 E σ2 x dv = = 1 2 l M 2 y E I d x (24) Tedy: Π i = 1 2 l N 2 E A d x + 1 2 l M 2 y E I d x l (25) 20

Princip virtuálních prací (Lagrangeúv) princip virtuálních posunů: Je-li těleso v rovnováze, pak virtuální práce všech skutečných vnějších i vnitřních sil na virtuálních deformacích je rovna nule. V δut X d V + s δut p d s V δεt σ d V = 0, (26) kde X... objemové síly, p... povrchové síly, σ... napětí. 21

Princip virtuálních prací (Castiglianův) princip virtuálních sil: Virtuální práce vnějších a vnitřních sil staticky přípustné virtuální soustavy sil na skutečných deformacích je rovna nule. V ut δx d V + s ut δp d s V εt δσ d V = 0, (27) kde X... objemové síly, p... povrchové síly, σ... napětí. 22

Potenciální energie systému (1) Potenciální energie vnějších sil (Π e ): a b F Π e = F w, (28) a pro obecné zatížení: F b w(b) Π e = n i=1 F i u i n i=1 d M j ϕ j c (29) q(x) w(x) d x. Obecný stav napjatosti tělesa: Π e = V XT u d V s pt u d S. (30) 23

Potenciální energie systému (2) Potenciální energie vnějších sil (Π e ): Π e = (L e + L e). (31) Při lineárně pružné odezvě materiálu: Π e = 2 L e. (32) tedy Π e 0. (33) 24

Potenciální energie systému (3) Π = Π e + Π i. (34) Dosazením za Π e a Π i : tedy Π = Π e + Π i = (L e + L e) + L e = L e, (35) Π 0. (36) 25

Potenciální energie systému (4) (Lagrangeův) princip minima celkové potenciální energie: Π = Π e + Π i = min. (37) Ze všech možných deformačních stavů tělesa (které neporušují jeho spojitost a respektují okrajové podmínky) nastane právě ten, při kterém je potenciální energie systému minimální. 26

Variační úloha hledáme neznámou funkci (nikoli jen hodnotu), funkce musí splňovat určité okrajové nebo počáteční podmínky, hledaná funkce musí splňovat podmínku extrému nějaké veličiny. 27

Variační úlohy v teorii pružnosti Protože platí (37): Π = Π i + Π e = min, (38) tedy hodnota potenciální energie je extrémní (minimální). Z matematiky: pro extrém veličiny Π platí: Π = 0, (39) čehož využívají variační metody (např Ritzova metoda). 28

Ritzova metoda (1) 1. Aproximace řešení volíme ve tvaru: w n (x) = n i=1 a i ψ i, (40) kde a i... neznámé konstanty, ψ i... aproximační funkce. 2. Vyjádříme Π pomocí w n (x). 3. Sestavení a vyřešení n rovnic: Π a i = 0. (41) 4. Dosazení vypočtených a i do (40). 29

Rizova metoda (2) bázové funkce Bázové (aproximační) funkce ψ musí vyhovovat okrajovým podmínkám úlohy. y Např. při výpočtu průhybu musí platit: x ψ(a) = 0 (protože w(a)=0), a w(x) ψ(x) b ψ(b) = 0 (protože w(b)=0). 30

Opakování: Protože platí: N M = (E A) du dx, (42) = (E I y ) d2 w dx 2, (43) tedy potenciální energie vnitřních sil (bez vlivu smyku): Π i = 1 2 L 0 E Au 2 dx + 1 2 L 0 E I w 2 dx. (44) 31

Příklad 1 (1) Stanovte funkci průhybu prostého nosníku (viz schéma). y Výsledek: a q w(x) L b x q w(x) = 24 E I x(l3 2 L x + x 3 ) w max = 5 q l 4 384E I Volba aproximace (jen 1. člen řady): w(x) = a 1 ψ 1 = a 1 sin( π x L ), tj. ψ 1 = sin( π x L ). 32

Příklad 1 (2) Okrajové podmínky: w(a) = w(x = 0) = 0... ψ 1 (a) = sin( π 0 L ) = 0 w(b) = w(x = L) = 0... ψ 1 (b) = sin( π L L ) = 0 Vyjádření Π e : Π e = L 0 q w(x)dx = L 0 q a 1 sin( π x L )dx = Π e = q a 1 [ L π cos(π x L ) ]L 0 = 2 q L π a 1 33

Příklad 1 (3) Vyjádření Π i : w = w = a 1 π 2 [ a 1 sin( π x L ) ] = a1 π L cos(π x L ) L 2 sin(π x L ) Π i = 1 2 L 0 E Iw 2 dx = 1 2 L 0 a 1 π 2 L 2 sin(π x L ) 2 dx =... = π4 4 E I L 3 a2 1 34

Příklad 1 (4) Vyjádření Π: Π = Π e + Π i = 2 q L π a 1 + π4 4 E I L 3 a2 1 Sestavení rovnic(e) Π a i = 0 : Π a 1 = 2 π q L + π4 4 E I L 3 2 a 1 = 0 Výpočet a 1 : a 1 = 4 q L4 π 5 E I 35

Příklad 1 (5) Výsledek (dosazením a i do w(x)): w(x) = a 1 ψ 1 = 4 q L4 π 5 E I sin(π x L ) Výpočet vnitřních sil (moment): M(x) = E I w = E I π a 2 x 1 L 2sin(π L ) = 4 q L2 π 3 sin( π x L ) 36

Metoda konečných prvků (1) Nevýhoda klasických variačních metod obtížná volba (často nemožná) aproximačních funkcí ϕ na složitějších oblastech. Řešení rozdělení konstrukce na malé oblasti na n jednoduchých podoblastí a volba aproximačních funkcí na nich ϕ j na nich. Protože Π je skalární veličina, lze: Π approx. = n j=1 Π e,j, (45) kde Π e,j je potenciální energie j-té podoblasti ( konečného prvku ). 37

Metoda konečných prvků (2) Další postup analogický klasickým variačním metodám (např. Ritzově metodě) řeší se soustava lineárních rovnic: Π = 0. (46) Pozn.: zde je použit Lagrangeův variační princip a jde tedy o deformační variantu metody konečných prvků MKP (viz dále). 38

Metoda konečných prvků (3) Varianty MKP: deformační neznámá jsou posunutí a pootočení (nejčastější, přes 90% případů), silová neznámé jsou silové veličiny, smíšená. 39

Deformační varianta MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost s deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u, v, w Aproximační funkce se volí zásadně ve tvaru polynomů. 40